首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Global and regional climate models predict higher air temperature and less frequent, but larger precipitation events in arid regions within the next century. While many studies have addressed the impact of variable climate in arid ecosystems on plant growth and physiological responses, fewer studies have addressed soil microbial community responses to seasonal shifts in precipitation and temperature in arid ecosystems. This study examined the impact of a wet (2004), average (2005), and dry (2006) year on subsequent responses of soil microbial community structure, function, and linkages, as well as soil edaphic and nutrient characteristics in a mid-elevation desert grassland in the Chihuahuan Desert. Microbial community structure was classified as bacterial (Gram-negative, Gram-positive, and actinomycetes) and fungal (saprophytic fungi and arbuscular mycorrhiza) categories using (fatty acid methyl ester) techniques. Carbon substrate use and enzymic activity was used to characterize microbial community function annually and seasonally (summer and winter). The relationship between saprophytic fungal community structure and function remained consistent across season independent of the magnitude or frequency of precipitation within any given year. Carbon utilization by fungi in the cooler winter exceeded use in the warmer summer each year suggesting that soil temperature, rather than soil moisture, strongly influenced fungal carbon use and structure and function dynamics. The structure/function relationship for AM fungi and soil bacteria notably changed across season. Moreover, the abundance of Gram-positive bacteria was lower in the winter compared to Gram-negative bacteria. Bacterial carbon use, however, was highest in the summer and lower during the winter. Enzyme activities did not respond to either annual or seasonal differences in the magnitude or timing of precipitation. Specific structural components of the soil microbiota community became uncoupled from total microbial function during different seasons. This change in the microbial structure/function relationship suggests that different components of the soil microbial community may provide similar ecosystem function, but differ in response to seasonal temperature and precipitation. As soil microbes encounter increased soil temperatures and altered precipitation amounts and timing that are predicted for this region, the ability of the soil microbial community to maintain functional resilience across the year may be reduced in this Chihuahuan Desert ecosystem.  相似文献   

2.
Increases in the magnitude and variability of precipitation events have been predicted for the Chihuahuan Desert region of West Texas. As patterns of moisture inputs and amounts change, soil microbial communities will respond to these alterations in soil moisture windows. In this study, we examined the soil microbial community structure within three vegetation zones along the Pine Canyon Watershed, an elevation and vegetation gradient in Big Bend National Park, Chihuahuan Desert. Soil samples at each site were obtained in mid-winter (January) and in mid-summer (August) for 2 years to capture a component of the variability in soil temperature and moisture that can occur seasonally and between years along this watershed. Precipitation patterns and amounts differed substantially between years with a drought characterizing most of the second year. Soils were collected during the drought period and following a large rainfall event and compared to soil samples collected during a relatively average season. Structural changes within microbial community in response to site, season, and precipitation patterns were evaluated using fatty acid methyl ester (FAME) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analyses. Fungal FAME amounts differed significantly across seasons and sites and greatly outweighed the quantity of bacterial and actinomycete FAME levels for all sites and seasons. The highest fungal FAME levels were obtained in the low desert scrub site and not from the high elevation oak–pine forests. Total bacterial and actinomycete FAME levels did not differ significantly across season and year within any of the three locations along the watershed. Total bacterial and actinomycete FAME levels in the low elevation desert-shrub and grassland sites were slightly higher in the winter than in the summer. Microbial community structure at the high elevation oak–pine forest site was strongly correlated with levels of NH4 +–N, % soil moisture, and amounts of soil organic matter irrespective of season. Microbial community structure at the low elevation desert scrub and sotol grasslands sites was most strongly related to soil pH with bacterial and actinobacterial FAME levels accounting for site differences along the gradient. DGGE band counts of amplified soil bacterial DNA were found to differ significantly across sites and season with the highest band counts found in the mid-elevation grassland site. The least number of bands was observed in the high elevation oak–pine forest following the large summer-rain event that occurred after a prolonged drought. Microbial responses to changes in precipitation frequency and amount due to climate change will differ among vegetation zones along this Chihuahuan Desert watershed gradient. Soil bacterial communities at the mid-elevation grasslands site are the most vulnerable to changes in precipitation frequency and timing, while fungal community structure is most vulnerable in the low desert scrub site. The differential susceptibility of the microbial communities to changes in precipitation amounts along the elevation gradient reflects the interactive effects of the soil moisture window duration following a precipitation event and differences in soil heat loads. Amounts and types of carbon inputs may not be as important in regulating microbial structure among vegetation zones within in an arid environment as is the seasonal pattern of soil moisture and the soil heat load profile that characterizes the location.  相似文献   

3.
Soil microbial communities in Chihuahuan Desert grasslands generally experience highly variable spatiotemporal rainfall patterns. Changes in precipitation regimes can affect belowground ecosystem processes such as decomposition and nutrient cycling by altering soil microbial community structure and function. The objective of this study was to determine if increased seasonal precipitation frequency and magnitude over a 7‐year period would generate a persistent shift in microbial community characteristics and soil nutrient availability. We supplemented natural rainfall with large events (one/winter and three/summer) to simulate increased precipitation based on climate model predictions for this region. We observed a 2‐year delay in microbial responses to supplemental precipitation treatments. In years 3–5, higher microbial biomass, arbuscular mycorrhizae abundance, and soil enzyme C and P acquisition activities were observed in the supplemental water plots even during extended drought periods. In years 5–7, available soil P was consistently lower in the watered plots compared to control plots. Shifts in soil P corresponded to higher fungal abundances, microbial C utilization activity, and soil pH. This study demonstrated that 25% shifts in seasonal rainfall can significantly influence soil microbial and nutrient properties, which in turn may have long‐term effects on nutrient cycling and plant P uptake in this desert grassland.  相似文献   

4.
Grizzle HW  Zak JC 《Mycologia》2006,98(2):353-363
Ascertaining the effects of anthropogenic disturbance on belowground diversity is of paramount importance because pollution from agricultural practices and industrialization are increasing worldwide. Although we have methods for evaluating soil microbial function with respect to carbon use our ability to evaluate use of other compounds is limited. Because N cycling is of paramount importance in ecosystem stability, evaluation of the ability of saprophytic soil fungi to use a variety of N sources would provide important information on possible alterations in ecosystem stability with disturbance. Herein is described a procedure (soil Nitrolog) for evaluating fungal functional diversity on a suite of 95 different N substrates. The soil Nitrolog procedure was evaluated by testing fungal functional diversity at two sites in Big Bend National Park (Chihuahuan Desert), differing in elevation and plant community composition. The soil Nitrolog procedure distinguished between the two sites based on overall use of the 95 N substrates. In addition the procedure detected differences in individual substrate use based on site specific plant compounds in response to changes in the amount of N entering these ecosystems from anthropogenic inputs.  相似文献   

5.
Biological soil crusts are diverse assemblages of bacteria, cyanobacteria, algae, fungi, lichens, and mosses that cover much of arid land soils. The objective of this study was to quantify protozoa associated with biological soil crusts and test the response of protozoa to increased temperature and precipitation as is predicted by some global climate models. Protozoa were more abundant when associated with cyanobacteria/lichen crusts than with cyanobacteria crusts alone. Amoebae, flagellates, and ciliates originating from the Colorado Plateau desert (cool desert, primarily winter precipitation) declined 50-, 10-, and 100-fold, respectively, when moved in field mesocosms to the Chihuahuan Desert (hot desert, primarily summer rain). However, this was not observed in protozoa collected from the Chihuahuan Desert and moved to the Sonoran desert (hot desert, also summer rain, but warmer than Chihuahuan Desert). Protozoa in culture began to encyst at 37 degrees C. Cysts survived the upper end of daily temperatures (37-55 degrees C), and could be stimulated to excyst if temperatures were reduced to 15 degrees C or lower. Results from this study suggest that cool desert protozoa are influenced negatively by increased summer precipitation during excessive summer temperatures, and that desert protozoa may be adapted to a specific desert's temperature and precipitation regime.  相似文献   

6.
Global climate models predict that in the next century precipitation in desert regions of the USA will increase, which is anticipated to affect biosphere/atmosphere exchanges of both CO2 and H2O. In a sotol grassland ecosystem in the Chihuahuan Desert at Big Bend National Park, we measured the response of leaf-level fluxes of CO2 and H2O 1 day before and up to 7 days after three supplemental precipitation pulses in the summer (June, July, and August 2004). In addition, the responses of leaf, soil, and ecosystem fluxes of CO2 and H2O to these precipitation pulses were also evaluated in September, 1 month after the final seasonal supplemental watering event. We found that plant carbon fixation responded positively to supplemental precipitation throughout the summer. Both shrubs and grasses in watered plots had increased rates of photosynthesis following pulses in June and July. In September, only grasses in watered plots had higher rates of photosynthesis than plants in the control plots. Soil respiration decreased in supplementally watered plots at the end of the summer. Due to these increased rates of photosynthesis in grasses and decreased rates of daytime soil respiration, watered ecosystems were a sink for carbon in September, assimilating on average 31 mmol CO2 m−2 s−1 ground area day−1. As a result of a 25% increase in summer precipitation, watered plots fixed eightfold more CO2 during a 24-h period than control plots. In June and July, there were greater rates of transpiration for both grasses and shrubs in the watered plots. In September, similar rates of transpiration and soil water evaporation led to no observed treatment differences in ecosystem evapotranspiration, even though grasses transpired significantly more than shrubs. In summary, greater amounts of summer precipitation may lead to short-term increased carbon uptake by this sotol grassland ecosystem.  相似文献   

7.
8.
Alterations in global and regional precipitation patterns are expected to affect plant and ecosystem productivity, especially in water‐limited ecosystems. This study examined the effects of natural and supplemental (25% increase) seasonal precipitation on a sotol grassland ecosystem in Big Bend National Park in the Chihuahuan Desert. Physiological responses – leaf photosynthesis at saturating light (Asat), stomatal conductance (gs), and leaf nitrogen [N] – of two species differing in their life form and physiological strategies (Dasylirion leiophyllum, a C3 shrub; Bouteloua curtipendula, a C4 grass) were measured over 3 years (2004–2006) that differed greatly in their annual and seasonal precipitation patterns (2004: wet, 2005: average, 2006: dry). Precipitation inputs are likely to affect leaf‐level physiology through the direct effects of altered soil water and soil nitrogen. Thus, the effects of precipitation, watering treatment, soil moisture, and nitrogen were quantified via multivariate hierarchical Bayesian models that explicitly linked the leaf and soil responses. The two species differed in their physiological responses to precipitation and were differentially controlled by soil water vs. soil nitrogen. In the relatively deeply rooted C3 shrub, D. leiophyllum, Asat was highest in moist periods and was primarily regulated by deep (16–30 cm) soil water. In the shallow‐rooted C4 grass, B. curtipendula, Asat was only coupled to leaf [N], both of which increased in dry periods when soil [N] was highest. Supplemental watering during the wet year generally decreased Asat and leaf [N] in D. leiophyllum, perhaps due to nutrient limitation, and physiological responses in this species were influenced by the cumulative effects of 5 years of supplemental watering. Both species are common in this ecosystem and responded strongly, yet differently, to soil moisture and nitrogen, suggesting that changes in the timing and magnitude of precipitation may have consequences for plant carbon gain, with the potential to alter community composition.  相似文献   

9.
Aboveground net primary production (ANPP) dynamics are a key element in the understanding of ecosystem processes. For semiarid environments, the pulse-reserve framework links ANPP to variable and unpredictable precipitation events contingent on surficial hydrology, soil moisture dynamics, biodiversity structure, trophic dynamics, and landscape context. Consequently, ANPP may be decoupled periodically from processes such as decomposition and may be subjected to complex feedbacks and thresholds at broader scales. As currently formulated, the pulse-reserve framework may not encompass the breadth of ANPP response to seasonal patterns of precipitation and heat inputs. Accordingly, we examined a 6-year (1999–2004), seasonal record of ANPP with respect to precipitation, soil moisture dynamics, and functional groups in a black grama (Bouteloua eriopoda) grassland and a creosotebush (Larrea tridentata) shrubland in the northern Chihuahuan Desert. Annual ANPP was similar in the grassland (51.1 g/m2) and shrubland (59.2 g/m2) and positively correlated with annual precipitation. ANPP differed among communities with respect to life forms and functional groups and responses to abiotic drivers. In keeping with the pulse-reserve model, ANPP in black grama grassland was dominated by warm-season C4 grasses and subshrubs that responded to large, transient summer storms and associated soil moisture in the upper 30 cm. In contrast, ANPP in creosotebush shrubland occasionally responded to summer moisture, but the predominant pattern was slower, non-pulsed growth of cool-season C3 shrubs during spring, in response to winter soil moisture accumulation and the breaking of cold dormancy. Overall, production in this Chihuahuan Desert ecosystem reflected a mix of warm-temperate arid land pulse dynamics during the summer monsoon and non-pulsed dynamics in spring driven by winter soil moisture accumulation similar to that of cool-temperate regions. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Moisture inputs drive soil respiration (SR) dynamics in semi-arid and arid ecosystems. However, determining the contributions of root and microbial respiration to SR, and their separate temporal responses to periodic drought and water pulses, remains poorly understood. This study was conducted in a pine forest ecosystem with a Mediterranean-type climate that receives seasonally varying precipitation inputs from both rainfall (in the winter) and fog-drip (primarily in the summer). We used automated SR measurements, radiocarbon SR source partitioning, and a water addition experiment to understand how SR, and its separate root and microbial sources, respond to seasonal and episodic changes in moisture. Seasonal changes in SR were driven by surface soil water content and large changes in root respiration contributions. Superimposed on these seasonal patterns were episodic pulses of precipitation that determined the short-term SR patterns. Warm season precipitation pulses derived from fog-drip, and rainfall following extended dry periods, stimulated the largest SR responses. Microbial respiration dominated these SR responses, increasing within hours, whereas root respiration responded more slowly over days. We conclude that root and microbial respiration sources respond differently in timing and magnitude to both seasonal and episodic moisture inputs. These findings have important implications for the mechanistic representation of SR in models and the response of dry ecosystems to changes in precipitation patterns.  相似文献   

11.
Woody species encroachment of grasslands globally causes many socioecological impacts, including loss of grazing pastures and decreased biodiversity. Soil microbial communities may partially regulate the pace of shrub encroachment, as plant-microbial interactions can strongly influence plant success. We measured fungal composition and activity under dominant plant species across a grassland to shrubland transition to determine if shrubs cultivate soil microbial communities as they invade. Specifically, soil microbial communities, abiotic soil properties, and extracellular enzyme activities were quantified for soils under four common Chihuahuan Desert plant species (three grasses, one shrub) in central New Mexico, U.S.A. Extracellular enzyme activity levels were fairly consistent under different plant species across the grassland to shrubland transition. Activity levels of two enzymes (alkaline phosphatase and beta-N-acetyl-glucosaminidase) were lower in the ecotone, presumably because soil organic matter content was also lower in ecotone soils. Community composition of soil fungi mirrored patterns in the plant community, with distinct plant and fungal communities in the shrubland and grassland, while grassland-shrubland ecotone soils hosted a mix of taxa from both habitats. We show that shrubs cultivate a distinct microbial community on the leading edge of the invasion, which may be necessary for shrub colonization, establishment, and persistence.  相似文献   

12.
Maximum and minimum soil temperatures affect belowground processes. In the past 50 years in arid regions, measured reductions in the daily temperature range of air (DTRair) most likely generated similar reductions in the unmeasured daily temperature range of soil (DTRsoil). However, the role of DTRsoil in regulating microbial and plant processes has not been well described. We experimentally reduced DTRsoil in the Chihuahuan Desert at Big Bend National Park over 3 years. We used shade cloth that effectively decreased DTRsoil by decreasing daily maximum temperature and increasing nighttime minimum temperature. A reduction in DTRsoil generated on average a twofold increase in soil microbial biomass carbon, a 42% increase in soil CO2 efflux and a 16% reduction in soil NO3?–N availability; soil available NH4+–N was reduced by 18% in the third year only. Reductions in DTRsoil increased soil moisture up to 15% a few days after a substantial rainfall. Increased soil moisture contributed to higher soil CO2 efflux, but not microbial biomass carbon, which was significantly correlated with DTRsoil. Net photosynthetic rates at saturating light (Asat) in Larrea tridentata were not affected by reductions in DTRsoil over the 3 year period. Arid ecosystems may become greater sources of C to the atmosphere with reduced DTRsoil, resulting in a positive feedback to rising global temperatures, if increased C loss is not eventually balanced by increased C uptake. Ultimately, ecosystem models of N and C fluxes will need to account for these temperature‐driven processes.  相似文献   

13.
Sobek EA  Zak JC 《Mycologia》2003,95(4):590-602
Conservation methods often are focused on preserving the biodiversity of a particular landscape or ecosystem. Scientists frequently employ species richness as an indicator of biodiversity. However, species richness data are problematic when attempts are made to enumerate microfungi, particularly those from the soil. Many soil fungi fail to sporulate, making identification difficult. Other means of assessing the importance of fungi to ecosystem preservation must be developed. Otherwise, microfungi might be overlooked in discussions of ecosystem management and conservation issues. Herein, we have described a procedure (Soil FungiLog) and analytical techniques that will let investigators examine the functional role that soil fungi play in providing structure and stability to ecosystems. Ecosystem function in many cases might be more important than species diversity in gaining an understanding of ecosystem dynamics. Functional attributes are critical for maintaining ecosystem structure and stability. The preservation of the functions associated with the extant biota, particularly from soil microbes, might be just as important as species diversity in the conservation of ecosystems and biodiversity. The Soil FungiLog procedure was used to assess functional diversity of soil fungi in a Georgia forest disturbed by human activity and along an elevational gradient in the Chihuahuan Desert. Sites within each location were separated on the basis of fungal carbon substrate utilization profiles. These profiles were analyzed to provide information regarding the functional diversity of soil fungal assemblages at each site. The effects of disturbance and elevation were evaluated with respect to soil fungal functional diversity.  相似文献   

14.
Microbial‐mediated decomposition of soil organic matter (SOM) ultimately makes a considerable contribution to soil respiration, which is typically the main source of CO2 arising from terrestrial ecosystems. Despite this central role in the decomposition of SOM, few studies have been conducted on how climate change may affect the soil microbial community and, furthermore, on how possible climate‐change induced alterations in the ecology of microbial communities may affect soil CO2 emissions. Here we present the results of a seasonal study on soil microbial community structure, SOM decomposition and its temperature sensitivity in two representative Mediterranean ecosystems where precipitation/throughfall exclusion has taken place during the last 10 years. Bacterial and fungal diversity was estimated using the terminal restriction fragment length polymorphism technique. Our results show that fungal diversity was less sensitive to seasonal changes in moisture, temperature and plant activity than bacterial diversity. On the other hand, fungal communities showed the ability to dynamically adapt throughout the seasons. Fungi also coped better with the 10 years of precipitation/throughfall exclusion compared with bacteria. The high resistance of fungal diversity to changes with respect to bacteria may open the controversy as to whether future ‘drier conditions’ for Mediterranean regions might favor fungal dominated microbial communities. Finally, our results indicate that the fungal community exerted a strong influence over the temporal and spatial variability of SOM decomposition and its sensitivity to temperature. The results, therefore, highlight the important role of fungi in the decomposition of terrestrial SOM, especially under the harsh environmental conditions of Mediterranean ecosystems, for which models predict even drier conditions in the future.  相似文献   

15.
Desert soils harbor fungi that have survived under highly stressed conditions of high temperature and little available moisture. This study was designed to survey the communities of cultivable fungi in the desert soils of the Arabian Peninsula and to screen the fungi for the potentially valuable antioxidants (flavonoids, phenols, saponins, steroids, tannins, terpenoids, and alkaloids) and enzymes (cellulase, laccase, lipase, protease, amylase, and chitinase). Desert soil was sampled at 30 localities representing different areas of Saudi Arabia and studied for physico-chemical soil properties. Five types of soil texture (sand, loamy sand, sandy loam, silty loam, and sandy clay loam) were observed. A total of 25 saprotrophic species was identified molecularly from 68 isolates. Our survey revealed 13 culturable fungal species that have not been reported previously from Arabian desert soils and six more species not reported from Saudi Arabian desert soils. The most commonly recorded genera were Aspergillus (isolated from 20 localities) and Penicillium (6 localities). The measurements of biochemicals revealed that antioxidants were produced by 49 and enzymes by 52 isolates; only six isolates did not produce any biochemicals. The highest biochemical activity was observed for the isolates Fusarium brachygibbosum and A. phoenicis. Other active isolates were A. proliferans and P. chrysogenum. The same species, for instance, A. niger had isolates of both high and low biochemical activities. Principal component analysis gave a tentative indication of a relationship between the biochemical activity of fungi isolated from soil and soil texture variables namely the content of silt, clay and sand. However, any generalizable relation between soil properties and fungal biochemical activities cannot be suggested. Each fungal isolate is probable to produce several antioxidants and enzymes, as shown by the correlation within the compound groups. Desert soil warrants further research as a promising source of biochemicals.  相似文献   

16.
Precipitation regimes are predicted to become more variable with more extreme rainfall events punctuated by longer intervening dry periods. Water‐limited ecosystems are likely to be highly responsive to altered precipitation regimes. The bucket model predicts that increased precipitation variability will reduce soil moisture stress and increase primary productivity and soil respiration in aridland ecosystems. To test this hypothesis, we experimentally altered the size and frequency of precipitation events during the summer monsoon (July through September) in 2007 and 2008 in a northern Chihuahuan Desert grassland in central New Mexico, USA. Treatments included (1) ambient rain, (2) ambient rain plus one 20 mm rain event each month, and (3) ambient rain plus four 5 mm rain events each month. Throughout two monsoon seasons, we measured soil temperature, soil moisture content (θ), soil respiration (Rs), along with leaf‐level photosynthesis (Anet), predawn leaf water potential (Ψpd), and seasonal aboveground net primary productivity (ANPP) of the dominant C4 grass, Bouteloua eriopoda. Treatment plots receiving a single large rainfall event each month maintained significantly higher seasonal soil θ which corresponded with a significant increase in Rs and ANPP of B. eriopoda when compared with plots receiving multiple small events. Because the strength of these patterns differed between years, we propose a modification of the bucket model in which both the mean and variance of soil water change as a consequence of interannual variability from 1 year to the next. Our results demonstrate that aridland ecosystems are highly sensitive to increased precipitation variability, and that more extreme precipitation events will likely have a positive impact on some aridland ecosystem processes important for the carbon cycle.  相似文献   

17.
Boreal forests contain significant quantities of soil carbon that may be oxidized to CO2 given future increases in climate warming and wildfire behavior. At the ecosystem scale, decomposition and heterotrophic respiration are strongly controlled by temperature and moisture, but we questioned whether changes in microbial biomass, activity, or community structure induced by fire might also affect these processes. We particularly wanted to understand whether postfire reductions in microbial biomass could affect rates of decomposition. Additionally, we compared the short‐term effects of wildfire to the long‐term effects of climate warming and permafrost decline. We compared soil microbial communities between control and recently burned soils that were located in areas with and without permafrost near Delta Junction, AK. In addition to soil physical variables, we quantified changes in microbial biomass, fungal biomass, fungal community composition, and C cycling processes (phenol oxidase enzyme activity, lignin decomposition, and microbial respiration). Five years following fire, organic surface horizons had lower microbial biomass, fungal biomass, and dissolved organic carbon (DOC) concentrations compared with control soils. Reductions in soil fungi were associated with reductions in phenol oxidase activity and lignin decomposition. Effects of wildfire on microbial biomass and activity in the mineral soil were minor. Microbial community composition was affected by wildfire, but the effect was greater in nonpermafrost soils. Although the presence of permafrost increased soil moisture contents, effects on microbial biomass and activity were limited to mineral soils that showed lower fungal biomass but higher activity compared with soils without permafrost. Fungal abundance and moisture were strong predictors of phenol oxidase enzyme activity in soil. Phenol oxidase enzyme activity, in turn, was linearly related to both 13C lignin decomposition and microbial respiration in incubation studies. Taken together, these results indicate that reductions in fungal biomass in postfire soils and lower soil moisture in nonpermafrost soils reduced the potential of soil heterotrophs to decompose soil carbon. Although in the field increased rates of microbial respiration can be observed in postfire soils due to warmer soil conditions, reductions in fungal biomass and activity may limit rates of decomposition.  相似文献   

18.
内蒙古温带荒漠草原生态系统水热通量动态   总被引:5,自引:0,他引:5  
基于2008年全年内蒙古温带荒漠草原的水热通量观测数据,对荒漠草原水、热通量的日、季动态进行了分析.结果表明:温带荒漠草原感热通量和潜热通量的日动态均呈单峰型曲线,在12:00-13:30左右达最大值,其与地表净辐射的日变化趋势基本一致,但感热和潜热的峰值出现时间较地表净辐射峰值出现时间滞后约1 h;温带荒漠草原感热通量和潜热通量的日累积最大值分别为319.01和425.37 W·m-2,分别出现在5月30日和6月2日;月均感热通量与潜热通量的最大值分别出现在5月和6月,最小值分别出现在1月和12月.研究区土壤含水量与降水的相关性较好,表层土壤含水量对降水的反应最敏感,深层土壤水分对降水的反应存在位相滞后.感热通量和潜热通量的季节动态与地表净辐射基本一致,均受降水影响.感热通量受地表净辐射的影响明显,而潜热通量对降水的反应较敏感,且土壤含水量在潜热通量中起主要作用.  相似文献   

19.
吴林  苏延桂  张元明 《生态学报》2012,32(13):4103-4113
水分是控制干旱区生态过程的重要环境因素,在水分受限制的生态系统中,降水通过改变土壤的干湿状态直接控制地下生物过程。生物结皮作为干旱区主要的地表覆盖物,能利用空气中有限的水分进行光合作用,其自身的碳交换是干旱区土壤碳通量的重要组成部分。通过模拟0(对照)、2、5 mm和15 mm 4个降水梯度,利用红外气体分析仪,对古尔班通古特沙漠中部生物结皮以及裸地表观土壤碳通量进行测量,探讨不同强度降水条件下生物结皮对表观土壤碳通量的影响,结果表明:(1)降水增加了生物结皮表观土壤碳释放量,2、5 mm和15 mm 3种降水处理累积碳释放量分别是对照的151.48%、274.97%、306.44%,并且随着降水后时间的延长,表观土壤碳通量逐渐减小直至达到降水前的水平;(2)生物结皮与裸地的表观土壤碳通量对降水的响应不同,对照和最大降水量下,生物结皮表观土壤碳通量大于裸地,但是2 mm和5 mm降水后,生物结皮表观土壤碳通量小于裸地,并且二者在2 mm降水时差异显著(P<0.05),而在其它降水处理下无显著差异;(3)连续两次降水事件,活性碳在初级降水后的大量释放使得二次降水后释放量下降,其中裸地碳释放量下降速率与降水强度正相关。本研究说明,在探求荒漠地区土壤碳交换对降水的响应规律时,应该考虑生物结皮的影响以及连续降水事件的差异。  相似文献   

20.
Microbial communities regulate many belowground carbon cycling processes; thus, the impact of climate change on the structure and function of soil microbial communities could, in turn, impact the release or storage of carbon in soils. Here we used a large-scale precipitation manipulation (+18%, −50%, or ambient) in a piñon-juniper woodland (Pinus edulis-Juniperus monosperma) to investigate how changes in precipitation amounts altered soil microbial communities as well as what role seasonal variation in rainfall and plant composition played in the microbial community response. Seasonal variability in precipitation had a larger role in determining the composition of soil microbial communities in 2008 than the direct effect of the experimental precipitation treatments. Bacterial and fungal communities in the dry, relatively moisture-limited premonsoon season were compositionally distinct from communities in the monsoon season, when soil moisture levels and periodicity varied more widely across treatments. Fungal abundance in the drought plots during the dry premonsoon season was particularly low and was 4.7 times greater upon soil wet-up in the monsoon season, suggesting that soil fungi were water limited in the driest plots, which may result in a decrease in fungal degradation of carbon substrates. Additionally, we found that both bacterial and fungal communities beneath piñon pine and juniper were distinct, suggesting that microbial functions beneath these trees are different. We conclude that predicting the response of microbial communities to climate change is highly dependent on seasonal dynamics, background climatic variability, and the composition of the associated aboveground community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号