首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Summary Five specific transposon-induced nodulation defective (Nod) mutants from different fast-growing species ofRhizobium were used as the recipients for the transfer of each of several endogenous Sym(biosis) plasmids or for recombinant plasmids that encode early nodulation and host-specificity functions. The Nod mutants were derived fromR. trifolii, R. meliloti and from a broad-host-rangeRhizobium strain which is able to nodulate both cowpea (tropical) legumes and the non-legumeParasponia. These mutants had several common features (a), they were Nod on all their known plant hosts, (b), they could not induce root hair curling (Hac) and (c), the mutations were all located on the endogenous Sym-plasmid of the respective strain. Transfer to these mutants of Sym plasmids (or recombinant plasmids) encoding heterologous information for clover nodulation (pBR1AN, pRt032, pRt038), for pea nodulation (pJB5JI, pRL1JI::Tn1831), for lucerne nodulation (pRmSL26), or for the nodulation of both tropical legumes and non-legumes (pNM4AN), was able to restore root hair curling capacity and in most cases, nodulation capacity of the original plant host(s). This demonstrated a functional conservation of at least some genes involved in root hair curling. Positive hybridization between Nod DNA sequences fromR. trifolii and from a broad-host-rangeRhizobium strain (ANU240) was obtained to other fast-growingRhizobium strains. These results indicate that at least some of the early nodulation functions are common in a broad spectrum ofRhizobium strains.  相似文献   

2.
Thirty Tn5- or Tn1831-induced nodulation (nod) mutants of Rhizobium leguminosarum were examined for their genetic and symbiotic properties. Thirteen mutants contained a deletion in Sym plasmid pRL1JI. These deletions cover the whole nod region and are 50 kb in size. All remaining seventeen mutations are located in a 6.6 kb EcoRI nod fragment of the Sym plasmid. Mutations in a 3.5 kb part on the right hand side of this 6.6 kb fragment completely prevent nodulation on Vicia sativa. All mutants in this 3.5 kb area are unable to induce marked root hair curling and thick and short roots.Mutations in a 1.5 kb area on the left hand side of the 6.6 kb nod fragment generate other symbiotic defects in that nodules are only rarely formed and only so after a delay of several days. Moreover, infection thread formation is delayed and root hair curling is more excessive than that caused by the parental strain. Their ability to induce thick and short roots is unaltered.Mutations in this 1.5 kb region are not complemented by pRmSL26, which carries nod genes of R. meliloti, whereas mutations in the 3.5 kb region are all complemented by pRmSL26.Abbreviations Rps repression of production of small bacteriocin - Mep medium bacteriocin production - Nod nodulation - Fix fixation - Tsr thick and short roots - Flac root hair curling - Hsp host specificity - Flad root hair deformation - Tc tetracycline - Km kanamycin - Cm chloramphenicol - Sp spectinomycin - Sm streptomycin - R resistant  相似文献   

3.
Summary A 14 kb DNA fragment from the Sym plasmid of the Rhizobium trifolii strain ANU843, known to carry common nodulation nod and host specific nodulation hsn genes, was extensively mutagenised with transposon Tn5. A correlation between the site of Tn5 insertion and the induced nodulation defect led to the identification of three specific regions (designated I, II, III) which affected nodulation ability. Twenty-three Tn5 insertions into region I (ca. 3.5 kb) affected normal root hair curling ability and abolished infection thread formation. The resulting mutants were unable to nodulate all tested plant species. Tn5 insertions in regions II and III resulted in mutants which showed an exaggerated root hair curling (Hac++) response on clover plants. Ten region II mutants which occurred over a 1.1 kb area showed a greatly reduced nodulation ability on clovers and produced aborted, truncated infection threads. Tn5 insertions into region III (ca. 1.5 kb) altered the outcome of crucial early plant recognition and infection steps by R. trifolii. Seven region III mutants displayed host-range properties which differed from the original parent strain. Region III mutants were able to induce marked root hair distortions, infection threads, and nodules on Pisum sativum including the recalcitrant Afghanistan variety. In addition region III mutants showed a poor nodulation ability on Trifolium repens even though the ability to induce infection threads was retained on this host. The altered host-range properties of region III mutants could only be revealed by mutation and the mutant phenotype was shown to be recessive.  相似文献   

4.
The structures of the acidic extracellular polysaccharides (EPSs) from several R. trifolii mutants were compared by examining their compositions and their sugar linkages as determined by methylation analysis. These mutant strains were derived from the wild-type R. trifolii ANU843 and were unable to induce normal root hair curling (Hac- phenotype) or nodulation response (Nod- phenotype) in clover plants. These strains included several transposon Tn5-induced Nod-mutants, strain ANU871, which possesses a 40 to 50 kilobase deletion of the resident Sym plasmid, and strain ANU845 which is missing the Sym plasmid (pSym-). Strains ANU845(pSym-) containing either plasmid pRt150 or pBR1AN were also used. The recombinant plasmid pRt150 restores only root hair curling capacity to ANU845 while plasmid pBR1AN (an R. trifolii pSym) restores both root hair curling and nodulation capacity to this strain. Our composition and methylation results show that the EPSs from all these strains have the same glycosyl and pyruvyl linkages. Thus we suggest that neither the nod genes involved in root hair curling nor the entire pSym encodes for the arrangement of glycosyl or pyruvyl residues in these EPSs. Whether or not the nod genes dictate the location of acetyl or β-hydroxybutyrate substituent groups remains to be determined.  相似文献   

5.
Summary A microscopic assessment is presented of the comparative infection capacity of wild-type and hybrid strains ofRhizobium leguminosarum bv.viciae withR. l. bv.trifolii strain ANU 843 on white clover seedlings. TheR. l. bv.viciae hybrid strains contained defined DNA segments coding for different combinations ofR. l. bv.trifolii host-specific nodulation genes. White clover plants were examined over a 72 h period to assessRhizobium infectivity, the morphological changes in root hair growth; colonisation ability of rhizobia; infection thread initiation and the ability to induce cortical cell division.R. l. bv.viciae strain 300 induced root hair curling more slowly than strain ANU 843 or any of the hybrid strain 300 bacteria, and when curling had taken place, there was poorer colonization by strain 300 within the folded hair cell, no evidence of infection thread formation and only limited cortical cell division 72 h after inoculation. The addition of the host-specific nodulation genes ofR. l. bv.trifolii to strain 300 was necessary to induce infection threads and establish a normal pattern of nodulation of the roots of white clovers.  相似文献   

6.
Summary A 6.7 kb HindIII fragment from the Sym-plasmid of strain NGR234 was found to code a nodD-like gene flanked by two loci which were required for siratro host range. Transfer of the 6.7 kb fragment from NGR234 to R. trifolii strain ANU843 conferred extended host range ability to this strain on siratro plants but not to other plants normally nodulated by strain NGR234. Tn5 mutagenesis of the 6.7 kb fragment showed that insertions located into loci flanking the nodD-like gene abolished the extended host range phenotype. A hybridization probe spanning one of the host specificity loci was shown to hybridize to three specific bands in the NGR234 genome. Complementation and DNA hybridization data showed that the nodD-like gene of strain NGR234 was functionally similar to that in R. trifolii. The introduction to R. trifolii of the 6.7 kb HindIII fragment containing Tn5 insertions located in the nodD-like gene did not abolish the ability to extend the host range of R. trifolii to siratro plants. However, transfer of the 6.7 kb HindIII to R. trifolii derivatives containing Tn5 insertions into either nodA, B or C or other R. trifolii nod genes failed to confer siratro nodulation to these recipients. Reconstruction experiments showed that the 6.7 kb fragment from strain NGR234 and the 14 kb nodulation region of R. trifolii could induce the nodulation of siratro plants when introduced together into Sym-plasmid-cured Rhizobium strains.  相似文献   

7.
White clover plants were inoculated with transconjugant strain' 290 which was obtained from introduction of host specific nodulation genes of wild-type Rhizobium trifolii strain ANU 843 to Rhizobium leguminosarum strain 300. The characterization of root morphology of white clover induced by the transconjugant was observed and compared to the plants induced by the parent strains. White clover started tO form a typical root hair curling inoculated with transconjugant strain 290 24h after inoculation, at 48h a part of cell wall of root hair was degradated, infection thread was observed in the infected root hair cell, cortical cell divisions occurred extensively. All these characterizations were similar to that infected by strain ANU 843. Plant inoculation test indicated that no nodule was formed when inoculated by R. leguminosarum strain 300, while plants nodulated when inoculated with transconjugant strain 290 as well as R. trifolii ANU 843. This suggests that introduction of host specific nodulation genes of R. trifolii results in conferring the nodulation ability of R. leguminosarum on white clover.  相似文献   

8.
Summary A molecular map was constructed linking the nitrogenase structural genes (nif) and nodulation genes (nod) in the white clover symbiont, Rhizobium trifolii. In R. trifolii strain ANU843 these two genetic regions are located some 16 kilobases (kb) apart on the 180 kb symbiotic (Sym) plasmid. The molecular linkage of nod and nif genetic regions was established by hybridization analysis using recombinant plasmids containing overlapping cloned sequences. Nodulation genes were located by means of a Tn5-induced nodulation-defective mutant that failed to induce clover root hair curling (Hac- phenotype). A cloned wild-type DNA fragment was shown to phenotypically correct the Hac- mutation by complementation. The nifHDK genes were cloned by positive hybridization to another R. trifolii nif-specific probe. Location of the nif genes relative to the nod genes was established by analysis of a Sym plasmid deletion derivative.  相似文献   

9.
Rhizobium-Azospirillum interactions during establishment of Rhizobium-clover symbiosis were studied. When mixed cultures of Azospirillum and Rhizobium trifolii strains were simultaneously inoculated onto clover plants, no nodulation by R. trifolii was observed. R. trifolii ANU1030, which nodulated clover plants without attacking root hairs, i.e., does not cause root hair curling (Hac), did not show inhibition of nodulation when inoculated together with Azospirillum strains. Isolation of bacteria from surface-sterilized roots showed that azospirilla could be isolated both from within root segments and from nodules. Inhibition of nodulation could be mimicked by the addition of auxins to the plant growth medium.  相似文献   

10.
Exopolysaccharides (EPS) of nodulating strains of Rhizobium trifolii and Rhizobium leguminosarum added to red clover seedlings before inoculation reduced the number of nodules. The inhibition of the nodulation was correlated with the amount of EPS. The preparations of EPS from mutants defective in early stages of nodulation (Roa- or Hac-) did not affect the nodulation, whereas EPS from mutants deficient in late stages (post Hac-) exerted an inhibitory effect.Inactive preparation of EPS contained less O-acetyl groups and pyruvic acid residues. Deacetylation and depyruvylation of EPS from R. trifolii Nod+ abolished it inhibitory effect. It was concluded that noncarbohydrate substitutions (acetate, pyruvate) are involved in EPS effect.Abbreviations CPS capsular polysaccharide - EPS exopolysaccharide - LPS lipopolysaccharide - Nod nodulation - Fix nitrogen fixation - Hac root hairs curling - Roa root adhesion  相似文献   

11.
Summary The Rhizobium trifolii genes necessary for nodule induction and development have been isolated on a 14.0kb fragment of symbiotic (Sym) plasmid DNA. When cloned into a broad-host-range plasmid vector, these sequences confer a clover nodulation phenotype on a derivative of R. trifolii which has been cured of its endogenous Sym plasmid. Furthermore, these sequences encode both host specificity and nodulation functions since they confer the ability to recognize and nodulate clover plants on Agrobacterium and a fast-growing cowpea Rhizobium. This indicates that the bacterial genes essential for the initial, highly-specific interaction with plants are closely linked.  相似文献   

12.
Rhizobium leguminosarum biovar trifolii strain TA1 nodulates a range of Trifolium plants including red, white and subterranean clovers. Nitrogen-fixing nodules are promptly initiated on the tap roots of these plants at the site of inoculation. In contrast to these associations, strain TA1 has a Nod- phenotype on a particular cultivar of subterranean clover called Woogenellup (A.H. Gibson, Aust J Agric Sci 19: (1968) 907–918) where it induces rare, poorly developed, slow-to-appear and ineffective lateral root nodules. By comparing the nodulation gene region of strain TA1 with that of another R. leguminosarum bv. trifolii strain ANU843, which is capable of efficiently nodulating cv. Woogenellup, we have shown that the nodT gene (B.P. Surin et al., Mol Microbiol 4: (1990) 245–252) is essential for nodulation on cv. Woogenellup. The nodT gene is naturally absent in strain TA1. A cosmid clone spanning the entire nodulation gene region of strain TA1 was capable of conferring nodulation ability to R.l. bv. trifolii strains deleted for nodulation genes, but only on cultivars of subterranean clovers nodulated by strain TA1. This shows that cultivar recognition events are, in part, determined by genes in the nodulation region of strain TA1. Complementation studies also indicated that strain TA1 contains negatively-acting genes located on the Sym plasmid and elsewhere, which specifically block nodulation of cv. Woogenellup.  相似文献   

13.
Axenic seedling bioassays were performed on white clover, vetch, and alfalfa to assess the variety and dose responses of biological activities exhibited by membrane chitolipooligosaccharides (CLOSs) from wild type Rhizobium leguminosarum bv. trifolii ANU843. Subnanomolar concentrations of CLOSs induced deformation of root hairs (Had) and increased the number of foci of cortical cell divisions (Ccd) in white clover, some of which developed into nodule meristems. In contrast, ANU843 CLOSs were unable to induce Had in alfalfa and required a 104-fold higher threshold concentration to induce this response in vetch. Also, ANU843 CLOSs were not mitogenic on either of these non-host legumes. In addition, CLOS action also increased chitinase activity in white clover root exudate. Thus, the membrane CLOSs from wild type R. leguminosarum bv. trifolii are fully capable of eliciting various symbiosis-related responses in white clover in the same concentration range as extracellular CLOSs of other rhizobia on their respective legume hosts. These results and our earlier studies indicate that membrane CLOSs represent one of many different classes of bioactive metabolites made by R. leguminosarum bv. trifolii which elicit more intense symbiosis-related responses in white clover than in other legumes. Therefore, CLOSs evidently play an important role in symbiotic development, but they may not be the sole determinant of host-range in the Rhizobium-clover symbiosis.Abbreviations Ccd cortical cell division - CLOS chitolipooligosaccharide - Had root hair deformation  相似文献   

14.
The 2,4-dichlorophenoxy acetic acid (2,4-D) degrading plasmid, pJP4, was transferred into Rhizobium trifolii ANU843 from its nature host Alcaligenes eutrophus JMP134 by conjugation. The ability to degrade 2,4-D was expressed in the transconjugant ANU843p as shown by a total loss of UV-absorbent compounds and by gas chromatographic analysis. However, the transconjugant was unable to grow on 2,4-D alone. When the transconjugant strain ANU843p was inoculated onto white and subterranean clover plants in laboratory trials, the transconjugant retained the capacity of nodulation, but the nitrogen-fixation activity was diminished, particularly in the case of subterranean clover. The plasmid in the transconjugant was stable in nodules for at least nine weeks after inoculation and could be of value in applications requiring the protection or removal of the 2,4-D involving cometabolism with plant substrates.  相似文献   

15.
Summary The cultivar specific interaction ofTrifolium subterranean cv. Woogenellup andRhizobium leguminosarum bv.trifolii strain ANU 794 was examined to establish the basis for nodulation failure on this cultivar. Infections were initiated by strain ANU 794 on cv. Woogenellup. Root hair curling, the initiation of infection threads, and cortical cell divisions were evident on the tap root and appeared normal after microscopic observation. However, in most cases, the infection threads stayed confined to the root hairs. No evidence was found for a hypersensitive response by the plant. The progress of infections on the tap roots was different from that on the lateral roots. This was confirmed by the differential tap and lateral root nodulation patterns of the mutants derived from strain ANU 794, which show enhanced nodulation on cv. Woogenellup. On the lateral roots, cortical cell divisions progressed further than those on the tap root and formed macroscopically visible swellings, which could be divided into two morphological classes. In some cases infection threads developed into these primordia but successful nodules were not established. The inhibition of infection appeared to be manifested at two levels: first, on the tap roots in the root hairs, where many of the infection threads are contained and secondly, in the primordia induced on the lateral roots, where the infection threads sometimes penetrate further than the root hair cell but stop in the primordial cells. It appears that an essential factor or trigger in the communication between plant and bacteria is missing or altered, resulting in an array of primordia-structures, which cease to develop.Abbreviations bv biovar - cv cultivar - Fix+ nitrogen fixing - GUS -glucuronidase - Nod+ nodulating - HR hypersensitive response - Km kanamycin - LOSs lipo-oligosaccharides - Sm streptomycin - Sp spectinomycin - X-Gluc 5-bromo-4-chloro-3-indonyl--glucuronic acid  相似文献   

16.
Lipooligosaccharides (Nod metabolites) have been shown to be essential for the successful nodulation of legumes. In strains of Rhizobium leguminosarum bv. trifolii, Nod metabolites were detected predominantly within the cell and to a lesser extent in the periplasmic space and the growth medium. The production, and in particular the excretion, of Nod metabolites was restricted by a range of environmental conditions which are associated with poor nodulation in the field. Lowering the medium pH from 7.0 to 5.0, reducing the phosphate concentration from 1 mM to 5 μM KH2PO4, and lowering the incubation temperature from 28 to 18°C affected the number and relative concentrations of the Nod metabolites made. The form and concentration of the nitrogen source affected the relative concentrations of the Nod metabolites produced and excreted. KNO3 concentrations of >10 mM did not affect cell growth rate but substantially reduced the number of Nod metabolites released. Environmental stresses differentially altered Nod metabolite production and excretion in the same strain carrying different introduced nod regions. Strain ANU845(pWLH1) produced and excreted comparatively fewer Nod metabolites at pH 5.0 and at 18°C than strain ANU845(pRI4003). The excretion but not the production of Nod metabolites by strain ANU845(pRtO32) was dependent on the presence of both nodI and nodJ. Tn5-induced nodI and nodJ mutants did not accumulate any metabolites either outside the cell or within the outer membrane or periplasmic space. Recognition that Nod metabolite accumulation is a complex system of production and excretion, with each component responding differently to changes in environmental conditions, has many consequences, both at the molecular level and in the field. The ability of different strains to produce and release Nod metabolites is likely to be a major determinant of nodule occupancy and should be considered when screening strains suitable for adverse environments.  相似文献   

17.
Summary The special ability of Rhizobium leguminosarum strain TOM to nodulate cv. Afghanistan peas had previously been shown to be determined by the symbiotic plasmid, pRL5JI, of this strain. A region of pRL5JI, 2.0 kb in size, was found to confer the ability to nodulate cv. Afghanistan peas when transferred to strains of R. leguminosarum which normally fail to nodulate this host. This region of pRL5JI, responsible for the extension of host-range, was closely linked to, but did not include, the genes required for root hair curling. Although extensive homology has been found between the R. leguminosarum nod genes on pRL5JI and those on the normal symbiotic plasmid pRL1JI, a fragment from the 2.0 kb region involved in nodulation of cv. Afghanistan has been identified, which was not homologous to DNA in strains which do not nodulate cv. Afghanistan.  相似文献   

18.
Summary R-prime plasmids were formed between the plasmid of Rhizobium fredii strain USDA191 containing nodulation and nitrogen-fixation genes, pRjaUSDA191c, and pRL180, and RP1 derivative. R. fredii USDA191 contains four HindIII fragments that hybridize with an 8.7 kb EcoRI fragment that contains nodulation genes from R. meliloti. These four fragments are on pRjaUSDA191c and are 15.5 kb, 12.5 kb, 6.8 kb, and 5.2 kb in size. A series of R-primes generated in E. coli of pRjaUSDA191c were transferred into a Nod- Nif- derivative of strain USDA191 to determine which nodulation region is necessary for nodule formation. Transconjugants containing the 12.5 kb and the 6.8 kb HindIII fragments on segments of pRjaUSDA191c produced nodules on soybean plants. However, transconjugants containing the 12.5 kb HindIII fragment alone were unable to form nodules, suggesting that the 6.8 kb HindIII fragment or the 6.8 kb and the 12.5 kb HindIII fragments together were needed for nodule formation. The 6.8 kb HindIII fragment was subcloned into the vector pVK102 and transferred into transconjugants containing no sequences homologous to R. meliloti nodulation DNA or to transconjugants containing only the 12.5 kb HindIII fragment. Nodules were formed on soybeans only when both the 12.5 kb and the 6.8 kb HindIII fragments were present in R. frediistrain USDA191.  相似文献   

19.
Plasmids which contained wild-type or mutated Rhizobium meliloti nodulation (nod) genes were introduced into NodR. trifolii mutants ANU453 and ANU851 and tested for their ability to nodulate clover. Cloned wild-type and mutated R. meliloti nod gene segments restored ANU851 to Nod+, with the exception of nodD mutants. Similarly, wild-type and mutant R. meliloti nod genes complemented ANU453 to Nod+, except for nodCII mutants. Thus, ANU851 identifies the equivalent of the R. meliloti nodD genes, and ANU453 specifies the equivalent of the R. meliloti nodCII genes. In addition, cloned wild-type R. trifolii nod genes were introduced into seven R. meliloti Nod mutants. All seven mutants were restored to Nod+ on alfalfa. Our results indicate that these genes represent common nodulation functions and argue for an allelic relationship between nod genes in R. meliloti and R. trifolii.  相似文献   

20.
Summary R. meliloti primarily nodulates Medicago sativa but cannot nodulate Macroptilium atropurpureum. By introducing an 11.4 kb region into R. meliloti from the Symplasmid of Rhizobium strain MPIK3030, the host range of the R. meliloti transconjugants were shown to be extended to M. atropurpureum, one of the hosts of MPIK3030 but not normally nodulated by R. meliloti. The region responsible for host range extension was isolated by mass conjugating a clone bank from MPIK3030 into the R. meliloti wild type, and subsequent screening for nodulation on M. atropurpureum. Using deleted derivatives of a plasmid reisolated from endosymbiotic bacteria, the host range region was further narrowed down to three EcoRI fragments. Tn5 mutagenesis allowed the isolation of three discrete regions on an 11.4 kb section, which are involved in the extension of host range to M. atropurpureum. Finally, complementation experiments performed with R. meliloti common nod and hsn mutants indicated that none of the genes involved in the early steps of nodulation, including host-range functions, can be complemented by genes carried on the 11.4 kb fragment derived from MPIK3030.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号