首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. Binding sites for angiotensin II have been localized in forebrain and brain-stem areas of water-deprived and control Sprague-Dawley rats, employing autoradiography with computerized microdensitometry. 2. Angiotensin II receptor sites were identified in the organum vasculosum of the lamina terminalis, subfornical organ, paraventricular nucleus, median preoptic nucleus, area postrema, nucleus of the solitary tract, and inferior olive. 3. After dehydration a significant increases in the concentration of angiotensin II receptors was detected only in the subfornical organ. Although there was an increased concentration of angiotensin II binding sites in the organum vasculosum of the lamina terminalis, the median preoptic nucleus, and the paraventricular nucleus after dehydration, these changes did not reach statistical significance. Other brain nuclei investigated did not show differences in angiotensin II binding sites in the dehydrated rats compared to controls. 4. These results indicate that angiotensin II receptors in the subfornical organ may play an important role in fluid homeostasis during dehydration.  相似文献   

2.
Projections of different parts of the orbito-frontal cortex, the basal temporal cortex, and the hippocampus on hypothalamic nuclei were studied by recording focal responses in acute experiments on cats anesthetized with pentobarbital and chloralose. The proreal gyrus was shown to have local projections in the latero-dorsal zones of the preoptic region, in the rostral parts of the medial forebrain bundle, and also in the region of the lateral and posterior hypothalamus with the mammillary bodies. The orbital gyrus projects mainly to the latero-dorsal portions of the forebrain bundle, the latero-ventral part of the preoptic region, and the region of the lateral and latero-dorsal hypothalamic nuclei; projections from the orbital gyrus are relatively diffuse in character. The basal temporal cortex has diffuse projections in the central part of the preoptic region, in the latero-ventral parts of the medial forebrain bundle, and in the lateral mammillary body. No marked foci of activity were found in the hypothalamic structures during hippocampal stimulation. Diffuse projections of the hippocampus were traced in the ventral part of the preoptic region and the ventral regions of the medial forebrain bundle, and also in the lateral hypothalamus and in the lateral mammillary nucleus.A. M. Gor'kii Donetsk Medical Institute. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 358–365, July–August, 1976.  相似文献   

3.
The subfornical organ (SFO) has projections to specific sets of nuclei within the preoptic area and hypothalamus which enable it to influence behavioral and physiological controls of water balance. It projects to the nuclei of the anteroventral third ventricular area, to vasopressinergic (heavily) and oxytocinergic (moderately) magnocellular neurons of the supraoptic and paraventricular nucleus. It also projects to the parvocellular areas of the paraventricular nucleus which project to the median eminence and to all the motor nuclei of the autonomic nervous system. In addition the SFO projects to regions of the lateral preoptic area, lateral hypothalamus and the dorsal perifornical region. Cutting the efferent projections from the SFO causes disturbances in behavioral and physiological controls of water balance. There is moderate polyuria and a concentrating defect in urine osmolality. The rats do not drink to intravenous angiotensin II but retain their ability to drink to angiotensin II given intracerebroventricularly. They appear to drink normally to overnight water deprivation but remain in negative water balance because of excessive urinary water loss during the deprivation period.  相似文献   

4.
蒋星红  钱忠明 《动物学报》1998,44(3):308-313
用SD种系清醒大鼠,观察脑室注射高渗物质引起的饮水及c-fos在脑内的表达部位。实验结果表明,脑室内微量注射1.5mol/L、3mol/L NaCl或3mol/L蔗糖均可诱导饮水反应,并在前脑的终板血管器官、正中视前核和下丘脑视上核与室旁核中见到Fos样免疫反应阳性细胞,同样在后脑的最后区、臂旁外侧核与孤束核中也能见到Fos样免疫反应阳性细胞,同样在后脑的最后区、臂旁外侧核与孤束核中也能见到Fos  相似文献   

5.
The role of the suprachiasmatic nucleus/medial preoptic area region of the hypothalamus in the expression of rat hypothalamic growth hormone-releasing factor-induced feeding in the rat was examined. Rats were tested for their 90-min food intake following microinjections of growth hormone-releasing factor (0.0, 0.01, 0.1 or 1.0 pmol) aimed at the suprachiasmatic nucleus/medial preoptic area region. It was found that growth hormone-releasing factor dose-dependently stimulated food intake with the 1.0 pmol dose being the most effective, increasing food intake by approximately 200%. Injections outside the suprachiasmatic nucleus/medial preoptic area region were ineffective. These data are taken to suggest that the suprachiasmatic nucleus/medial preoptic area region of the hypothalamus is important for the central stimulatory effects of growth hormone-releasing factor on feeding.  相似文献   

6.
Summary The hypothalamus of Japanese quail, Coturnix coturnix japonica, has been studied by means of the peroxidase-antiperoxidase immunocytochemical method, with the use of antibodies to synthetic neurotensin (NT). A number of immunoreactive neuronal perikarya occur in the medial preoptic nucleus of the rostral hypothalamus and a few in the accessory part of paraventricular nucleus and dorsal portion of the infundibular nucleus. Some of them correspond to the parvocellular neurons previously identified tentatively as neurosecretory (Mikami et al. 1975, 1976). Large numbers of immunoreactive neuronal fibers are found in the preoptic area, which extend as a remarkable fiber tract from this area to the ventral septal area and to the subfornical organ. A few immunoreactive fibers also extend ventrocaudally to the infundibular nucleus and to the neural lobe.This investigation was supported by Scientific Research Grants No. 556196 and No. 576176 from the Ministry of Education of Japan to Professor Mikami and Mr. Yamada  相似文献   

7.
One of several factors affecting the secretion of renin by the kidneys is the sympathetic nervous system. The sympathetic input is excitatory and is mediated by beta-adrenergic receptors, which are probably located on the membranes of the juxtaglomerular cells. Stimulation of sympathetic areas in the medulla, midbrain and hypothalamus raises blood pressure and increases renin secretion, whereas stimulation of other parts of the hypothalamus decreases blood pressure and renin output. The centrally active alpha-adrenergic agonist clonidine decreases renin secretion, lowers blood pressure, inhibits ACTH and vasopressin secretion, and increases growth hormone secretion in dogs. The effects on ACTH and growth hormone are abolished by administration of phenoxybenzamine into the third ventricle, whereas the effect on blood pressure is abolished by administration of phenoxybenzamine in the fourth ventricle without any effect on the ACTH and growth hormone responses. Fourth ventricular phenoxybenzamine decreases but does not abolish the inhibitory effect of clonidine on renin secretion. Circulating angiotensin II acts on the brain via the area postrema to raise blood pressure and via the subfornical organ to increase water intake. Its effect on vasopressin secretion is debated. The brain contains a renin-like enzyme, converting enzyme, renin substrate, and angiotensin. There is debate about the nature and physiological significance of the angiotensin II-generating enzyme in the brain, and about the nature of the angiotensin I and angiotensin II that have been reported to be present in the central nervous system. However, injection of angiotensin II into the cerebral ventricles produces drinking, increased secretion of vasopressin and ACTH, and increased blood pressure. The same responses are produced by intraventricular renin. Angiotensin II also facilitates sympathetic discharge in the periphery, and the possibility that it exerts a similar action on the adrenergic neurons in the brain merits investigation.  相似文献   

8.
Summary The organization of Gn-RH systems in the brain of teleosts has been investigated previously by immunohistochemistry using antibodies against the mammalian decapeptide which differs from the teleostean factor. Here, we report the distribution of immunoreactive Gn-RH in the brain of goldfish using antibodies against synthetic teleost peptide.Immunoreactive structures are found along a column extending from the rostral olfactory bulbs to the pituitary stalk. Cell bodies are observed within the olfactory nerves and bulbs, along the ventromedial telencephalon, the ventrolateral preoptic area and the latero-basal hypothalamus. Large perikarya are detected in the dorsal midbrain tegmentum, immediately caudal to the posterior commissure. A prominent pathway was traced from the cells located in the olfactory nerves through the medial olfactory tract and along all the perikarya described above to the pituitary stalk. In the pituitary, projections are restricted to the proximal pars distalis. A second immunoreactive pathway ascends more dorsally in the telencephalon and arches to the periventricular regions of the diencephalon. Part of this pathway forms a periventricular network in the dorsal and posterior hypothalamus, whereas other projections continue caudally to the medulla oblongata and the spinal cord. Lesions of the ventral preoptic area demonstrate that most of the fibers detected in the pituitary originate from the preoptic region.  相似文献   

9.
Input to the nucleus medianus of the preoptic region has been suggested to be involved in both the drinking and pressor responses elicited by the central administration of angiotensin II. Evidence in support of this suggestion has been gained principally from electrical lesion experiments. This lesion procedure does not differentiate between the cells of the region and fibers coursing through the region. To test the hypothesis that cells in this region are involved in both the pressor and drinking responses elicited by central administration of angiotensin II, injections of kainic acid were made to induce lesions of the cells, while sparing fibers of passage. Drinking and blood pressure responses were determined pre- and post-lesion in the chronically instrumented awake rat. Injections of 50 ng angiotensin II in a 2-microL volume into a lateral cerebral ventricle of the conscious rat elicited pronounced drinking and pressor responses with a latency of 3-5 min. Lesions of the median preoptic region produced by injecting 1.0 microgram of kainic acid in 0.25 microL for 15 s attenuated or blocked the drinking response and increased the latency to drink induced by central injections of angiotensin II. However, kainic acid lesions did not significantly alter the pressor responses produced by angiotensin II administration. These results suggest that cells in the median preoptic region are involved in the drinking response but do not participate in the pressor response elicited by angiotensin II administration into a lateral cerebral ventricle of the conscious rat.  相似文献   

10.
A review of proposed sites of the dipsogenic action of angiotensin II is presented. Techniques used for such localization are critically discussed, and it is suggested that convergence of evidence from several different experimental techniques is required for localization of dipsogenic receptors. Loci suggested as such sites of action include the preoptic regions, the subfornical organ, and the tissue proximal to the optic recess of the third ventricle, including the organum vasculosum laminae terminalis. Current evidence suggests that there are at least two loci within the forebrain that possess dipsogenic receptors for angiotensin II.  相似文献   

11.
Knife-cuts were used to separate the disruptive effects on fluid balance that are produced by electrolytic lesions of the anteroventral third ventricle (AV3V) region. It was observed that vertical cuts of the dorsal stalk of the subfornical organ (SFO) produced none of these effects. Horizontal cuts between the SFO and the anterior commissure produced neither of the acute effects of AV3V lesions (adipsia and diuretic weight loss) but they did mimic AV3V lesions in disrupting drinking responses to peripherally injected angiotensin and hypertonic saline. In contrast, horizontal cuts between the anterior commissure and the organum vasculosum of the lamina terminalis (OVLT) did not reduce drinking responses to angiotensin but they did cause a large weight loss during the 24 hours following surgery. It is suggested that these ventral cuts severed neural connections between the medial septum and the ventral medial preoptic area in producing the large weight loss. Together with findings from other experiments, these findings support the hypothesis that distinct neural elements mediate the various functions that are disrupted by lesions of the AV3V region.  相似文献   

12.
With the use of an antiserum generated in rabbits against synthetic human calcitonin gene-related peptide (CGRP) the distribution of CGRP-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system. A detailed stereotaxic atlas of CGRP-like neurons was prepared. CGRP-like immunoreactivity was widely distributed in the rat central nervous system. CGRP positive cell bodies were observed in the preoptic area and hypothalamus (medial preoptic, periventricular, anterior hypothalamic nuclei, perifornical area, medial forebrain bundle), premamillary nucleus, amygdala medialis, hippocampus and dentate gyrus, central gray and the ventromedial nucleus of the thalamus. In the midbrain a large cluster of cells was contained in the peripeduncular area ventral to the medial geniculate body. In the hindbrain cholinergic motor nuclei (III, IV, V, VI, VII XII) contained CGRP-immunoreactivity. Cell bodies were also observed in the ventral tegmental nucleus, the parabrachial nuclei, superior olive and nucleus ambiguus. The ventral horn cells of the spinal cord, the trigeminal and dorsal root ganglia also contained CGRP-immunoreactivity. Dense accumulations of fibers were observed in the amydala centralis, caudal portion of the caudate putamen, sensory trigeminal area, substantia gelatinosa, dorsal horn of the spinal cord (laminae I and II). Other areas containing CGRP-immunoreactive fibers are the septal area, nucleus of the stria terminalis, preoptic and hypothalamic nuclei (e.g., medial preoptic, periventricular, dorsomedial, median eminence), medial forebrain bundle, central gray, medial geniculate body, peripeduncular area, interpeduncular nucleus, cochlear nucleus, parabrachial nuclei, superior olive, nucleus tractus solitarii, and in the confines of clusters of cell bodies. Some fibers were also noted in the anterior and posterior pituitary and the sensory ganglia. As with other newly described brain neuropeptides it can only be conjectured that CGRP has a neuroregulatory action on a variety of functions throughout the brain and spinal cord.  相似文献   

13.
Angiotensin II infused intravenously into sinoaortic-denervated rats induced drinking and increased glucose utilization in the subfornical organ and pituitary neural lobe in amounts not different from those observed in sham-operated animals. We suggest that inputs from baroreceptors have a negligible influence on glucose metabolism in the subfornical organ during infusion of angiotensin II.  相似文献   

14.
Li XP  Li JH  Zhou XO  Xu ZC  Jiang XH 《生理学报》2001,53(2):97-102
实验以饮水行为脑内c-fos表达为指标,,观察刺激大鼠穹窿下器官(SFO)的效应,结果显示,刺激SFO能诱发明显的饮水行为,与此同时,前脑8个部位(终板血管器官,正中视前核,室旁核,视上核,下丘脑外侧区,穹窿周核背侧区,丘脑联合核和无名质)和后脑3个部位(最后区,孤束核和壁旁外侧核)的Fos蛋白表达明显增强,免疫组化双重染色结果显示,刺激SFO能诱导视上核和室旁核中部分神经元呈Fos蛋白和加压素共同表达。脑室注射阿托品能部分阻断刺激SFO诱发的饮水行为,脑内上述各部位所诱导的Fos蛋白表达也明显减弱,以上结果提示,M胆碱能机制参与 刺激SFO诱发的饮水行为和脑内Fos蛋白的表达。  相似文献   

15.
Summary The distribution of immunoreactive arginine vasotocin (AVT-ir) was determined in the brain of the lizard Anolis carolinensis. Cells and fibers containing AVT-ir were found in the medial septal region, lamina terminalis, lateral forebrain bundle, preoptic area, supraoptic nucleus, anterior hypothalamus, paraventricular nucleus, periventricular nucleus, arcuate nucleus, and ventromedial nucleus of the thalamus. Occasional AVT-ir cells were found in the interpeduncular nucleus. Fibers containing AVT-ir were found in the cortex, around the olfactory ventricle, in the diagonal band of Broca, amygdala area, dorsal ventricular ridge, striatum, nucleus accumbens, septum, ventromedial hypothalamus, lateral hypothalamus, medial forebrain bundle, median eminence, pars nervosa, nucleus of the solitary tract, locus coeruleus, cerebellar cortex (granular layer), dorsal part of the nucleus of the lateral lemniscus, substantia nigra, and myelencephalon. The intensity of AVT-ir staining was, in general, greater in males than in females. Comparison of AVT-ir distribution in A. carolinensis with those previously published for other reptilian species revealed species-specific differences in distribution of AVT.  相似文献   

16.
Central effects of dehydration are stimulated by osmotic stimuli, the reduced input of volume receptors, and angiotensin II. The subfornical organ (SFO) and organum vasculosum laminae terminalis (OVLT) have become accepted as putative receptor sites for angiotensin II in the brain. The exact quantitative relationship between the hours of water deprivation and the amount of angiotensin generated peripherally and whether that amount is sufficient to induce thirst centrally have not been established, but there is no question that when animals are dehydrated their angiotensin levels rise and the animals are thirsty. Attempts to block centrally the contribution of angiotensin II to thirst have been variable and cholinergic inputs have to be blocked at the same time. Various stimuli for thirst interact in a parallel fashion, and when one stimulus is blocked the other stimuli are still effective. Plasma angiotensin II may induce natural thirst, but how it enters the brain still remains to be explained. Although the SFO and OVLT have no blood-brain barrier, the blood supply to these organs acts as a limited perfusion system whereby blood-borne proteins cannot diffuse far from the capillary bed. A second set of receptors is found on the ventricular surface of the OVLT, as shown by fluorescence labeled angiotensin II. The connection between the SFO and OVLT was cut by discrete knife cuts. Drinking to angiotensin II intraventricularly was not significantly altered but the pressor response was reduced by 50%. These results can be explained by a circuit for drinking passing down below the level of the knife cut and a separate pressor pathway passing dorsally through the area that was cut by the knife. Thirst and pressor neural circuits beginning with angiotensin receptors could explain some of the data accumulated with the AV3V syndrome that occurs when the OVLT and nucleus medianas are destroyed.  相似文献   

17.
Water intakes in response to hypertonic, hypovolemic, and dehydrational stimuli were investigated in mice lacking angiotensin II as a result of deletion of the angiotensinogen gene (Agt-/- mice), and in C57BL6 wild-type (WT) mice. Baseline daily water intake in Agt-/- mice was approximately threefold that of WT mice because of a renal developmental disorder of the urinary concentrating mechanisms in Agt-/- mice. Intraperitoneal injection of hypertonic saline (0.4 and 0.8 mol/l NaCl) caused a similar dose-dependent increase in water intake in both Agt-/- and WT mice during the hour following injection. As well, Agt-/- mice drank appropriate volumes of water following water deprivation for 7 h. However, Agt-/- mice did not increase water or 0.3 mol/l NaCl intake in the 8 h following administration of a hypovolemic stimulus (30% polyethylene glycol sc), whereas WT mice increased intakes of both solutions during this time. Osmoregulatory regions of the brain [hypothalamic paraventricular and supraoptic nuclei, median preoptic nucleus, organum vasculosum of the lamina terminalis (OVLT), and subfornical organ] showed an increased number of neurons exhibiting Fos-immunoreactivity in response to intraperitoneal hypertonic NaCl in both Agt-/- mice and WT mice. Polyethylene glycol treatment increased Fos-immunoreactivity in the subfornical organ, OVLT, and supraoptic nuclei in WT mice but only increased Fos-immunoreactivity in the supraoptic nucleus in Agt-/- mice. These data show that brain angiotensin is not essential for the adequate functioning of neural pathways mediating osmoregulatory thirst. However, angiotensin II of either peripheral or central origin is probably necessary for thirst and salt appetite that results from hypovolemia.  相似文献   

18.
Using an antiserum generated in rabbits against synthetic galanin (GA) and the indirect immunofluorescence method, the distribution of GA-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system (CNS) and a detailed stereotaxic atlas of GA-like neurons was prepared. GA-like immunoreactivity was widely distributed in the rat CNS. Appreciable numbers of GA-positive cell bodies were observed in the rostral cingulate and medial prefrontal cortex, the nucleus interstitialis striae terminalis, the caudate, medial preoptic, preoptic periventricular, and preoptic suprachiasmatic nuclei, the medial forebrain bundle, the supraoptic, the hypothalamic periventricular, the paraventricular, the arcuate, dorsomedial, perifornical, thalamic periventricular, anterior dorsal and lateral thalamic nuclei, medial and central amygdaloid nuclei, dorsal and ventral premamillary nuclei, at the base of the hypothalamus, in the central gray matter, the hippocampus, the dorsal and caudoventral raphe nuclei, the interpeduncular nucleus, the locus coeruleus, ventral parabrachial, solitarii and commissuralis nuclei, in the A1, C1 and A4 catechaolamine areas, the posterior area postrema and the trigeminal and dorsal root ganglia. Fibers were generally seen where cell bodies were observed. Very dense fiber bundles were noted in the septohypothalamic tract, the preoptic area, in the hypothalamus, the habenula and the thalamic periventricular nucleus, in the ventral hippocampus, parts of the reticular formation, in the locus coeruleus, the dorsal parabrachial area, the nucleus and tract of the spinal trigeminal area and the substantia gelatinosa, the superficial layers of the spinal cord and the posterior lobe of the pituitary. The localization of the GA-like immunoreactivity in the locus coeruleus suggests a partial coexistence with catecholaminergic neurons as well as a possible involvement of the GA-like peptide in a neuroregulatory role.  相似文献   

19.
The Japanese quail drinks water vigorously after water deprivation, haemorrhage and administration of hypertonic saline solution. Most avian species responded to angiotensin II (AII) by drinking, but carnivorous birds and those originating in arid regions were insensitive. The receptive sites for AII were the subfornical organ (SFO) and the preoptic area (POA) in the Japanese quail. Catecholaminergic fibers proceed from the POA to the SFO. Dipsogenic information generated by AII at the POA is transferred to the SFO through the catecholaminergic nerve fibres. Plasma AII increased following dehydration and haemorrhage and returned to a normal level immediately after rehydration. Following dehydration, arginine vasotocin, aldosterone and corticosterone increased in plasma as well as AII. A single intraperitoneal injection of AII induced increases of arginine vasotocin, aldosterone and corticosterone in plasma. It seems that AII functions as a trigger for release of these other hormones during dehydration.  相似文献   

20.
Previous studies have shown that angiotensin II (ANG II) increases glucose utilization in the subfornical organ and stimulates drinking behavior. We investigated with the deoxyglucose method whether atriopeptin III, an atrial natriuretic peptide (ANP), would prevent this enhanced glucose metabolism and interfere with the drinking response in the presence of ANG II. Two rat models with high circulating levels of ANG II were studied: the homozygous Brattleboro and ANG II-infused Sprague-Dawley rats. ANP decreased the normally enhanced glucose utilization in the subfornical organ in the Brattleboro rat and inhibited ANG II-stimulated glucose metabolism in the subfornical organ of Sprague-Dawley rats. This effect was accompanied by decreased ANG II-stimulated water intake. These findings indicate that ANP may act at the level of subfornical organ to antagonize the dipsogenic action of ANG II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号