首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Richard Malkin  Richard K. Chain 《BBA》1980,591(2):381-390
Light-induced redox changes of plastocyanin, the Rieske iron-sulfur center, and P-700 have been studied in situ in spinach chloroplasts. Plastocyanin and the Rieske center behaved in an analogous manner in that their steady states were fully oxidized in the light in the presence or absence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea when an electron acceptor is present. After illumination under conditions of non-cyclic electron transfer from water to an electron acceptor, followed by a short dark period, the steady state of both shifted to a more reduced level. A 3-(3,4-dichlorophenyl)-1,1-dimethylurea-sensitive photoreduction of the Rieske center was observed in ferricyanide-washed chloroplast fragments. With reduced ferredoxin as electron donor, it was possible to demonstrate a reduction in the dark of these electron carriers and of P-700; this reduction was insensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea but was inhibited by antimycin A. These findings are discussed in relation to a function for these electron carriers in the cyclic electron transport pathway in chloroplasts and to their function in the non-cyclic electron transport pathway.  相似文献   

2.
Photophosphorylation and oxygen evolution were measured in 8-day-old dark-grown bean leaves (Phaseolus vulgaris) after various times of greening in far red light and in white light. The sequence of development was the same for both greening regimes, but the processes were much more rapid in white light. The capacity for photophosphorylation, as assayed by the firefly luciferase assay, appeared after 12 hours in far red light. At this stage and for times up to 24 hours, photophosphorylation was not inhibited by 10−5m 3-(3,4-dichlorophenyl)-1,1-dimethylurea. At 24 hours, the capacity for oxygen evolution appeared and photophosphorylation became partially inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea at concentrations which inhibited oxygen evolution. In white light photophosphorylation appeared after 15 minutes, and oxygen evolution at one hour. Photophosphorylation became partially sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea when oxygen evolution appeared. Carbonylcyanide m-chlorophenyl-hydrazone inhibited photophosphorylation and photosynthesis at low concentrations, 10−5m, with immature leaves, but the leaves developed resistance to carbonylcyanide m-chlorophenyl-hydrazone as they greened.  相似文献   

3.
4.
Bruce Diner 《BBA》1974,368(3):371-385
1. Spinach chloroplasts, but not whole Chlorella cells, show an acceleration of the Photosystem II turnover time when excited by non-saturating flashes (exciting 25 % of centers) or when excited by saturating flashes for 85–95 % inhibition by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Following dark adaptation, the turnover is accelerated after a non-saturating flash, preceded by none or several saturating flashes, and primarily after a first saturating flash for 3-(3,4-dichlorophenyl)-1,1-dimethylurea inhibition. A rapid phase (t12 approx. 0.75 s) is observed for the deactivation of State S2 in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea.2. These accelerated relaxations suggest that centers of Photosystem II are interconnected at the level of the primary electron transfer and compete for primary oxidizing equivalents in a saturating flash. The model in best agreement with the experimental data consists of a paired interconnection of centers.3. Under the conditions mentioned above, an accelerated turnover may be observed following a flash for centers in S0, S1 or S2 prior to the flash. This acceleration is interpreted in terms of a shift of the rate-limiting steps of Photosystem II turnover from the acceptor to the donor side.  相似文献   

5.
John Whitmarsh  R.P. Levine 《BBA》1974,368(2):199-213
We have investigated the process of intermolecular excitation energy transfer and the relative orientation of the chlorophyll molecules in the unicellular green alga Chlamydomonas reinhardi. The principal experiments involved in vivo measurements of the fluorescence polarization as a function of the exciting-light wavelength in the presence and in the absence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. We found that as the fluorescence lifetime increases upon the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea that the degree of fluorescence polarization decreases over the excitation region from 600 to 660 nm. This result, we argue, implies that a Förster mechanism of excitation energy transfer is involved for Photosystem II chlorophyll molecules absorbing primarily below 660 nm. We must add that our results do not exclude the possibility of a delocalized transfer process from being involved as well. Fluorescence polarization measurements using chloroplast fragments are also discussed in terms of a Förster transfer mechanism. As the excitation wavelength approaches 670 nm the fluorescence polarization is nearly constant upon the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea.Experiments performed using either vertically or horizontally polarized exciting light show that the fluorescence polarization increases as the exciting light wavelength increases from 650 to 673 nm. This suggests the possibility that chlorophyll molecules absorbing at longer wavelengths have a higher degree of relative order. Furthermore, these studies imply that chlorophyll molecules exist in discrete groups that are characterized by different absorption maxima and by different degrees of the fluorescence polarization. In view of these results we discuss different models for the Photosystem II antenna system and energy transfer between different groups of optically distinguishable chlorophyll molecules.  相似文献   

6.
Jürgen Voigt  Petra Münzner 《Planta》1987,172(4):463-472
Cultures of the unicellular green alga Chlamydomonas reinhardii can be synchronized by light/dark cycling not only under photoautotrophic but also under mixotrophic growth conditions. We observed that cultures synchronized in the presence of acetate continue to divide synchronously for one cell-cycle period when transferred to heterotrophic growth conditions. This finding enabled us to investigate the differential effects of light on cell growth and cell division. When cells were exposed to continuous light at the beginning of the growth period they entered the division phase earlier than dark-grown cells as a consequence of an increased growth rate. Illumination at the end of the growth period, however, caused a considerable delay in cell division and an extended growth period. The light-induced delay in cell division was also observed in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of photosystem II. This finding demonstrates that cell division is directly influenced by a light/dard-responsive cell-cycle switch rather than by light/dark-dependent changes in energy metabolism. The importance of this light/dark control to the regulation of the Chlamydomonas cell cycle was investigated in comparison with other control mechanisms (size control, time control). We found that the light/dard-responsive cell-cycle switch regulates the transition from G1-to S-phase. This control mechanism is effective in cells which have attained the commitment to at least one round of DNA replication and division but have not attained the maximal cell mass which initiates cell division in the light.Abbreviations dCTP deoxycytidine 5-triphosphate - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

7.
1. 3,3'-Diaminobenzidine was shown to serve as an electron donor to photosystem 1 in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. In Tris-treated chloroplasts diaminobenzidine serves as an electron donor to photosystem 1 and to photosystem 2; the latter is sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea. 2. Addition of diaminobenzidine to Tris-treated chloroplasts causes an increase in fluorescence yield. 3. Diaminobenzidine-dependent electron transport mediated by photosystem 2 is coupled to synthesis of ATP even in the absence of an electron acceptor. This phosphorylation which is presumably supported by cyclic electron flow, is sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea. 4. Diaminobenzidine-dependent ATP formation, in Tris-treated chloroplasts exhibits the red-drop phenomenon. 5. The diaminobenzidine-induced cyclic photophosphorylation (mediated by photosystem 2) is resistant to a large extent to KCN-treatment which is known to inhibit reactions catalyzed by photosystem 1. On the other hand ATP formation supported by electron transport from diaminobenzidine to methyl viologen [in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea] is largely inhibited by KCN-treatment. This observation suggests that there are two coupling sites of ATP formation, one catalyzed by diaminobenzidine as a donor to photosystem 1 (in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea), and the other supported by diaminobenzidine which acts both as a donor to photosystem 2 (in Tris-treated chloroplasts) and as an acceptor (in its oxidized form) from a carrier located between the two photosystems.  相似文献   

8.
S. Takagi  E. Kamitsubo  R. Nagai 《Protoplasma》1992,168(3-4):153-158
Summary Using a centrifuge microscope with stroboscopic illumination, we examined the effects of light irradiation on the passive movement of chloroplasts in dark-adapted mesophyll cells ofVallisneria gigantea. While irradiation with red light accelerates the passive gliding of chloroplasts produced by centrifugal force, irradiation with far-red light negates this effect. Irradiation with blue light does not accelerate the passive gliding, while red light is completely effective even in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, an inhibitor of photosynthesis. An apparently active movement of chloroplasts can be induced by irradiation with red or blue light only in the presence of the far-red light-absorbing form of phytochrome. The significance of the reaction in the light with respect to the regulation of cytoplasmic streaming is discussed.Abbreviations APW artificial pond water - CMS centrifuge microscope of the stroboscopic type - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Pfr phytochrome, far-red light-absorbing form - Pr phytochrome, red light-absorbing form  相似文献   

9.
The photosynthetic properties of the internal and peripheral tissues of the cherry tomato fruit (Lycopersicum esculentum var. cerasiforme Dun A. Gray) were investigated. Whole fruit and their isolated tissues evolve large amounts of CO2 in darkness. In the light, this evolution decreases but nevertheless remains a net evolution; 3-(3,4-dichlorophenyl)-1,1-dimethylurea abolishes the effects of light.  相似文献   

10.
The anaerobic starch breakdown into end-products in the green alga Chlamydomonas reinhardtii F-60 has been investigated in the dark and in the light. The effects of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and carbonyl cyanide-p-trifluoromethoxyphenyl hydrazone (FCCP) on the fermentation in the light have also been investigated.  相似文献   

11.
Guy  Micha  Kende  Hans 《Planta》1984,160(3):276-280
Protoplasts isolated from leaves of peas (Pisum sativum L.) and of Vicia faba L. produced 1-aminocyclopropane-1-carboxylic acid (ACC) from endogenous substrate. Synthesis of ACC and conversion of ACC to ethylene was promoted by light and inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and carbonyl cyanide m-chlorophenylhydrazone. Aminoethoxyvinylglycine inhibited ethylene synthesis to a minor extent when given during incubation of the protoplasts but was very effective when added both to the medium in which the protoplasts were isolated and to the incubation medium as well. Radioactivity from [U-14C]methionine was incorporated into ACC and ethylene. However, the specific radioactivity of the C-2 and C-3 atoms of ACC, from which ethylene is formed, increased much faster than the specific radioactivity of ethylene. It appears that ACC and ethylene are synthesized in different compartments of the cell and that protoplasts constitute a suitable system to study this compartmentation.Abbreviations ACC 1-Aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - CCCP carbonyl cyanide m-chlorophenylhydrazone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

12.
Light stimulates the betaxanthin accumulation in Celosia plumosa. The induction is partially reversed by far-red and inhibited by actinomycin D, puromycin, salicylaldoxime and 2,4-dinitrophenol, while 3-(3,4-dichlorophenyl)-1,1-dimethylurea has an inhibitory effect only when photosynthesis is operative. In darkness betaxanthins synthesis is promoted by kinetin.  相似文献   

13.
(1) The proportion of higher plant chloroplast cytochrome b-559 oxidizable during illumination by low intensity 732 nm light increases as the pH is decreased below 6.5. At pH 5.0-5.3 total oxidation is seen and subsequent red light can cause reduction of up to 2/3 of the oxidized cytochrome. The oxidation by far red light at pH 5 is inhibited by 2 muM 2,5-dibromo-3-methyl-6-isopropyl-rho-benzoquinone whereas the red light-induced reduction is inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. In this pH range ferricyanide-oxidized cytochrome b-559 exists in a form not reducible by ferrocyanide. (2) An increase in the amplitude of far-red induced oxidation also occurs at higher pH (up to pH 7.8) after pre-treatment of chloroplasts with substantially higher levels of light (approx. 10(6) ergs-cm-2-s-1). The degree of light activation is pH dependent, being more pronounced at lower pH. After light activation, cytochrome b-559 can be completely oxidized by far-red light in a manner reversible by red light up to pH values of 6, and the curve describing the amplitude of far-red oxidation as a function of pH is shifted by 0.5-1.0 pH unit toward higher pH. Far-red oxidation and red light reduction are again inhibited by 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone and 3-(3,4-dichlorophenyl)-1,1-dimethylurea, respectively. (3) Light activation at pH 5.2-6.0 is also manifested in a small decrease in the amplitude of subsequent dark ferrocyanide reduction, and this decrease is inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (10 muM). (4) The effect of intramembranal acidity on the effective redox potential of cytochrome b-559 and its function is discussed.  相似文献   

14.
Doi M  Shimazaki K 《Plant physiology》2008,147(2):922-930
The stomata of the fern Adiantum capillus-veneris lack a blue light-specific opening response but open in response to red light. We investigated this light response of Adiantum stomata and found that the light wavelength dependence of stomatal opening matched that of photosynthesis. The simultaneous application of red (2 micromol m(-2) s(-1)) and far-red (50 micromol m(-2) s(-1)) light synergistically induced stomatal opening, but application of only one of these wavelengths was ineffective. Adiantum stomata did not respond to CO2 in the dark; the stomata neither opened under a low intercellular CO2 concentration nor closed under high intercellular CO2 concentration. Stomata in Arabidopsis (Arabidopsis thaliana), which were used as a control, showed clear sensitivity to CO2. In Adiantum, stomatal conductance showed much higher light sensitivity when the light was applied to the lower leaf surface, where stomata exist, than when it was applied to the upper surface. This suggests that guard cells likely sensed the light required for stomatal opening. In the epidermal fragments, red light induced both stomatal opening and K+ accumulation in guard cells, and both of these responses were inhibited by a photosynthetic inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea. The stomatal opening was completely inhibited by CsCl, a K+ channel blocker. In intact fern leaves, red light-induced stomatal opening was also suppressed by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. These results indicate that Adiantum stomata lack sensitivity to CO2 in the dark and that stomatal opening is driven by photosynthetic electron transport in guard cell chloroplasts, probably via K+ uptake.  相似文献   

15.
Phosphate concentrations in the range 0.1 to 2.0 millimolar induced the formation of extracellular amorphous calcium-phosphates in the cell wall of the marine macro algae Ulva lactuca when they were cultivated in light in seawater at 20°C. A broad resonance representing these compounds as well as resonances for extracellular orthophosphate and polyphosphates could be followed by 31P-nuclear magnetic resonance spectroscopy. The presence of the calcium-phosphate made the cells brittle and it inhibited the growth of the macro algae and caused mortality within 1 week. The formation of the calcium-phosphates was influenced by the external phosphate concentration, the extracellular pH and the nature and concentration of the external nitrogen source. Furthermore, no formation of these compounds was observed when Ulva lactuca was cultivated in the dark, at low temperatures (5°C) or in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. The complex could be removed through washes with ethylenediaminetetraacetate; this treatment did not alter the intracellular pH or the orthophosphate and polyphosphate pools and it restored growth.  相似文献   

16.
Pierre Bennoun 《BBA》1970,216(2):357-363
Reoxidation of the fluorescence quencher “Q” in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea

Reoxidation of the fluorescence quencher Q in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea shows the following properties:

It is sensitive to very low concentrations of hydroxylamine (a few μM).

It corresponds to a back reaction between Q and the primary oxidant Z+ formed in the light. A part of this back reaction gives rise to luminescence emission.

Within the range we studied the kinetic of reoxidation is second order with regards to Q.  相似文献   


17.
Glutamine synthetase (GS) from Synechocystis sp. PCC 6803 was inactivated in vivo by transferring cells from light to darkness or by incubation with the photosynthetic inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea but not with 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone. Addition of glucose prevented both dark and 3-(3,4-dichlorophenyl)-1,1-dimethylurea GS inactivation. In a Synechocystis psbE-psbF mutant (T1297) lacking photosystem II, glucose was required to maintain active GS, even in the light. However, in nitrogen-starved T1297 cells the removal of glucose did not affect GS activity. The fact that dark-inactivated GS was reactivated in vitro by the same treatments that reactivate the ammonium-inactivated GS points out that both nitrogen metabolism and redox state of the cells lead to the same molecular regulatory mechanism in the control of GS activity. Using GS antibodies we detected that dark-inactivated GS displayed a different electrophoretic migration with respect to the active form in nondenaturing polyacrylamide gel electrophoresis but not in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The possible pathway to modulate GS activity by the electron transport flow in Synechocystis cells is discussed.  相似文献   

18.
Loss of sulfide adaptation ability in a thermophilic Oscillatoria   总被引:1,自引:0,他引:1  
A spontaneous variant incapable of anoxygenic photosynthesis was derived from a fully competent strain of Oscillatoria amphigramulata which was originally isolated from a high sulfide-containing hot spring of New Zealand. Although the variant (Oa-2) acquired a slight ability to photosynthesize in the presence of 0.3–0.4 mM sulfide, this was only after a 24 h exposure to sulfide and represented oxygenic photosynthesis only. Unlike the parent strain, the incompetent variant never grew in the presence of sulfide >0.05 mM, nor was there any relief of the inhibition by DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] of CO2 photoincorporation when sulfide was present. The variant strain has retained all of these characteristics over a 4 year period with monthyl transfers in non-sulfide medium. The wild type, under identical conditions, has retained all of its competence with respect to sulfide.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

19.
B. T. Mawson 《Planta》1993,191(3):293-301
An initial response during signal transduction in guard cells, following absorption of blue light, is the extrusion of protons. Translocation of protons across the guard-cell plasmalemma is an energy-requiring activity. The present study has investigated the energetic contribution from guard-cell chloroplasts and mitochondria to blue-light-induced proton pumping by Vicia faba guard-cell protoplasts. The addition of 3(3,4-dichlorophenyl)-1,1-dimethylurea to the protoplast suspension had a minimal effect on rates of acidification when oxygen concentrations of the medium were maintained close to near-saturating levels. Under the same conditions, oligomycin reduced both the rates of blue-light-induced acidification and total proton efflux. Lowering the oxygen concentration of the suspending medium to approximately 20 M resulted in complete inhibition of blue-light-induced acidification activity. Swelling of protoplasts induced by blue light was also inhibited by low oxygen levels. Levels of ATP from whole-protoplast extracts were reduced by about 64% when exposed to low levels of oxygen. Increasing oxygen levels to near-saturating levels restored both blue-light-induced acidification rates and swelling of the protoplasts within a 60-min recovery period. Levels of ATP also increased during the recovery period. Addition of 3(3,4-dichlorophenyl)-1,1-dimethylurea or oligomycin to the suspending medium prior to increasing the oxygen concentration caused a reduction in acidification rates after the recovery period by 40 and 80%, respectively. Levels of ATP in guard-cell protoplasts were also reduced by both inhibitors after a 60-min recovery period. The results demonstrate that both guard-cell chloroplasts and mitochondria contribute energetically to blue-light-induced proton pumping by guard-cell protoplasts. Furthermore, both energy sources are inhibited by low oxygen concentrations, suggesting coordinated metabolic regulation between photo- and oxidative phosphorylation in guard cells.Abbreviations BL blue light - Chl chlorophyll - DCMU 3(3,4-dichlorophenyl)-1,1-dimethylurea - GCPs guard-cell protoplasts This research was supported by an operating grant from the Natural Sciences and Engineering Research Council of Canada and a University Research Grant from The University of Calgary. Dr. L. Gedamu (University of Calgary) is thanked for providing access to the bioluminometer. Technical assistance by C. Chmielewski, C. Turnnir, S. Ham and K. Meyer is gratefully acknowledged.  相似文献   

20.
Homann PH 《Plant physiology》1976,58(3):387-392
The light-dependent quenching of the chlorophyll a fluorescence at room temperature by N-methylphenazinium methyl sulfate (PMS) was investigated with isolated chloroplasts inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Other investigators have considered this quenching to be a consequence of the formation of a high energy membrane state related to photophosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号