首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Numerous studies have aimed to overcome the barrier to xenotransplantation posed by xenoreactive antibodies and the antigens they recognize. Whether this work will eventually lead to the widespread clinical application of xenotransplantation remains unknown. However, the benefits of this research are already substantial, with research leading to dramatic new developments in fields other than xenotransplantation. Our understanding of natural immunity, particularly the nature and function of natural antibodies, has taken quantum leaps forward, with far-reaching implications. Our improved understanding of the immune response to xenografts has proven invaluable in the characterization of the human immune reaction to commonly used biological therapeutics of xenogeneic origin. Our understanding of cell surface carbohydrates and our ability to modify these carbohydrates in living animals has advanced substantially, with implications for diseases such as cancer and autoimmunity. With this in mind, it is argued that continued work in xenotransplantation is of great value, not only because of the great potential benefits of xenotransplantation, but also because of the more certain benefits that arise from setting our sights on a difficult challenge.  相似文献   

2.
Carbohydrate antigens, present on pig vascular endothelial cells, seem to be the prime agents responsible for graft rejection, and although genetically modified animals that express less amounts of carbohydrate antigen are available, it is still useful to decide the localization of the reactive xenoantigens in organs contemplated for xenotransplantation. Here we compare the distribution in pig kidney of antigens important in xenograft destruction, namely the Galalpha1-3Gal (alphaGal) glycans, with the localization of the T-antigen (Galbeta1-3GalNAc). The alpha-galactose-specific lectin Griffonia simplicifolia isolectin 1B4 was used to detect the Galalpha1-3Gal glycans, whereas Arachis hypogaea (PNA) lectin and a monoclonal antibody (3C9) detected T-antigen. In addition, two vascular markers (anti-caveolin-1 and anti-von Willebrand factor) served to identify vascular structures of the kidney. Both conventional fluorescence and confocal microscopy were used to distinguish lectin and immunohistochemical staining. On the basis of fluorescence signals, the results indicate that the carbohydrate antigens are heterogeneously distributed in the pig kidney. alphaGal epitopes were sparse in the capillary loops forming the glomeruli and in the capillaries surrounding the convoluted tubules, but showed stronger staining in capillaries surrounding the limbs of Henle. In addition, the brush border and basement membranes of the convoluted tubules strongly reacted with the GS1-B4-lectin. Finally, the Galalpha1-3Gal glycans were also present on epithelial cells of the large collecting tubules. Regarding the T-antigen, PNA and 3C9 reacted with different glomerular cells, whereas both reacted strongly with the endothelial cells lining the large kidney vessels. Human serum incubation of pig kidney sections, in which the alphaGal epitopes were blocked by unconjugated GS1-B4, showed staining of the same vascular structures as were obtained after incubation with the T-antigen-detecting agents. The study thus proves a complex spatial distribution of carbohydrate antigens relevant for xenotransplantation of pig kidney.  相似文献   

3.
The zebrafish has become a powerful vertebrate model for genetic studies of embryonic development and organogenesis and increasingly for studies in cancer biology. Zebrafish facilitate the performance of reverse and forward genetic approaches, including mutagenesis and small molecule screens. Moreover, several studies report the feasibility of xenotransplanting human cells into zebrafish embryos and adult fish. This model provides a unique opportunity to monitor tumor-induced angiogenesis, invasiveness, and response to a range of treatments in vivo and in real time. Despite the high conservation of gene function between fish and humans, concern remains that potential differences in zebrafish tissue niches and/or missing microenvironmental cues could limit the relevance and translational utility of data obtained from zebrafish human cancer cell xenograft models. Here, we summarize current data on xenotransplantation of human cells into zebrafish, highlighting the advantages and limitations of this model in comparison to classical murine models of xenotransplantation.  相似文献   

4.
α 半乳糖苷酶可以特异地清除半乳糖α 1,3 半乳糖抗原 (Galα1,3Galantigen) ,此抗原是引起异种器官移植超急性排斥反应 (HyperacuteRejection ,HAR)的主要异种抗原 .将构建好的α半乳糖苷酶转基因载体通过显微注射的方式注入小鼠受精卵 ,培育出了转基因小鼠 .结果表明 ,转基因小鼠的心、肝、肾、脾、肺组织中均有人α 半乳糖苷酶基因的表达 ,其表达可以有效减少小鼠器官表面Galα1,3Gal抗原的表达水平 ,可以降低转基因小鼠脾细胞对补体介导的杀伤作用的敏感性 .研究表明人源α半乳糖苷酶基因可用于研制不表达Galα1,3Gal抗原的转基因动物 ,从而可以降低异种器官移植HAR的反应强度 ,提高移植物的存活期  相似文献   

5.
Specific interaction between human IgM and polyclonal antibodies immobilized on support was studied by atomic force microscopy. Human IgMs are responsible for a number of side effects arising during the xenotransplantation of mammalian organs to man. On the basis of atomic force microscopy, a quantitative analysis of complexes with IgM was performed. The data of the analysis agree well with the results of enzyme immunoassay. It was shown that the method of detection of immune complexes based on atomic force microscopy is able to detect specific antibodies/antigens in serum.  相似文献   

6.
Galalpha1-3Gal is the major xenoantigenic epitope responsible for hyperacute rejection upon pig to human xenotransplantation. Endo-beta-galactosidase C from Clostridium perfringens destroys the antigenic epitope by cleaving the beta-galactosidic linkage in the Galalpha1-3Galbeta1-4GlcNAc structure. Based on partial peptide sequences of the enzyme, we molecularly cloned the enzyme gene, which encodes a protein with a predicted molecular mass of about 93 kDa. The deduced protein sequence of the enzyme has limited homology in the C-terminal half with endo-beta-galactosidase from Flavobacterium keratolyticus and beta-1,3-glucanases. The enzyme expressed in Escherichia coli removed the alpha-galactosyl epitope nearly completely from pig erythrocytes and from pig aortic endothelial cells. The enzyme-treated endothelial cells in culture were greatly reduced in cell surface antigens, which were recognized by IgM, IgG, or IgA in human sera, and became much less susceptible to complement-mediated cytotoxicity caused by human sera. When the pig kidney was perfused with the enzyme, the vascular endothelial cells became virtually devoid of the alpha-galactosyl epitope, with concomitant decrease in binding to IgM in human plasma. These results demonstrated that the recombinant endo-beta-galactosidase C is a valuable aid in xenotransplantation.  相似文献   

7.
The highly polymorphic porcine major histocompatibility complex (MHC), or the swine leukocyte antigens (SLA), has been repeatedly associated with variations in swine immune response to pathogens and vaccines as well as with production traits. The SLA antigens are also important targets for immunological recognition of foreign tissue grafts. We recently established a resource population of Korean native pigs as models for human transplantation and xenotransplantation research. In this study, 115 animals derived from three generations of the Korean native pigs were genotyped for three SLA class I (SLA-2, SLA-3 and SLA-1) and three SLA class II loci (DRB1, DQB1, DQA) using PCR with sequence-specific primers (PCR-SSP) at the allele group resolution. A total of seven SLA haplotypes (Lr-5.34, Lr-7.23, Lr-31.13, Lr-56.23, Lr-56.30, Lr-59.1, Lr-65.34), comprising six unique class I and five unique class II haplotypes, were characterized in the founding animals. Class I haplotype Lr-65.0 and class II haplotype Lr-0.34 were novel; and together with Lr-56.0 these haplotypes appeared to be breed-specific. In the progeny population, Lr-7.23 and Lr-56.30 appeared to be the most prevalent haplotypes with frequencies of 34.7% and 31.6%, respectively; the overall homozygosity was 27.4%. This resource population of SLA-defined Korean native pigs will be useful as large animal models for various transplantation and xenotransplantation experiments, as well as for dissecting the roles of SLA proteins in swine disease resistance and production traits.  相似文献   

8.
Human epidermal growth factor receptor-2 (HER-2) overexpression in breast cancer occurs in 20% to 30% of patients with breast cancer. Trastuzumab (Herceptin) targets HER-2 tyrosine kinase receptors expressed on tumor cells and mediates anti-proliferative effects against HER-2-positive tumor cells. Adjuvant chemotherapy with trastuzumab has improved the prognosis of patients with HER-2 positive high-grade breast cancer. However, patients often experience appearance and proliferation of recurrent tumor cells after trastuzumab treatment. In this study, we report the successful establishment and characterization of a cell line (BTIC) derived from a patient with recurrent breast cancer after adjuvant chemotherapy with trastuzumab. Characteristics of the BTIC cell line were investigated by phase contrast or electron microscopic observations, chromosome analysis, xenotransplantation, immunohistochemistry and radioimmunoassay for tumor markers. We confirmed that the BTIC cell line grown as multilayered culture in culture dishes, has a poorly developed endoplasmic reticulum in the cytoplasm and some desmosomes. The population doubling time was approximately 44 hr. A graft in nude mouse after xenotransplantation was diagnosed as scirrhous carcinoma. Immunohistochemistry on cultured BTIC cells revealed that the BTIC cells were negative for estrogen receptor and progesterone receptor, and 30% positive for HER-2. Radioimmunoassay indicated secretion of HER-2 protein, NCC-ST-439 and CA15-3.  相似文献   

9.
The cancer stem cell hypothesis posits that tumor growth is driven by a rare subpopulation of cells, designated cancer stem cells (CSC). Studies supporting this theory are based in large part on xenotransplantation experiments wherein human cancer cells are grown in immunocompromised mice and only CSC, often constituting less than 1% of the malignancy, generate tumors. Herein, we show that all colonies derived from randomly chosen single cells in mouse lung and breast cancer cell lines form tumors following allografting histocompatible mice. Our study suggests that the majority of malignant cells rather than CSC can sustain tumors and that the cancer stem cell theory must be reevaluated.  相似文献   

10.
The heterophile antigens Galalpha1-->3Gal and N-glycolylneuraminic acid are the major obstacle to grafting mammal organs, especially from pig, to man. Lack of expression of these common xenoantigens by birds has raised interest in ostrich as a potential organ donor for xenotransplantation. Glycosphingolipids of ostrich liver and kidney were investigated for their carbohydrate determinants. Both organs were found similar in their glycolipid composition with three major species, mono-, di-, and pentaglycosylceramide. The pentaglycosylceramide was characterized as the Forssman antigen. In both organs, the ceramide portion was highly hydroxylated with prevalence of alpha-hydroxylated fatty acids, C18 phytosphingosine in kidney and C18 sphingosine in liver Forssman glycolipid. These data indicate that hydroxylation of kidney glycosphingolipids, which is found in mammals, has been maintained since the divergence of birds from other vertebrates. Characterization of a minor glycolipid as a Forssman tetraglycosylceramide built on the galabiosylceramide core indicates that the Forssman tetraglycosylceramide also exists in vivo. Its precursors, galactosyl- and galabiosylceramide, were characterized in kidney and liver. The Forssman antigen is the third heterophile antigen against which man raises natural antibodies. Its localization in the vascular endothelium and connective tissue makes ostrich an unpromising organ or cell donor for xenotransplantation to man.  相似文献   

11.
The risk posed to the community by possible xenozoonosis after xenotransplantation suggests that some form of 'community consent' is required before whole organ animal-to-human xenotransplantation should take place. I argue that this requirement places greater obstacles in the path of ethical xenotransplantation than has previously been recognised. The relevant community is global and there are no existing institutions with democratic credentials sufficient to establish this consent. The distribution of the risks and benefits from xenotransplantation also means that consent is unlikely to be forthcoming. Proceeding on the basis of hypothetical consent to a package of global health measures that includes xenotransplantation, as Rothblatt has recently advocated, is more problematic than she acknowledges. Given that it may place the lives of citizens of poor nations at risk to benefit the citizens of wealthy nations, xenotransplantation raises significant questions of international justice.  相似文献   

12.
The current preclinical pipeline for drug discovery can be cumbersome and costly, which limits the number of compounds that can effectively be transitioned to use as therapies. Chemical screens in zebrafish have uncovered new uses for existing drugs and identified promising new compounds from large libraries. Xenotransplantation of human cancer cells into zebrafish embryos builds on this work and enables direct evaluation of patient-derived tumor specimens in vivo in a rapid and cost-effective manner. The short time frame needed for xenotransplantation studies means that the zebrafish can serve as an early preclinical drug screening tool and can also help personalize cancer therapy by providing real-time data on the response of the human cells to treatment. In this Review, we summarize the use of zebrafish embryos in drug screening and highlight the potential for xenotransplantation approaches to be adopted as a preclinical tool to identify and prioritize therapies for further clinical evaluation. We also discuss some of the limitations of using zebrafish xenografts and the benefits of using them in concert with murine xenografts in drug optimization.KEY WORDS: Cancer, Drug screening, Microenvironment, Xenotransplantation, Zebrafish  相似文献   

13.
BackgroundMetastasis is the most common lethal cause of breast cancer-related death. Recent studies have implied that autophagy is closely implicated in cancer metastasis. Therefore, it is of great significance to explore autophagy-related molecular targets involved in breast cancer metastasis and to develop therapeutic drugs.PurposeThis study was designed to investigate the anti-metastatic effects and autophagy regulatory mechanisms of Aiduqing (ADQ) formula on breast cancer.Study Design/MethodsMultiple cellular and molecular experiments were conducted to investigate the inhibitory effects of ADQ formula on autophagy and metastasis of breast cancer cells in vitro. Meanwhile, autophagic activator/inhibitor as well as CXCL1 overexpression or interference plasmids were used to investigate the underlying mechanisms of ADQ formula in modulating autophagy-mediated metastasis. Furthermore, the zebrafish xenotransplantation model and mouse xenografts were applied to validate the inhibitory effect of ADQ formula on autophagy-mediated metastasis in breast cancer in vivo.ResultsADQ formula significantly inhibited the proliferation, migration, invasion and autophagy but induced apoptosis of high-metastatic breast cancer cells in vitro. Similar results were also observed in starvation-induced breast cancer cells which exhibited elevated metastatic ability and autophagy activity. Mechanism investigations further approved that either CXCL1 overexpression or autophagic activator rapamycin can significantly abrogated the anti-metastatic effects of ADQ formula, suggesting that CXCL1-mediated autophagy may be the crucial pathway of ADQ formula in suppressing breast cancer metastasis. More importantly, ADQ formula suppressed breast cancer growth, autophagy, and metastasis in both the zebrafish xenotransplantation model and the mouse xenografts.ConclusionOur study not only revealed the novel function of CXCL1 in mediating autophagy-mediated metastasis but also suggested ADQ formula as a candidate drug for the treatment of metastatic breast cancer.  相似文献   

14.
Zebrafish (Danio rerio) and their transparent embryos are becoming an increasingly popular tool for studying processes involved in tumor progression and in the search for novel tumor treatment approaches. The xenotransplantation of fluorescently labeled mammalian cancer cells into zebrafish embryos is an approach enabling relatively high-throughput in vivo analyses. The small size of the embryos as well as the relative simplicity of their manipulation and maintenance allow for large numbers of embryos to be processed efficiently in a short time and at low cost. Furthermore, the possibility of fluorescence microscopic imaging of tumor progression within zebrafish embryos and larvae holds unprecedented potential for the real-time visualization of these processes in vivo. This review presents the methodologies of xenotransplantation studies on zebrafish involving research on tumor invasion, proliferation, tumor-induced angiogenesis and screening for antitumor therapeutics. We further focus on the application of these zebrafish to the study of glioma; in particular, its most common and malignant form, glioblastoma.  相似文献   

15.
During 1999-2000, the US government published three xenotransplantation policy/guidance documents, one by the Public Health Service and two by the Food and Drug Administration (FDA). The FDA also held two public meetings of the xenotransplantation subcommittee of the Biological Response Modifiers Advisory Committee to discuss particular issues in xenotransplantation.  相似文献   

16.
A quantitative bio-imaging platform is developed for analysis of human cancer dissemination in a short-term vertebrate xenotransplantation assay. Six days after implantation of cancer cells in zebrafish embryos, automated imaging in 96 well plates coupled to image analysis algorithms quantifies spreading throughout the host. Findings in this model correlate with behavior in long-term rodent xenograft models for panels of poorly- versus highly malignant cell lines derived from breast, colorectal, and prostate cancer. In addition, cancer cells with scattered mesenchymal characteristics show higher dissemination capacity than cell types with epithelial appearance. Moreover, RNA interference establishes the metastasis-suppressor role for E-cadherin in this model. This automated quantitative whole animal bio-imaging assay can serve as a first-line in vivo screening step in the anti-cancer drug target discovery pipeline.  相似文献   

17.
The adoptive transfer of cytotoxic T lymphocytes (CTLs) derived from tumor-infiltrating lymphocytes (TIL) along with interleukin 2 (IL-2) into autologous patients with cancer resulted in the objective regression of tumor, indicating that these CTLs recognized cancer rejection antigens on tumor cells. To understand the molecular basis of T cell-mediated antitumor immunity, several groups started to search for such tumor antigens in melanoma as well as in other types of cancers. This led to the subject I will review in this article. A number of tumor antigens were isolated by the use of cDNA expression systems and biochemical approaches. These tumor antigens could be classified into several categories: tissue-specific differentiation antigens, tumor-specific shared antigens, and tumor-specific unique antigens. However, the majority of tumor antigens identified to date are nonmutated, self proteins. This raises important questions regarding the mechanism of antitumor activity and autoimmune disease. The identification of human tumor rejection antigens provides new opportunities for the development of therapeutic strategies against cancer. This review will summarize the current status and progress toward identifying human tumor antigens and their potential applications to cancer treatment.  相似文献   

18.
Recent advances in cancer immuno‐therapeutics such as checkpoint inhibitors, chimeric antigen‐receptor T cells, and tumor infiltrating T cells (TIL) are now significantly impacting cancer patients in a positive manner. Although very promising, reports indicate no more than 25% of cases result in complete remission. One of the limitations of these treatments is the identity of putative cancer antigens in each patient, as it is technically challenging to identify cancer antigens in a rapid fashion. Thus, identification of cancer antigens followed by targeted treatment will increase the efficacy of cancer immunotherapies. To achieve this goal, a combined technologies platform of deep genomic sequencing and personalized immune assessment was devised, termed G enomics D riven I mmunoproteomics (GDI). Using this technological platform, we report the discovery of 149 tumor antigens from human breast cancer patients. Significant number of these putative cancer antigens arise from single nucleotide variants (SNVs), as well as insertions and deletions that results into frame‐shift mutations. We propose a general model of anti‐cancer immunity and suggest that the GDI platform may help identify patient‐specific tumor antigens in a timely fashion for precision immunotherapies.  相似文献   

19.
Strategies in cancer vaccines development   总被引:1,自引:0,他引:1  
The recent definition of tumour-specific immunity in cancer patients and the identification of tumour-associated antigens have generated renewed enthusiasm for the application of immune-based therapies for the treatment of malignancies. Recent developments in cancer vaccines have also been based on an improved understanding of the cellular interactions required to induce a specific anti-tumour immune response. Consequently, a number of cancer vaccines have entered clinical trials. Targeting broad-spectrum tumour-associated antigens has emerged as a strategy to lower the risk of tumour escape due to the loss of specific nominal antigen. Amongst the most challenging of tumour-associated antigens to which to target in active specific immunotherapy applications are carbohydrate antigens. As carbohydrates are intrinsically T-cell-independent antigens, more novel approaches are perhaps needed to drive specific-T-cell-dependent immune responses to carbohydrate antigens. In this context peptide mimetics of core structures of tumour-associated carbohydrate antigens might be developed to augment immune responses to these broad-spectrum antigens.  相似文献   

20.
The identification of antigens that distinguish normal cells from cancer cells is an important challenge in the field of tumour immunology and immunotherapy. The immunoscreening of cDNA expression libraries constructed from human tumour tissues with antibodies in sera from cancer patents (SEREX: serological identification of antigens by recombinant expression cloning) provides a powerful approach to identify immunogenic tumour antigens. To date, over 2,000 tumour antigens have been identified from a variety of malignancies using SEREX. These antigens can be classified into several categories, of which the cancer/testis (CT) antigens appear to be the most attractive candidates for vaccine development. The SEREX-defined tumour antigens facilitate the identification of epitopes (antigenic peptides) recognised by antigen-specific cytotoxic T lymphocytes (CTLs) and provide a basis for peptide vaccine and gene therapy in a wide variety of human cancers. Moreover, some of these antigens seem to play a functional role in the pathogenesis of cancer.This work was presented at the first Cancer Immunology and Immunotherapy Summer School, 8–13 September 2003, Ionian Village, Bartholomeio, Peloponnese, Greece.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号