首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The pathological role of ApoE4 in Alzheimer's disease (AD) is not fully elucidated yet but there is strong evidence that ApoE is involved in Abeta deposition, which is an early hallmark of AD neuropathology. Overexpression of ApoE in neuroblastoma cells (Neuro2a) leads to the generation of an intracellular 13 kDa carboxy-terminal fragment of ApoE comparable to fragments seen in brains of AD patients. ApoE4 generates more of this fragment than ApoE2 and E3 suggesting a potential pathological role of these fragments in Alzheimer's disease. Analysis of this intracellular ApoE4 fragment by protease digest followed by MALDI-TOF mass spectrometry showed the proteolytic cleavage site close to residue 187 of ApoE. We have engineered and expressed the corresponding ApoE fragments in vitro. The recombinant 13 kDa carboxy-terminal fragment inhibited fibril formation of Abeta; this contrasts with the full-length ApoE and the corresponding amino-terminal ApoE fragment. Moreover, we show that the 13 kDa carboxy-terminal fragment of ApoE stabilizes the formation of Abeta hexamers. Complexes of Abeta with the 13 kDa carboxy-terminal ApoE fragment show toxicity in PC12 cells comparable to Abeta fibrils. These data suggest that cleavage of ApoE, leading to the generation of this fragment, contributes to the pathogenic effect of ApoE4 in AD.  相似文献   

2.
Development of cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD) is associated with failure of elimination of amyloid‐β (Aβ) from the brain along perivascular basement membranes that form the pathways for drainage of interstitial fluid and solutes from the brain. In transgenic APP mouse models of AD, the severity of cerebral amyloid angiopathy is greater in the cerebral cortex and hippocampus, intermediate in the thalamus, and least in the striatum. In this study we test the hypothesis that age‐related regional variation in (1) vascular basement membranes and (2) perivascular drainage of Aβ contribute to the different regional patterns of CAA in the mouse brain. Quantitative electron microscopy of the brains of 2‐, 7‐, and 23‐month‐old mice revealed significant age‐related thickening of capillary basement membranes in cerebral cortex, hippocampus, and thalamus, but not in the striatum. Results from Western blotting and immunocytochemistry experiments showed a significant reduction in collagen IV in the cortex and hippocampus with age and a reduction in laminin and nidogen 2 in the cortex and striatum. Injection of soluble Aβ into the hippocampus or thalamus showed an age‐related reduction in perivascular drainage from the hippocampus but not from the thalamus. The results of the study suggest that changes in vascular basement membranes and perivascular drainage with age differ between brain regions, in the mouse, in a manner that may help to explain the differential deposition of Aβ in the brain in AD and may facilitate development of improved therapeutic strategies to remove Aβ from the brain in AD.  相似文献   

3.
Aggregation of amyloid-beta (Abeta) peptide into soluble and insoluble forms within the brain extracellular space is central to the pathogenesis of Alzheimer's disease. Full-length amyloid precursor protein (APP) is endocytosed from the cell surface into endosomes where it is cleaved to produce Abeta. Abeta is subsequently released into the brain interstitial fluid (ISF). We hypothesized that synaptic transmission results in more APP endocytosis, thereby increasing Abeta generation and release into the ISF. We found that inhibition of clathrin-mediated endocytosis immediately lowers ISF Abeta levels in vivo. Two distinct methods that increased synaptic transmission resulted in an elevation of ISF Abeta levels. Inhibition of endocytosis, however, prevented the activity-dependent increase in Abeta. We estimate that approximately 70% of ISF Abeta arises from endocytosis-associated mechanisms, with the vast majority of this pool also dependent on synaptic activity. These findings have implications for AD pathogenesis and may provide insights into therapeutic intervention.  相似文献   

4.
The epsilon 4 allele of the apolipoprotein E gene (ApoE) is associated with Alzheimer's disease (AD). The extent of oxidative damage in AD brains correlates with the presence of the E4 allele of ApoE, suggesting an association between the ApoE4 genotype and oxygen-mediated damage in AD. We tested this hypothesis by subjecting normal and transgenic mice lacking ApoE to oxidative stress by folate deprivation and/or excess dietary iron. Brain tissue of ApoE-deficient mice displayed increased glutathione and antioxidant levels, consistent with attempts to compensate for the lack of ApoE. Folate deprivation and iron challenge individually increased glutathione and antioxidant levels in both normal and ApoE-deficient brain tissue. However, combined treatment with folate deprivation and dietary iron depleted antioxidant capacity and induced oxidative damage in ApoE-deficient brains despite increased glutathione, indicating an inability to compensate for the lack of ApoE under these conditions. These data support the hypothesis that ApoE deficiency is associated with oxidative damage, and demonstrate a combinatorial influence of genetic predisposition, dietary deficiency, and oxidative stress on oxidative damage relevant to AD.  相似文献   

5.
Experimental studies and observations in the human brain indicate that interstitial fluid and solutes, such as amyloid-beta (Abeta), are eliminated from grey matter of the brain along pericapillary and periarterial pathways. It is unclear, however, what constitutes the motive force for such transport within blood vessel walls, which is in the opposite direction to blood flow. In this paper the potential for global pressure differences to achieve such transport are considered. A mathematical model is constructed in order to test the hypothesis that perivascular drainage of interstitial fluid and solutes out of brain tissue is driven by pulsations of the blood vessel walls. Here it is assumed that drainage occurs through a thin layer between astrocytes and endothelial cells or between smooth muscle cells. The model suggests that, during each pulse cycle, there are periods when fluid and solutes are driven along perivascular spaces in the reverse direction to the flow of blood. It is shown that successful drainage may depend upon some attachment of solutes to the lining of the perivascular space, in order to produce a valve-like effect, although an alternative without this requirement is also postulated. Reduction in pulse amplitude, as in ageing cerebral vessels, would prolong the attachment time, encourage precipitation of Abeta peptides in vessel walls, and impair elimination of Abeta from the brain. These factors may play a role in the pathogenesis of cerebral amyloid angiopathy and in the accumulation of Abeta in the brain in Alzheimer's disease.  相似文献   

6.
ApoE promotes the proteolytic degradation of Abeta   总被引:1,自引:0,他引:1  
Apolipoprotein E is associated with age-related risk for Alzheimer's disease and plays critical roles in Abeta homeostasis. We report that ApoE plays a role in facilitating the proteolytic clearance of soluble Abeta from the brain. The endolytic degradation of Abeta peptides within microglia by neprilysin and related enzymes is dramatically enhanced by ApoE. Similarly, Abeta degradation extracellularly by insulin-degrading enzyme is facilitated by ApoE. The capacity of ApoE to promote Abeta degradation is dependent upon the ApoE isoform and its lipidation status. The enhanced expression of lipidated ApoE, through the activation of liver X receptors, stimulates Abeta degradation. Indeed, aged Tg2576 mice treated with the LXR agonist GW3965 exhibited a dramatic reduction in brain Abeta load. GW3965 treatment also reversed contextual memory deficits. These data demonstrate a mechanism through which ApoE facilitates the clearance of Abeta from the brain and suggest that LXR agonists may represent a novel therapy for AD.  相似文献   

7.
Human lumbar CSF patterns of Abeta peptides were analysed by urea-based beta-amyloid sodium dodecyl sulphate polyacrylamide gel electrophoresis with western immunoblot (Abeta-SDS-PAGE/immunoblot). A highly conserved pattern of carboxyterminally truncated Abeta1-37/38/39 was found in addition to Abeta1-40 and Abeta1-42. Remarkably, Abeta1-38 was present at a higher concentration than Abeta1-42, being the second prominent Abeta peptide species in CSF. Patients with Alzheimer's disease (AD, n = 12) and patients with chronic inflammatory CNS disease (CID, n = 10) were differentiated by unique CSF Abeta peptide patterns from patients with other neuropsychiatric diseases (OND, n = 37). This became evident only when we investigated the amount of Abeta peptides relative to their total Abeta peptide concentration (Abeta1-x%, fractional Abeta peptide pattern), which may reflect disease-specific gamma-secretase activities. Remarkably, patients with AD and CID shared elevated Abeta1-38% values, whereas otherwise the patterns were distinct, allowing separation of AD from CID or OND patients without overlap. The presence of one or two ApoE epsilon4 alleles resulted in an overall reduction of CSF Abeta peptides, which was pronounced for Abeta1-42. The severity of dementia was significantly correlated to the fractional Abeta peptide pattern but not to the absolute Abeta peptide concentrations.  相似文献   

8.
Glycogen synthase kinase-3beta (GSK-3beta) is implicated in regulating apoptosis and tau protein hyperphosphorylation in Alzheimer's disease (AD). We investigated the effects of two key AD molecules, namely apoE (E3 and E4 isoforms) and beta-amyloid (Abeta) 1-42 on GSK-3beta and its major upstream regulators, intracellular calcium and protein kinases C and B (PKC and PKB) in human SH-SY5Y neuroblastoma cells. ApoE3 induced a mild, transient, Ca2+-independent and early activation of GSK-3beta. ApoE4 effects were biphasic, with an early strong GSK-3beta activation that was partially dependent on extracellular Ca2+, followed by a GSK-3beta inactivation. ApoE4 also activated PKC-alpha and PKB possibly giving the subsequent GSK-3beta inhibition. Abeta(1-42) effects were also biphasic with a strong activation dependent partially on extracellular Ca2+ followed by an inactivation. Abeta(1-42) induced an early and potent activation of PKC-alpha and a late decrease of PKB activity. ApoE4 and Abeta(1-42) were more toxic than apoE3 as shown by MTT reduction assays and generation of activated caspase-3. ApoE4 and Abeta(1-42)-induced early activation of GSK-3beta could lead to apoptosis and tau hyperphosphorylation. A late inhibition of GSK-3beta through activation of upstream kinases likely compensates the effects of apoE4 and Abeta(1-42) on GSK-3beta, the unbalanced regulation of which may contribute to AD pathology.  相似文献   

9.
The incidence of amyloid plaques, composed mainly of beta-amyloid peptides (Abeta), does not correlate well with the severity of neurodegeneration in patients with Alzheimer's disease (AD). The effects of Abeta(42) on neurons or neural stem cells (NSCs) in terms of the aggregated form remain controversial. We prepared three forms of oligomeric, fibrillar, and monomeric Abeta(42) peptides and investigated their effects on the proliferation and neural differentiation of adult NSCs, according to the degree of aggregation or concentration. A low micromolar concentration (1 micromol/L) of oligomeric Abeta(42) increased the proliferation of adult NSCs remarkably in a neurosphere assay. It also enhanced the neuronal differentiation of adult NSCs and their ability to migrate. These results provide us with valuable information regarding the effects of Abeta(42) on NSCs in the brains of patients with AD.  相似文献   

10.
One of the familial forms of Alzheimer's disease (AD) encodes the amyloid-beta precursor protein (AbetaPP) substitution mutation V717F. This mutation is relevant to AD research, since it has been utilized to generate transgenic mice models to study AD pathology and therapeutic interventions. Amyloid beta (Abeta) peptides were obtained from the cerebral tissue of three familial AD subjects carrying the AbetaPP V717F mutation. A combination of ultracentrifugation, size-exclusion, and reverse-phase high performance liquid chromatography, tryptic and cyanogen bromide hydrolysis, amino acid analysis, and matrix-assisted laser desorption ionization and surface-enhanced laser desorption ionization mass spectrometry was used to characterize the familial AD mutant Abeta peptides. The AbetaPP V717F mutation, located 4-6 residues beyond the wild-type AbetaPP gamma-secretase cleavage site, yielded longer Abeta peptides with C termini between residues 43 and 54. In the cerebral cortex these peptides aggregated into thin water- and SDS-insoluble amyloid bundles that condensed into flocculent spherical plaques. In the leptomeningeal arteries the amyloid was deposited in moderate amounts and was primarily composed of the shorter and more soluble Abeta species ending at residues 40, 42, and 44. The single V717F mutation in AbetaPP results in distinctive and drastic changes in the length and tertiary structure of Abeta peptides, which appear to be responsible for the earlier clinical manifestations of dementia and death of these patients.  相似文献   

11.
The allele E4 of apolipoprotein E4 (apoE4), which is the most prevalent genetic risk factor of Alzheimer's disease (AD), inhibits synaptogenesis and neurogenesis and stimulates apoptosis in brains of apoE4 transgenic mice that have been exposed to an enriched environment. In the present study, we investigated the hypothesis that the brain activity-dependent impairments in neuronal plasticity, induced by apoE4, are mediated via the amyloid cascade. Importantly, we found that exposure of mice transgenic for either apoE4, or the Alzheimer's disease benign allele apoE3, to an enriched environment elevates similarly the hippocampal levels of amyloid-beta peptide (Abeta) and apoE of these mice, but that the degree of aggregation and spatial distribution of Abeta in these mice are markedly affected by the apoE genotype. Accordingly, environmental stimulation triggered the formation of extracellular plaque-like Abeta deposits and the accumulation of intra-neuronal oligomerized Abeta specifically in brains of apoE4 mice. Further experiments revealed that hippocampal dentate gyrus neurons are particularly susceptible to apoE4 and environmental stimulation and that these neurons are specifically enriched in both oligomerized Abeta and apoE. These findings show that the impairments in neuroplasticity which are induced by apoE4 following environmental stimulation are associated with the accumulation of intraneuronal Abeta and suggest that oligomerized Abeta mediates the synergistic pathological effects of apoE4 and environmental stimulation.  相似文献   

12.
Failure of elimination of amyloid-β (Aβ) from the brain and vasculature appears to be a key factor in the etiology of sporadic Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). In addition to age, possession of an apolipoprotein E (APOE) ε4 allele is a strong risk factor for the development of sporadic AD. The present study tested the hypothesis that possession of the APOE ε4 allele is associated with disruption of perivascular drainage of Aβ from the brain and with changes in cerebrovascular basement membrane protein levels. Targeted replacement (TR) mice expressing the human APOE3 (TRE3) or APOE4 (TRE4) genes and wildtype mice received intracerebral injections of human Aβ(40). Aβ(40) aggregated in peri-arterial drainage pathways in TRE4 mice, but not in TRE3 or wildtype mice. The number of Aβ deposits was significantly higher in the hippocampi of TRE4 mice than in the TRE3 mice, at both 3- and 16-months of age, suggesting that clearance of Aβ was disrupted in the brains of TRE4 mice. Immunocytochemical and Western blot analysis of vascular basement membrane proteins demonstrated significantly raised levels of collagen IV in 3-month-old TRE4 mice compared with TRE3 and wild type mice. In 16-month-old mice, collagen IV and laminin levels were unchanged between wild type and TRE3 mice, but were lower in TRE4 mice. The results of this study suggest that APOE4 may increase the risk for AD through disruption and impedance of perivascular drainage of soluble Aβ from the brain. This effect may be mediated, in part, by changes in age-related expression of basement membrane proteins in the cerebral vasculature.  相似文献   

13.
Recent studies of postmortem brains from Alzheimer's disease (AD) patients and transgenic mouse models of AD suggest that oxidative damage, induced by amyloid beta (Abeta), is associated with mitochondria early in AD progression. Abeta and amyloid-precursor protein are known to localize to mitochondrial membranes, block the transport of nuclear-encoded mitochondrial proteins to mitochondria, interact with mitochondrial proteins, disrupt the electron-transport chain, increase reactive oxygen species production, cause mitochondrial damage and prevent neurons from functioning normally. Furthermore, accumulation of Abeta at synaptic terminals might contribute to synaptic damage and cognitive decline in patients with AD. Here, we describe recent studies regarding the roles of Abeta and mitochondrial function in AD progression and particularly in synaptic damage and cognitive decline.  相似文献   

14.
The apolipoprotein E4 (ApoE4) is an established risk factor for Alzheimer's disease (AD). Previous work has shown that this allele is associated with functional (fMRI) changes as well structural grey matter (GM) changes in healthy young, middle-aged and older subjects. Here, we assess the diffusion characteristics and the white matter (WM) tracts of healthy young (20-38 years) ApoE4 carriers and non-carriers. No significant differences in diffusion indices were found between young carriers (ApoE4+) and non-carriers (ApoE4-). There were also no significant differences between the groups in terms of normalised GM or WM volume. A feature selection algorithm (ReliefF) was used to select the most salient voxels from the diffusion data for subsequent classification with support vector machines (SVMs). SVMs were capable of classifying ApoE4 carrier and non-carrier groups with an extremely high level of accuracy. The top 500 voxels selected by ReliefF were then used as seeds for tractography which identified a WM network that included regions of the parietal lobe, the cingulum bundle and the dorsolateral frontal lobe. There was a non-significant decrease in volume of this WM network in the ApoE4 carrier group. Our results indicate that there are subtle WM differences between healthy young ApoE4 carriers and non-carriers and that the WM network identified may be particularly vulnerable to further degeneration in ApoE4 carriers as they enter middle and old age.  相似文献   

15.
Temporal cortical sections from postmortem brains of individuals without any dementing condition and with different degrees of severity of Alzheimer's disease (AD) evaluated by the Clinical Dementia Rating scale (CDR 0-CDR 3) were analyzed using immunohistochemical procedures. To demonstrate the amyloid-beta-peptide (Abeta) deposition and the neurofibrillary pathology, two monoclonal antibodies were used, a human CERAD Abeta (10D5) antibody raised against the N-terminal region of the Abeta-peptide, and an antibody raised against paired helical filaments (PHF-1). The neuron cell bodies and the glial cells were also recognized by two polyclonal antibodies raised, respectively, against the protein gene peptide (PGP 9.5) and glial fibrillary acidic protein (GFAP). Directly related to severity of AD, progressive deposits of Abeta-peptide were found within cortical pyramidal-like neurons and forming senile plaques. Ultrastructurally, Abeta-peptide deposits were related to neuronal intracytoplasmic organelles, such as the ER, the mitochondria, the Nissl bodies and lipofuscin. We have also found that the intracellular deposition of the Abeta peptide is a neuropathological finding prior to the appearance of PHF-immunoreactive structures. We suggest that the intracellular Abeta deposition in cortical pyramidal neurons is a first neurodegenerative event in AD development and that it is involved in cell dysfunction, neuronal death, and plaque formation.  相似文献   

16.
The many faces of amyloid beta in Alzheimer's disease   总被引:1,自引:0,他引:1  
The 'amyloid cascade hypothesis' links amyloid beta peptide (Abeta) with the pathological process of Alzheimer's disease (AD) and it still awaits universal acceptance. Amyloid precursor protein (APP), through the actions of the gamma-secretase complex, eventually becomes a different Abetaspecies. The various Abeta species have proven to be difficult to investigate under physiological conditions, and the species of Abeta responsible for neurotoxicity has yet to be unequivocally identified. The two important Abeta peptides involved are Abeta(1-40) and Abeta(1-42), and each has been ascribed both toxic and beneficial attributes. The ratio between the two species can be important in AD etiology. Additionally, shorter variants of Abeta peptides such as Abeta(1-8), Abeta(9-16) and Abeta(16) have also been shown to be potential participants in AD pathology. Interestingly, a new 56-kDa Abeta peptide (Abeta*56) disrupts memory when injected into the brains of young rats. Transgenic mice models are complicated by the interplay between various human Abeta types and the mouse Abeta types in the mouse brains. However, the accumulation of Abeta(1-42) in the brains of transgenic C. elegans worms and Drosophila is indeed detrimental. A less investigated aspect of AD is epigenetics, but in time the investigation of the role of epigenetics in AD may add to our understanding of the development of AD.  相似文献   

17.
Cerebral beta-amyloid angiopathy (CAA) is an age-related disorder of the brain vasculature that is involved in up to 20% of non-traumatic cerebral hemorrhage in humans. CAA is a risk factor for cognitive decline, and may exacerbate the dementia of Alzheimer's disease. Progress in discovering the cause and potential therapies for this disorder has been hindered by the paucity of animal models, particularly models of idiopathic CAA. The squirrel monkey (Saimiri spp) develops significant CAA in the natural course of aging. To evaluate the suitability of Saimiri as a model of human CAA, we studied the distribution and composition of Abeta subtypes in CAA and parenchymal (senile plaque) deposits in the brains of aged squirrel monkeys, as well as the relationship between vascular beta-amyloid deposition and comorbid vasculopathies that occur in aged humans. Our findings show that: 1) CAA consists ultrastructurally of classical amyloid fibrils and is the principal type of cerebral beta-amyloidosis in squirrel monkeys; 2) The two primary isoforms of Abeta (Abeta40 and Abeta42) coexist in most microvascular and parenchymal lesions of Saimiri, although Abeta40 tends to predominate in larger arterioles; 3) CAA and parenchymal plaques overlap to a considerable degree in most affected brain areas, and are distributed symmetrically in the two hemispheres; 4) Both CAA and plaques are particularly abundant in rostral regions and comparatively sparse in the occipital lobe; 5) Capillaries are especially vulnerable to CAA in squirrel monkeys; and 6) When CAA is severe, it is associated with a small, but significant, increase in other vasculopathies, including microhemorrhage, fibrinoid extravasation and focal gliosis. These findings, in the context of genetic, vascular and immunologic similarities between squirrel monkeys and humans, support the squirrel monkey as a biologically advantageous model for studying the basic biology of idiopathic, age-related CAA, and for testing emerging therapies for human beta-amyloidoses such as Alzheimer's disease.  相似文献   

18.
Aluminium (Al) is a neurotoxic metal and Al exposure may be a factor in the aetiology of various neurodegenerative diseases such as Alzheimer's disease (AD). The major pathohistological findings in the AD brain are the presence of neuritic plaques containing beta-amyloid (Abeta) which may interfere with neuronal communication. Moreover, it has been observed that GRP78, a stress-response protein induced by conditions that adversely affect endoplasmic reticulum (ER) function, is reduced in the brain of AD patients. In this study, we investigated the correlation between the expression of Abeta and GRP78 in the brain cortex of mice chronically treated with aluminium sulphate. Chronic exposure over 12 months to aluminium sulphate in drinking water resulted in deposition of Abeta similar to that seen in congophilic amyloid angiopathy (CAA) in humans and a reduction in neuronal expression of GRP78 similar to what has previously been observed in Alzheimer's disease. So, we hypothesise that chronic Al administration is responsible for oxidative cell damage that interferes with ER functions inducing Abeta accumulation and neurodegenerative damage.  相似文献   

19.
Retrospective clinical studies indicate that individuals chronically treated with cholesterol synthesis inhibitors, statins, are at lower risk of developing AD (Alzheimer's disease). Moreover, treatment of guinea pigs with high doses of simvastatin or drastic reduction of cholesterol in cultured cells decrease Abeta (beta-amyloid peptide) production. These data sustain the concept that high brain cholesterol is responsible for Abeta accumulation in AD, providing the scientific support for the proposed use of statins to prevent this disease. However, a number of unresolved issues raise doubts that high brain cholesterol is to blame. First, it has not been shown that higher neuronal cholesterol increases Abeta production. Secondly, it has not been demonstrated that neurons in AD have more cholesterol than control neurons. On the contrary, the brains of AD patients show a specific down-regulation of seladin-1, a protein involved in cholesterol synthesis, and low membrane cholesterol was observed in hippocampal membranes of ApoE4 (apolipoprotein E4) AD cases. This effect was also evidenced by altered cholesterol-rich membrane domains (rafts) and raft-mediated functions, such as diminished generation of the Abeta-degrading enzyme plasmin. Thirdly, numerous genetic defects that cause neurodegeneration are due to defective cholesterol metabolism. Fourthly, in female mice, the most brain-permeant statin induces neurodegeneration and high amyloid production. Altogether, this evidence makes it difficult to accept that statins are beneficial through acting as brain cholesterol-synthesis inhibitors. It appears more likely that their advantageous role arises from improved brain oxygenation.  相似文献   

20.
A(beta) generation in autophagic vacuoles   总被引:1,自引:0,他引:1  
Alzheimer's disease (AD) is the most common form of dementia among older people. It is characterized by the extracellular accumulation of beta-amyloid (Abeta) deposits called senile or neuritic plaques. Abeta is generated by the proteolytic cleavage of Abeta precursor protein (APP) by beta and gamma-secretases localized in the secretory and endocytic compartments. In this issue, Yu et al. (on p. 87) report a novel mechanism for the generation of Abeta peptides, which takes place in autophagic vacuoles (AVs) that accumulate in AD brains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号