首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Previous studies of Haemophilus influenzae documented the importance of several pyridine nucleotide-dependent enzymes in processing extracellular NAD and NMN to satisfy the V-factor growth requirement of the organism. The substrate specificities of two of these enzymes. NMN:ATP adenylyltransferase and NAD kinase, were investigated following partial purification. The ability of the transferase to utilize 3-acetylpyridine mononucleotide and 3-aminopyridine mononucleotide as substrates for the synthesis of the corresponding dinucleotides was demonstrated. The NAD kinase was observed to accept 3-acetylpyridine adenine dinucleotide as a substrate but failed to utilize 3-aminopyridine adenine dinucleotide. The mononucleotides of 3-acetylpyridine and 3-aminopyridine were shown to be as effective as the corresponding dinucleotides in the support of growth and inhibition of growth of H. influenzae, respectively. Inhibition of growth of H. influenzae by submicromolar 3-aminopyridine adenine dinucleotide was shown to occur because 3-aminopyridine mononucleotide was produced from it in reactions catalysed by the H. influenzae periplasmic nucleotide pyrophosphatase. The presence of an additional important pyridine nucleotide-dependent enzyme, NMN glycohydrolase, is also reported.  相似文献   

2.
Mitochondrial F1 containing genetically modified beta-subunit was purified for the first time from a mutant of the yeast Schizosaccharomyces pombe. Precipitation by poly(ethylene glycol) allowed us to obtain a very stable and pure enzyme from either mutant or wild-type strain. In the presence of EDTA, purified F1 retained high amounts of endogenous nucleotides: 4.6 mol/mol and 3.7 mol/mol for mutant and wild-type F1, respectively. The additional nucleotide in mutant F1 was ATP; it was lost in the presence of Mg2+, which led to a total of 3.4 mol of nucleotides/mol whereas wild-type F1 retained all its nucleotides. Mutant F1 bound more exogenous ADP than wild-type F1 and the same total nucleotide amount was reached with both enzymes. Kinetics of ATPase activity revealed a much higher negative cooperativity for mutant than for wild-type F1. Bicarbonate abolished this negative cooperativity, but higher concentrations were required for mutant F1. The mutant enzyme was more sensitive than the wild-type one to azide inhibition and ADP competitive inhibition; this indicated stronger interactions between nucleotide and F1 in the mutant enzyme. The latter also showed increased sensitivity to N,N'-dicyclohexylcarbodiimide irreversible inhibition.  相似文献   

3.
An activity that inhibited both glutamine synthetase (GS) and nitrate reductase (NR) was highly purified from cauliflower (Brassica oleracea var. botrytis) extracts. The final preparation contained an acyl-CoA oxidase and a second protein of the plant nucleotide pyrophosphatase family. This preparation hydrolysed NADH, ATP and FAD to generate AMP and was inhibited by fluoride, Cu2+, Zn2+ and Ni2+. The purified fraction had no effect on the activity of NR when reduced methylviologen was used as electron donor instead of NADH; and inhibited the oxidation of NADH by both spinach NR and an Escherichia coli extract in a time-dependent manner. The apparent inhibition of GS and NR and the ability of ATP and AMP to relieve the inhibition of NR can therefore be explained by hydrolysis of nucleotide substrates by the nucleotide pyrophosphatase. We have no evidence that the nucleotide pyrophosphatase is a specific physiological regulator of NR and GS, but suggest that nucleotide pyrophosphatase activity may underlie some confusion in the literature about the effects of nucleotides and protein factors on NR and GS in vitro.  相似文献   

4.
1. Three phosphodiesterases that are capable of hydrolysing 3':5'-cyclic nucleotides were purified from potato tubers. 2. The phosphodiesterases were fractionated by (NH4)2SO4 precipitation and CM-cellulose chromatography. The phosphodiesterases were resolved from each other and further purified by gel filtration in high- and low-ionic-strength conditions. 3. All three enzymes lacked significant nucleotidase activity. 4. Enzymes I and II had mol. wts. 240,000 and 80,000 respectively, determined by gel filtration, whereas enzyme III showed anomalous behaviour on gel filtration, behaving as a high- or low-molecular-weight protein in high- or low-ionic-strength buffers respectively. 5. All enzymes hydrolysed 2':3'-cyclic nucleotides as well as 3':5'-cyclic nucleotides. The enzymes also had nucleotide pyrophosphatase activity, hydrolysing NAD+ and UDP-glucose to various extents. Enzymes I and II hydrolyse cyclic nucleotides at a greater rate than NAD+, whereas enzyme III hydrolyses NAD+ at a much greater rate than cyclic nucleotides. All three enzymes hydrolysed the artificial substrate bis-(p-nitro-phenyl) phosphate. 6. The enzymes do not require the addition of bivalent cations for activity. 7. Both enzymes I and II have optimum activity at pH6 with 3':5'-cyclic AMP and bis-(p-nitrophenyl) phosphate as substrates. The products of 3':5'-cyclic AMP hydrolysis were 3'-AMP and 5'-AMP, the ratio of the two products being different for each enzyme and varying with pH. 8. Theophylline inhibits enzymes I and II slightly, but other methyl xanthines have little effect. Enzymes I and II were competitively inhibited by many nucleotides containing phosphomonoester and phosphodiester bonds, as well as by Pi. 9. The possible significance of these phosphodiesterases in cyclic nucleotide metabolism in higher plants is discussed.  相似文献   

5.
The kinetic properties of citrate synthase from rat liver mitochondria   总被引:19,自引:6,他引:13       下载免费PDF全文
1. Citrate synthase (EC 4.1.3.7) was purified 750-fold from rat liver. 2. Measurements of the Michaelis constants for the substrates of citrate synthase gave values of 16mum for acetyl-CoA and 2mum for oxaloacetate. Each value is independent of the concentration of the other substrate. 3. The inhibition of citrate synthase by ATP, ADP and AMP is competitive with respect to acetyl-CoA. With respect to oxaloacetate the inhibition by AMP is competitive, but the inhibition by ADP and ATP is mixed, being partially competitive. 4. At low concentrations of both substrates the inhibition by ATP is sigmoidal and a Hill plot exhibits a slope of 2.5. 5. The pH optimum of the enzyme is 8.7, and is not significantly affected by ATP. 6. Mg(2+) inhibits citrate synthase slightly, but relieves the inhibition caused by ATP in a complex manner. 7. At constant total adenine nucleotide concentration made up of various proportions of ATP, ADP and AMP, the activity of citrate synthase is governed by the concentration of the sum of the energy-rich phosphate bonds of ADP and ATP. 8. The sedimentation coefficient of the enzyme, as measured by activity sedimentation, is 6.3s, equivalent to molecular weight 95000.  相似文献   

6.
Glutamine synthetase (GS) was isolated from log phase cells and purified to a single protein as evidenced by gel electrophoresis. Protamine and ammonium sulfate precipitation and chromatography on DEAE-cellulose and Bio-Gel resulted in 380-fold purification. The enzyme was most sensitive to alanine (85% inhibition at 0.1 mM) but was also inhibited by glycine, arginine and serine. Combinations of inhibitory amino acids or nucleotides (AMP, ADP, ATP) exhibited cumulative inhibition. Cooperative inhibition was noted with CTP and any single nucleotide. Inhibition by CTP alone was uncompetitive with respect to glutamine. The enzyme was also regulated by the energy charge of the cell.  相似文献   

7.
Acid nucleotide pyrophosphatase was isolated from the cell-free extracts of Pichia guilliermondii Wickerham ATCC 9058. The enzyme was 25-fold purified by saturation with ammonium sulphate, gel-filtration on Sephadex G-150 column and ion-exchange chromatography on DEAE-Sephadex A-50 column. The pH optimum was 5.9, temperature optimum--45 degrees C. The enzyme catalyzed the hydrolysis of FAD, NAD+ and NADH, displaying the highest activity with NAD+. The Km, values for FAD, NAD+ and NADH were 1.3 x 10(-5) and 2.9 x 10(-4) M, respectively. The hydrolysis of FAD was inhibited by AMP, ATP, GTP, NAD+ and NADP+. The K1 for AMP was 6.6 x 10(-5) M, for ATP--2.0 X 10(-5) M, for GTP--2.3 X 10(-6) M, for NAD+--1.7 X 10(-4) M. The molecular weight of the enzyme was 136 000 as estimated by gel-filtration on Sephadex G-150 and 142 000 as estimated by thin-layer gel-filtration chromatography on Sephadex G-200 (superfine). Protein-bound FAD of glucose oxidase was not hydrolyzed by acid nucleotide pyrophosphatase. The enzyme was stable at 2 degrees C in 0.05 M tris-maleate buffer, pH 6.2. Alkaline nucleotide pyrophosphatase hydrolyzing FAD was also detected in the cells of P. guilliermondii.  相似文献   

8.
Alkaline nucleotide pyrophosphatase was isolated from the Pichia guilliermondii Wickerham ATCC 9058 cell-free extracts. The enzyme was 740-fold purified by saturation of ammonium sulphate, gel-chromatography on Sephadex G-150 and ion-exchange chromatography on DEAE-cellulose. Nucleotide pyrophosphatase is the most active at pH 8.3 and 49 degrees C. The enzyme catalyzes the hydrolysis of FAD, NAD+, NADH, NADPH, GTP. The Km value for FAD is 2.4 x 10(-4) M and for NAD+--5.7 x 10(-6) M. The hydrolysis of FAD was inhibited by NAD+, NADP+, ATP, AMP, GTP, PPi and Pi. The Ki for NAD+, AMP and Na4P2O7 was 1.7 x 10(-4) M, 1.1 x 10(-4) M and 5 x 10(-5) M, respectively. Metal chelating compounds, 8-oxyquinoline, o-phenanthroline and EDTA, inhibited completely the enzyme activity. The EDTA effect was irreversible. The molecular weight of the enzyme determined by gel-filtration on Sephadex G-150 and thin-layer gel-filtration chromatography was 78000 dalton. Protein-bound FAD of glucose oxidase is not hydrolyzed by the alkaline nucleotide pyrophosphatase. The enzyme is stable at 2 degrees C in 0.01 M tris-HCl-buffer (pH 7.5).  相似文献   

9.
D W Pettigrew  G J Yu  Y Liu 《Biochemistry》1990,29(37):8620-8627
Substrate binding to Escherichia coli glycerol kinase (EC 2.7.1.30; ATP-glycerol 3-phosphotransferase) was investigated by using both kinetics and binding methods. Initial-velocity studies in both reaction directions show a sequential kinetic mechanism with apparent substrate activation by ATP and substrate inhibition by ADP. In addition, the Michaelis constants differ greatly from the substrate dissociation constants. Results of product inhibition studies and dead-end inhibition studies using 5'-adenylyl imidodiphosphate show the enzyme has a random kinetic mechanism, which is consistent with the observed formation of binary complexes with all the substrates and the glycerol-independent MgATPase activity of the enzyme. Dissociation constants for substrate binding determined by using ligand protection from inactivation by N-ethylmaleimide agree with those estimated from the initial-velocity studies. Determinations of substrate binding stoichiometry by equilibrium dialysis show half-of-the-sites binding for ATP, ADP, and glycerol. Thus, the regulation by nucleotides does not appear to reflect binding at a separate regulatory site. The random kinetic mechanism obviates the need to postulate such a site to explain the formation of binary complexes with the nucleotides. The observed stoichiometry is consistent with a model for the nucleotide regulatory behavior in which the dimer is the enzyme form present in the assay and its subunits display different substrate binding affinities. Several properties of the enzyme are consistent with negative cooperativity as the basis for the difference in affinities. The possible physiological importance of the regulatory behavior with respect to ATP is considered.  相似文献   

10.
1. The disappearance of pyridine nucleotides during incubation with mosquito homogenates proceeds through the hydrolysis of the pyrophosphate linkage of these compounds as demonstrated by the formation of NMN and AMP from NAD(+). This reaction was also demonstrated by the loss in the coenzyme functioning property of NAD(+) (yeast alcohol dehydrogenase reaction) without a concomitant loss in reactivity towards cyanide. Transglycosidase activity was not observed in the mosquito homogenates, and low concentrations of nicotinamide did not inhibit the NAD(+) splitting activity of these homogenates. These observations are all in accord with the presence in these homogenates of a NAD(+) pyrophosphatase rather than a NADase. 2. The NAD(+) pyrophosphatase is destroyed by boiling, is not heat-activated, and has a pH optimum at pH8.75. In addition to NAD(+), other dinucleotides such as NADP(+), the 3-acetylpyridine and thionicotinamide analogues of NAD(+) and the thionicotinamide analogue of NADP(+), function as substrates in the hydrolysis catalysed by the pyrophosphatase. 3. A decrease in the specific activity of NAD(+) pyrophosphatase was observed during larval development, and a barely detectable activity was found in the pupa and adult. 4. Enzyme activity per organism increased in the larva but decreased to a very low value in the pupa and adult. These results indicate that the decrease in specific activity was due to a decrease in enzyme concentration rather than an increase in amounts of protein.  相似文献   

11.
A variety of biologically important pyridine nucleotides and precursors were examined for their capacities to satisfy the V-factor requirement of 30 strains of porcine haemophili. Of the compounds tested, only NAD, NMN and nicotinamide riboside (NR) supported the growth of all strains; NADP supported the growth of only the type strain of Haemophilus parasuis. Further studies with the H. parasuis type strain and the neotype strain of H. pleuropneumoniae demonstrated that, during growth, these organisms exhibited affinities for NMN that were greater than those for NAD; the affinity of H. pleuropneumoniae for NR was similar to that for NMN, whereas H. parasuis exhibited relatively low affinity for NR. With either organism, equimolar amounts of NAD and NMN supported the production of approximately equal amounts of biomass whereas growth yields were substantially lower when NR was the pyridine nucleotide source. When either organism was grown in the presence of excess exogenous [carbonyl-14C]NAD, cessation of growth was accompanied by the apparent exhaustion of the NAD supply. Approximately 80% of the radioactivity added as [14C]NAD could be recovered as extracellular [14C]nicotinamide and the majority of the assimilated radioactive material was present intracellularly in the form of a [14C]NAD(P) pool. The results are discussed in terms of the structural features required of a pyridine compound for it to support the growth of porcine haemophili, the capacity of these organisms to compete for pyridine nucleotide sources in vivo, and possible mechanisms involved in the assimilation of such compounds.  相似文献   

12.
Salivary apyrase of Rhodnius prolixus. Kinetics and purification.   总被引:2,自引:0,他引:2       下载免费PDF全文
The salivary apyrase activity of the blood-sucking bug Rhodnius prolixus was found to reside in a true apyrase (ATP diphosphohydrolase, EC 3.6.1.5) enzyme. The crude saliva was devoid of 5'-nucleotidase, inorganic pyrophosphatase, phosphatase and adenylate kinase activities. ATP hydrolysis proceeded directly to AMP and Pi without significant accumulation of ADP. Km values for ATP and ADP hydrolysis were 229 and 291 microM respectively. Ki values for ATP and ADP inhibition of ADP and ATP hydrolysis were not different from the Km values, and these experiments indicated competitive inhibition. Activities were purified 126-fold by combined gel filtration and ion-exchange chromatography procedures with a yield of 63%. The purified enzyme displayed specific activities of 580 and 335 mumol of Pi released/min per mg of protein for ATP and ADP hydrolysis respectively. The action of the purified enzyme on several phosphate esters indicates that Rhodnius apyrase is a non-specific nucleosidetriphosphate diphosphohydrolase.  相似文献   

13.
The effect of nucleotides: AMP, cAMP, ADP, ATP, GDP and GTP, on glutamate dehydrogenase (GDH) purified from the mealworm fat body was studied. Guanine nucleotides and ATP inhibited the enzyme strongly in both directions. GDH was partially protected from the inhibition by the addition of ADP to an assay medium. AMP and cAMP activated the enzyme slightly. The concerted effects of ADP and ATP indicate the importance of adenylate energy charge in the regulation of fat body GDH. It is suggested that GDH may play amphibolic role in the fat body and that the direction of GDH catalysed reaction is under strong influence of nucleotides. The enzyme may synthesize glutamate at high energy charge, but when the energy reserves are low, it oxidizes glutamate.  相似文献   

14.
Carbamoyl phosphate synthetase of pea shoots (Pisum sativum L.) was purified 101-fold. Its stability was greatly increased by the addition of substrates and activators. The enzyme was strongly inhibited by micromolar amounts of UMP (Ki less than 2 mum). UDP, UTP, TMP, and ADP were also inhibitory. AMP caused either slight activation (under certain conditions) or was inhibitory. Uridine nucleotides were competitive inhibitors, as was AMP, while ADP was a noncompetitive inhibitor. Enzyme activity was increased manyfold by the activator ornithine. Ornithine acted by increasing the affinity for Mg.ATP by a factor of 8 or more. Other activators were IMP, GMP, ITP, and GTP, IMP, like ornithine, increased the Michaelis constant for Mg.ATP. The activators ornithine, GMP, and IMP (but not GTP and ITP) completely reversed inhibition caused by pyrimidine nucleotides while increasing the inhibition caused by ADP and AMP.  相似文献   

15.
Azotobacter beijerinckii possesses the enzymes of both the Entner-Doudoroff and the oxidative pentose phosphate cycle pathways of glucose catabolism and both pathways are subject to feedback inhibition by products of glucose oxidation. The allosteric glucose 6-phosphate dehydrogenase utilizes both NADP(+) and NAD(+) as electron acceptors and is inhibited by ATP, ADP, NADH and NADPH. 6-Phosphogluconate dehydrogenase (NADP-specific) is unaffected by adenosine nucleotides but is strongly inhibited by NADH and NADPH. The formation of pyruvate and glyceraldehyde 3-phosphate from 6-phosphogluconate by the action of the Entner-Doudoroff enzymes is inhibited by ATP, citrate, isocitrate and cis-aconitate. Glyceraldehyde 3-phosphate dehydrogenase is unaffected by adenosine and nicotinamide nucleotides but the enzyme is non-specific with respect to NADP and NAD. Citrate synthase is strongly inhibited by NADH and the inhibition is reversed by the addition of AMP. Isocitrate dehydrogenase, a highly active NADP-specific enzyme, is inhibited by NADPH, NADH, ATP and by high concentrations of NADP(+). These findings are discussed in relation to the massive synthesis of poly-beta-hydroxybutyrate that occurs under certain nutritional conditions. We propose that synthesis of this reserve material, to the extent of 70% of the dry weight of the organism, serves as an electron and carbon ;sink' when conditions prevail that would otherwise inhibit nitrogen fixation and growth.  相似文献   

16.
Plastidic pyruvate kinase (ATP: pyruvate phosphotransferase, EC 2.7.1.40) was purified to near homogeneity as judged by native PAGE with about 4% recovery from developing seeds of Brassica campestris using (NH4)2SO4 fractionation, DEAE-cellulose chromatography, gel filtration through Sepharose-CL-6B and affinity chromatography through reactive blue Sepharose-CL-6B. The purified enzyme having molecular mass of about 266 kDa was quite stable and showed a broad pH optimum between pH 6.8-7.8. Typical Michaelis-Menten kinetics was obtained for both the substrates with K(m) values of 0.13 and 0.14 mM for PEP and ADP, respectively. The enzyme could also utilize CDP, GDP or UDP as alternative nucleotide to ADP, but with lower Vmax and higher K(m). The enzyme had an absolute requirement for a divalent and a monovalent cation for activity and was inhibited by oxalate, fumarate, citrate, isocitrate and ATP, and activated by AMP, aspartate, 3-PGA, tryptophan and inorganic phosphate. ATP inhibited the enzyme competitively with respect to PEP and non-competitively with respect to ADP. Similarly, oxalate inhibition was also of competitive type with respect to PEP and non-competitive with respect to ADP. This inhibition by either ATP or oxalate was not due to chelation of Mg2+, as the inhibition was not relieved on increasing Mg2+ concentration even upto 30 mM. Initial velocity and product inhibition studies demonstrated the reaction mechanism to be compulsory ordered type. The enzyme seems to be regulated synergistically by ATP and citrate.  相似文献   

17.
The oxaloacetate (OAA) decarboxylase (EC 4.1.1.3) activity of Acetobacter xylinum cells grown on glucose or glycerol is the same as that of cells grown on intermediates of the citrate cycle. The enzyme was purified 92-fold from extracts, and its molecular weight was determined to be 100,000 by gel filtration. Initial velocity studies revealed marked positive cooperativity for OAA (Hill coefficient [n(H)] = 1.8; S(0.5) = 21 mM). The affinity of the enzyme for OAA was markedly increased upon addition of nicotinamide adenine dinucleotide (NAD), NAD phosphate (NADP), and some other pyridine nucleotides. S(0.5(OAA)) decreased to 1 mM but n(H) and V(max) were unchanged. Saturation kinetics for the pyridine nucleotides were hyperbolic, and a half-maximal effect was obtained with 8 muM NAD and 30 muM NADP. The enzyme also catalyzed the exchange of (14)CO(2) into OAA but not the net carboxylation of pyruvate. Exchange activity, too, exhibited sigmoidal kinetics for OAA and was strongly stimulated by NAD at low substrate concentrations. The enzyme was inhibited by acetate competitively with respect to OAA. The K(I) for acetate (12 mM) was well within the physiological range of this compound inside the cell. The regulatory properties of the decarboxylase with respect to OAA cooperativity, NAD activation, and acetate inhibition were retained in situ within permeabilized cells. These properties seem to provide for a control mechanism which could insure the maintenance of OAA and the citrate cycle during growth of cells on glucose and, conversely, the required supply of pyruvate during growth on intermediates of the citrate cycle.  相似文献   

18.
1. ADP, ATP and GDP inhibited the phosphotransferase activity, the release of cyclic nucleotides from RNA, of ribonuclease. No significant inhibition was elicited by pyrimidine 5'-nucleoside diphosphates, CDP and UDP. 2. Inhibition by ADP, AMP, adenosine, adenine, NAD and NADP was insignificant at the concentrations tested. Small inhibition was observed with high concentrations of AMP and only when soluble RNA was the substrate. 3. Inhibition by ADP was found to be ;uncompetitive'. 4. Results seem to indicate that at least for optimum inhibition the polyphosphate of the purine nucleoside is essential. They further suggest that the inhibitor acts by combining with the enzyme only when the enzyme is bound to the substrate.  相似文献   

19.
The kinetic properties of highly purified human placental cytoplasmic 5'-nucleotidase were investigated. Initial velocity studies gave Michaelis constants for AMP, IMP, and CMP of 18, 30, and 2.2 microM, respectively. The enzyme shows the following relative Vmax values: CMP greater than UMP greater than dUMP greater than GMP greater than AMP greater than dCMP greater than IMP. The activity was magnesium-dependent, and this cation binds sequentially with a Km of 14 microM for AMP and an apparent Km of 6 mM for magnesium. A large variety of purine, pyrimidine, and pyridine compounds exert an inhibitory effect on enzyme activity. IMP, GMP, and NADH produce almost 100% inhibition at 1.0 mM. Nucleoside di- and triphosphates are potent inhibitors. ATP and ADP are competitive inhibitors with respect to AMP and IMP as substrates with Ki values of 100 and 15 microM, respectively. Inorganic phosphate is a noncompetitive inhibitor with Ki values of 19 and 43 mM. Nucleosides and other compounds studied produce only a modest decrease of enzyme activity at 1 mM. Our findings suggest that the enzyme is regulated under physiological conditions by the concentrations of magnesium, nucleoside 5'-monophosphates, and nucleoside di- and triphosphates. The nucleotide pool concentration regulates the enzyme possibly by a mechanism of heterogeneous metabolic pool inhibition. These properties of human placental cytoplasmic 5'-nucleotidase may be related to the control of nucleotide degradation in vivo.  相似文献   

20.
1. Pyruvate carboxylase from baker's yeast is inhibited by ADP, AMP and adenosine at pH8.0 in the presence of magnesium chloride concentrations equal to or higher than the ATP concentration. The adenine moiety is essential for the inhibitory effect. 2. In the absence of acetyl-CoA (an allosteric activator) ADP, AMP and adenosine are competitive inhibitors with respect to ATP. In the presence of acetyl-CoA, besides the effect with respect to ATP, AMP competes with acetyl-CoA, whereas ADP and adenosine are non-competitive inhibitors with respect to the activator. 3. Pyruvate carboxylase is inhibited by NADH. The inhibition is competitive with respect to acetyl-CoA and specific with respect to NADH, since NAD(+), NADP(+) and NADPH do not affect the enzyme activity. In the absence of acetyl-CoA, NAD(+), NADH, NADP(+) and NADPH do not inhibit pyruvate carboxylase. 4. Pyruvate carboxylase is inhibited by ADP, AMP and NADH at pH6.5, in the presence of 12mm-Mg(2+), 0.75mm-Mn(2+) and 0.5mm-ATP, medium conditions similar to those existing inside the yeast cell. The ADP and NADH effects are consistent with a regulation of enzyme activity by the intracellular [ATP]/[ADP] ratio and secondarily by NADH concentration. These mechanisms would supplement the already known control of yeast pyruvate carboxylase by acetyl-CoA and l-aspartate. Inhibition by AMP is less marked and its physiological role is perhaps limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号