首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Cytochrome b-562 is more reduced in submitochondrial particles of mutant 28 during the aerobic steady-state respiration with succinate than in particles of the wild type. When anaerobiosis is reached, the reduction of cytochrome b is preceded by a rapid reoxidation in the mutant. A similar reoxidation is observed in the wild type in the presence of low concentrations of antimycin.

2. In contrast to the wild type, inhibition of electron transport in the mutant has a much higher antimycin titre than effects on cytochromes b (viz., aerobic steadystate reduction; reduction in the presence of substrate, cyanide and oxygen; the ‘red shift’ and lowering of E0 of cytochrome b-562). Moreover, the titration curve of electron transport is hyperbolic whereas the curves for the reduction are sigmoidal. The conclusion is, that in both mutant and wild type, the actions of antimycin on electron transport and cytochromes b are separable.

3. The red shift in the mutant is more extensive than in the wild type.

4. Cytochrome b-558 and cytochrome b-566 (that absorbs in mutant and wild type at 564.5 nm) do not respond simultaneously to addition of antimycin, indicating that they are two separate cytochromes.

5. The difference between the effect of antimycin on electron transport and cytochromes b reduction is also found in intact cells of the mutant.

6. A model is suggested for the wild-type respiratory chain in which (i) the cytochromes b lie, in an uncoupled system, out of the main electron-transfer chain, (ii) antimycin induces a conformation change in QH2-cytochrome c reductase resulting in effects on cytochrome b and inhibition of electron transport, (iii) a second antimycinbinding site with low affinity to the antibiotic is present, capable of inhibiting electron transport.  相似文献   


2.
《BBA》1969,189(3):327-336
1. Extraction by ether removes only about one-half of antimycin added to sub-mitochondrial particles, independently of the amount of antimycin added up to that necessary for 100% inhibition.

2. The amount of antimycin extractable with ether remains the same even when the antimycin is redistributed between an antimycin-inhibited preparation and an untreated. The antimycin remaining after ether extraction is redistributed between ether-accessible and ether-inaccessible sites when the preparation is incubated on its own or with an untreated preparation.

3. Low concentrations of cholate increase the extractability of the antimycin by ether.

4. Complex III binds antimycin more firmly than sub-mitochondrial particles. However, antimycin is readily extracted by ether, leading to restoration of enzymic activity and cleavage of the complex by bile salts.

5. The results are consistent with an explanation of the sigmoidal inhibition curve with antimycin and preparations of the intact respiratory chain in terms of an allosteric model.  相似文献   


3.
M  rten K. F. Wikstr  m  Jan A. Berden 《BBA》1972,283(3):403-420
1. The effect of oxidizing equivalents on the redox state of cytochrome b in the presence of antimycin has been studied in the presence and absence of various redox mediators.

2. The antimycin-induced extra reduction of cytochrome b is always dependent on the initial presence of an oxidant such as oxygen. After removal of the oxidant this effect remains or is partially (under some conditions even completely) abolished depending on the redox potential of the substrate used and the leak through the antimycin-inhibited site.

3. The increased reduction of cytochrome b induced by oxidant in the presence of antimycin involves all three spectroscopically resolvable b components (b-562, b-566 and b-558.

4. Redox mediators with an actual redox potential of less than 100–170 mV cause the oxidation of cytochrome b reduced under the influence of antimycin and oxidant.

5. Redox titrations of cytochrome b with the succinate/fumarate couple were performed aerobically in the presence of cyanide. In the presence of antimycin two b components are separated potentiometrically, one with an apparent midpoint potential above 80 mV (at pH 7.0), outside the range of the succinate/fumurate couple, and one with an apparent midpoint potential of 40 mV and an n value of 2. In the absence of antimycin cytochrome b titrates essentially as one species with a midpoint potential of 39 mV (at pH 7.0) and n = 1.14.

6. The increased reducibility of cytochrome b induced by antimycin plus oxidant is considered to be the result of two effects: inhibition of oxidation of ferrocytochrome b by ferricytochrome c1 (the effect of antimycin), and oxidation of the semiquinone form of a two-equivalent redox couple such as ubiquinone/ubiquinol by the added oxidant, leading to a decreased redox potential of the QH2/QH couple and reduction of cytochrome b.  相似文献   


4.
1. Pretreatment of submitochondrial particles with anionic detergents, such as deoxycholate and dodecyl sulfate, results in a change in the curve describing inhibition by antimycin of the succinate-cytochrome c reductase from sigmoidal towards linear.

2. On treatment of the preparation with either nonionic (Triton X-100 or Tween 80) or cationic (Cetavlon) detergents, the sigmoidal inhibition curve is retained. However, the preparation preincubated with Tween 80 is one half as sensitive to antimycin as the untreated one despite the fact that the activity of the preparation is not affected by this detergent.

3. In the presence of the anionic detergents, much higher amounts of sulfhydryl groups of the preparation are titratable by 5,5′-dithiobis(2-nitrobenzoic acid) than those of the control preparation. Addition of antimycin is without effect.

4. Preincubation of the preparation with Cetavlon results in only a small increase in the amount of sulfhydryl groups, whereas the nonionic detergents are without effect on the sulfhydryl content of the preparation.

5. The results indicate that the anionic detergents at the concentration transforming the antimycin-inhibition curve from sigmoidal towards linear result in a rapid increase of the sulfhydryl content of the heart-muscle preparation.  相似文献   


5.
J. A. Berden  E. C. Slater 《BBA》1970,216(2):237-249
1. Succinate-cytochrome c reductase activity was reconstituted by incubating a mixture of succinate dehydrogenase, cytochrome c1, ubiquinone-10, phospholipid and a preparation of cytochrome b, made by the method of .

2. Preparations of cytochrome b active in reconstitution contained 5–28% native cytochrome b, as adjudged by reducibility with succinate in the reconstituted preparation and by lack of reaction with CO. Preparations of cytochrome b containing no native cytochrome b according to this criterion were inactive in reconstitution.

3. With a fixed amount of cytochrome b, the activity of the reconstituted preparation increased with increasing amounts of cytochrome c1 until a ratio of about 2b (total): 1c1 (allowing for the cytochrome c1 present in the cytochrome b preparation) was reached.

4. The amount of antimycin necessary for maximal inhibition of the reconstituted enzyme is a function of the amount of the cytochrome b and is independent of the amount of cytochrome c1. It is equal to about one half the amount of native cytochrome b.

5. Preparations of intact or reconstituted succinate-cytochrome c reductase or of cytochrome b completely quench the fluorescence of added antimycin, until an amount of antimycin equal to onehalf the amount of native cytochrome b present was added. Antimycin added in excess of this amount fluoresces with normal intensity. The quenching is only partial in the presence of Na2S2O4. Denatured cytochrome b does not quench the fluorescence.

6. Since preparations of cytochrome b active in reconstitution contained cytochrome c1 in an amount exceeding one half the amount of native cytochrome b present in the preparation, there is no evidence that native cytochrome b has been resolved from cytochrome c1. The stimulatory action of cytochrome c1 may be due to the restoration of a damaged membrane conformation.

7. Based on the assumption that the bc1 segment of the respiratory chain contains 2b:1c1:1 antimycin-binding sites, the specific quenching of antimycin fluorescence by binding to cytochrome b enables an accurate determination of the absorbance coefficients of cytochromes b and c1. These are 25.6 and 20.1 mM−1×cm−1 for the wavelength pairs 563–577 nm and 553–539 nm, respectively, in the difference spectrum reduced minus oxidized.  相似文献   


6.
Shigeru Itoh 《BBA》1980,593(2):212-223
1. Electrogenic steps in photosynthetic cyclic electron transport in chromatophore membrane of Chromatium vinosum were studied by measuring absorption changes of added merocyanin dye and of intrinsic carotenoid.

2. The change in dye absorbance was linear with the membrane potential change induced either by light excitation or by application of diffusion potential by adding valinomycin in the presence of K+ concentration gradient.

3. It was estimated that chromatophore membrane became 40–60 mV and 110–170 mV inside positive upon single and multiple excitations with single-turnover flashes, respectively, from the responses of the dye and the carotenoid.

4. Electron transfers between cytochrome c-555 or c-552 and reaction center bacteriochlorophyll dimer (BChl2) and between BChl2 and the primary electron acceptor were concluded to be electrogenic from the redox titration of the dye response.

5. No dye response which corresponded to the change of redox level of cytochrome b was observed in the titration curve. Addition of antimycin A slightly decreased the dye response.

6. The dye response was decreased under phosphorylating conditions.

7. From the results obtained localization of the electron transfer components in chromatophore membrane is discussed.  相似文献   


7.
W. Bandlow  K. Wolf  F. Kaudewitz  E.C. Slater 《BBA》1974,333(3):446-459
1. A chromosomal respiration-deficient mutant of the petite-negative yeast Schizosaccharomyces pombe was isolated. Its mitochondria show respiration rates of about 7% of the wild-type respiration with NADH and succinate as substrate, and 45% with ascorbate in the presence of tetramethyl-p-phenylenediamine. Oxidation of NADH and succinate is insensitive to antimycin and cyanide and that of ascorbate is much less sensitive to cyanide than the wild type.

2. The amounts of cytochromes c1 and aa3 are similar in the mutant and wild type. Cytochrome b-566 could not be detected in low-temperature spectra after reduction with various substrates or dithionite. A b-558 is, however, present.

3. The b-cytochromes in the mutant are not reduced by NADH or succinate during the steady state even after addition of ubiquinone-1. QH2-3: cytochrome c reductase activity is very low and succinate oxidation is highly stimulated by phenazine methosulphate.

4. Antimycin does not bind to either oxidized or reduced mitochondrial particles of the mutant.

5. In contrast to the b-cytochromes of the wild type, b-558 in the mutant reacts with CO.

6. Cytochromes aa3, c and c1 are partly reduced in aerated submitochondrial particles isolated from the mutant and the EPR signal of Cu (II), measured at 35°K, is detectable only after the addition of ferricyanide. In the mutant, a signal with a trough at g = 2.01 is found, in addition to the signal at g = 1.98 found in the wild type.

7. The ATPase activity of particles isolated from the mutant is much lower than in the wild type but is still inhibited by oligomycin.  相似文献   


8.
1. In membranes prepared from dark grown cells of Rhodopseudomonas capsulata, five cytochromes of b type (E0 at pH 7.0 +413±5, +270±5, +148±5, +56±5 and −32±5 mV) can be detected by redox titrations at different pH values. The midpoint potentials of only three of these cytochromes (b148, b56, and b−32) vary as a function of pH with a slope of 30 mV per pH unit.

2. In the presence of a Co/N2 mixture, the apparent E0 of cytochrome b270 shifts markedly towards higher potentials (+355 mV); a similar but less pronounced shift is apparent also for cytochrome b150. The effect of CO on the midpoint potential of cytochrome b270 is absent in the respiration deficient mutant M6 which possesses a specific lesion in the CO-sensitive segment of the branched respiratory chain present in the wild type strain.

3. Preparations of spheroplasts with lysozyme digestion lead to the release of a large amount of cytochrome c2 and of virtually all cytochrome cc′. These preparations show a respiratory chain impaired in the electron pathway sensitive to low KCN concentration, in agreement with the proposed role of cytochrome c2 in this branch; on the contrary, the activity of the CO-sensitive branch remains unaffected, indicating that neither cytochrome c2 nor the CO-binding cytochrome cc′ are involved in this pathway.

4. Membranes prepared from spheroplasts still possess a CO-binding pigment characterized by maxima at 420.5, 543 and 574 nm and minima at 431, 560 nm in CO-difference spectra and with an band at 562.5 nm in reduced minus oxidized difference spectra. This membrane-bound cytochrome, which is coincident with cytochrome b270, can be classified as a typical cytochrome “o” and considered the alternative CO-sensitive oxidase.  相似文献   


9.
A. K. Ghosh  S. N. Bhattacharyya 《BBA》1971,245(2):335-346
1. Mitochondria isolated from Saccharomyces Carlsbergensis are found to have three phosphorylation sites in the respiratory chain for the oxidation of NADH and NAD+-linked substrates and two for succinate oxidation. Freshly isolated mitochondria exist in an inhibited state with no respiratory control, but on ageing for 2–3 h a good coupled state is obtained. -Ketogultarate and -glycerophosphate are poorly oxidized in these mitochondria.

2. Exogenous NADH is a very good substrate for yeast mitochondrial respiration and apparently has a very low Km. However, one-third of the added NADH is not available for oxidation probably due to some form of compartmentation. Studies of both oxygen uptake and the redox changes of cytochrome b show complete oxidation of two-third of the added NADH.

3. Difference spectra of yeast mitochondria at liquid-nitrogen temperatures show all the characteristic peaks of cytochromes a (600 nm), b (558, 525 and 428 nm), c1 (552 nm) and c (545 and 516 nm).

4. The reduction of cytochrome b by dicumarol in antimycin A inhibited mitochondria provides evidence for an energy conservation site on the substrate side of cytochrome b.

5. In the absence of added ADP, the oxidation of malate and pyruvate occurs in the yeast mitochondria in a new respiratory state (State X) where the oxygen uptake occurs at State 4 rate but the redox level of the flavins, cytochrome b and c are similar to State 3. State X respiration is believed to be due to depletion of the high energy intermediate C I caused by the substrate anions accumulation.

6. The responses of yeast mitochondria to Ca2+ are qualitatively similar to those in rat liver mitochondria, particularly with respect to respiratory stimulation, membrane alkalinization and its accumulation in the mitochondria with succinate as the substrate in the presence and absence of acetate.  相似文献   


10.
I. Y. Lee  E. C. Slater 《BBA》1972,283(3):395-402
Under anaerobic conditions cytochrome b in beef-heart mitochondria is partially reduced in the presence of NADH, whereas other cytochromes are completely reduced. Addition of antimycin together with oxygen under these conditions causes an immediate reduction of cytochromes b-558, b-562 and b-566 and oxidation of cytochrome c. During the subsequent transient aerobic steady state cytochromes b-558 and b-566 are rapidly re-oxidized without changes in redox state of cytochrome c, but cytochrome b-562 remains reduced. When oxygen is consumed by the leak through or around the antimycin-inhibition site, cytochrome b-562 becomes oxidized with concomitant reduction of cytochrome c.

The cytochromes b in lyophilized beef-heart mitochondria are more readily accessible to electrons from NADH, and in the presence of antimycin and NADH a complete and stable reduction is obtained under both aerobic and anaerobic conditions. Gradual addition of rotenone under these conditions causes re-oxidation of cytochromes b in which oxidation of cytochromes b-558 and b-566 precedes that of cytochrome b-562.

It is concluded that (1) the effect of antimycin in the presence of oxygen involves all three cytochromes b, (2) the reducibility of the cytochromes b in the aerobic steady state of antimycin-treated mitochondria is dependent upon the potential of the substrate redox couple registered on the cytochromes, and (3) the midpoint potential of cytochrome b-562 in the presence of antimycin is higher than that of cytochrome b-558 or b-566.  相似文献   


11.
1. An NADH-nitrate oxidoreductase (EC 1.6.6.1) of Chlorella has the unusual property of existing in cell-free extracts mainly in the form of an inactive precursor which can be activated by a variety of procedures. This enzyme is associated with a cytochrome of the b type.

2. The inhibitors, azide, cyanate, thiocyanate and nitrite, react rapidly with the enzyme, with kinetics which show that they are competitive with nitrate.

3. The inhibitors, cyanide and hydroxylamine, react slowly with the reduced form of the enzyme to give an inactive product which can slowly be reactivated in the presence of nitrate. There is at least a superficial similarity between the reactivation of the inhibited enzyme and the activation of the enzyme precursor in fresh extracts.

4. Mammalian cytochrome c, dichlorophenolindophenol and ferricyanide can substitute for nitrate as oxidants for NADH in the presence of the enzyme. This “diaphorase” reaction does not require activation, but is fully active in fresh extracts. It is not inhibited by cyanide, hydroxylamine, azide, cyanate, thiocyanate, or by the substrate, nitrate. Oxidized cytochrome c, on the other hand, inhibits the reduction of nitrate by NADH in the presence of the enzyme.

5. Pyridoxal phosphate inhibits both nitrate reductase and cytochrome c reductase to about the same extent.  相似文献   


12.
Satoru Higashi  Kiyozo Kawai 《BBA》1970,216(2):274-281
1. The spermatozoa of the freshwater mussel (Hyriopsis schlegelii) contain cytochromes aa3, b and c, flavoproteins and nicotinamide nucleotides in molar ratios of 1.0:0.9:1.8:1.8:8.7. Cytochrome c1 is not detectable even at liquid-N2 temperature, but a c1-like cytochrome with an -band at 550 mμ is found at liquid-N2 temperature in a cell preparation from which cytochrome c is completely removed.

2. The near-ultraviolet difference spectrum of whole cells reveals an absorption peak at 315 mμ with a shoulder around 350 mμ.

3. Both the endogenous respiration and motility of spermatozoa are completely blocked by 0.2 mM CN and by 0.2 μM antimycin A. 2,4-Dinitrophenol and pentachlorophenol completely inhibit motility at the maximal stimulation of respiration. Rotenone strongly inhibits NADH oxidase of spermatozoa, although it has no effect on the respiration of whole cells.

4. It is concluded that the motility of mussel spermatozoa is tightly coupled to respiration, and the respiratory chain phosphorylating process is the only energy-supplying system for motility.  相似文献   


13.
J. B. Thomas  F. Bretschneider 《BBA》1970,205(3):390-400
1. The absorption spectrum of chlorophyll b in vivo at 77°K is presented as the difference spectrum between preparations of spinach and chlorophyll b-free Vischeria stellata chloroplasts.

2. A shoulder on this spectrum around 662 nm is due to a component different from chlorophyll b. This component may well be identical with the chlorophyll a form, chlorophyll a (665).

3. The 77°K chlorophyll b absorption spectra in the nonfractionated photosyn-thetic pigment apparatus and in fractions mainly representing Photosystems 1 or 2 are not significantly different.

4. The aerobic irreversible photobleaching of chlorophyll b was studied in the intact pigment complex as well as in fractions mainly consisting of Photosystem 1 or 2. A two-step photobleaching was observed in all cases. The time-course of this bleaching was not significantly different for chlorophyll b in both fractions.

5. These results do not indicate that more than a single chlorophyll b complex occurs in vivo.  相似文献   


14.
Yasuaki Takeuchi 《BBA》1975,376(3):505-518
1. The uncoupler-stimulated ATPase activity of castor bean endosperm mitochondria and submitochondrial particles has been studied. The rate of ATP hydrolysis catalyzed by intact mitochondria was slow and little enhanced by addition of uncouplers at the concentration required for uncoupling the oxidative phosphorylation. ATPase activity was stimulated at higher concentrations of uncouplers.

2. 1-Anilinonaphthalene 8-sulfonate fluorescence was decreased when the mitochondria were oxidizing succinate. Carbonylcyanide-p-trifluoromethoxyphenylhydrazone and antimycin reversed the succinate-induced fluorescence diminution. ATP did not induce the fluorescence response.

3. The addition of succinate, NADH or ascorbate/N,N,N′,N′-tetramethyl-p-phenylenediamine as electron donor induced high ATPase activity in the presence of low concentrations of uncouplers. Stimulating effect of uncouplers was completely abolished by further addition of antimycin.

4. Submitochondrial particles were prepared by sonication. The particles catalyzed a rapid hydrolysis of ATP and carbonylcyanide-p-trifluoromethoxyphenylhydrazone at 10-8 M did not stimulate the ATPase activity. Addition of succinate induced uncoupler-stimulated ATPase activity. The effect of succinate was completely abolished by further addition of antimycin.

5. The treatment of submitochondrial particles by trypsin or high pH also induced uncoupler-stimulated ATPase activity.

6. The above results were interpreted to indicate that ATPase inhibitor regulated the back-flow reaction of mitochondrial oxidative phosphorylation.  相似文献   


15.
Paul Nijs 《BBA》1967,143(3):454-461
1. A series of eight classical respiratory-chain inhibitors was studied. The slopes of State-3 respiratory rate versus dose plots are convex for antimycin, 2-n-heptyl-4-hydroxyquinoline-N-oxide (HOQNO), rotenone and sulfide, and concave for malonate, Amytal, cyanide and azide.

2. Plots of ADP: O ratio versus dose indicate uncoupling effects at higher concentrations of antimycin, HOQNO, cyanide and azide. On the other hand, sulfide and rotenone have no effect on the phosphorylating efficiency. Malonate increases the ADP: O ratio.

3. Two inhibitors can be combined in such a way that the total inhibition should be equal to the inhibition caused by the single inhibitors if each inhibitor affects respiration independently (additivity of inhibition). In practice, however, antagonism and synergism are also found.

4. Additivity of combined inhibition occurs where both inhibitors act on the same enzyme.

5. Antagonism is observed where the two inhibitors act on different enzymes of the same chain.

6. Synergism is found where the two inhibitors act on enzymes in different branches of a forked chain. This turns into normal additivity when the electron flow through both branches is made equal.

7. The results are compatible with the hypothesis that respiratory enzymes are arranged in chains. The possibility that the chains may be cross-linked or branched is discussed.  相似文献   


16.
Three types of b cytochromes are demonstrated in Candida utilis mitochondria. One of these b cytochromes has a symmetrical -band at 561.5 nm at room temperature. This b cytochrome is readily reduced either by anaerobiosis or by cyanide treatment in the presence of glycerol 1-phosphate or succinate both in coupled and uncoupled mitochondria. The second b cytochrome has a double -band at 565 nm and 558 nm. This b cytochrome is readily reduced either by anaerobiosis or by cyanide treatment in the presence of glycerol 1-phosphate or succinate in coupled mitochondria, but in uncoupled mitochondria it is slowly reduced after anaerobiosis and this reduction rate is enhanced by antimycin A addition. Thus the oxidation-reduction state of this cytochrome is energy dependent. The first cytochrome is spectroscopically identified as cytochrome bK and the second as cytochrome bT. The third b cytochrome has an -band around 563 nm (b563) and is reduced slowly after anaerobiosis in uncoupled mitochondria but faster than the bT. Further properties of this component are not known. Midpoint potentials of cytochromes bT, b563 and bK are approximately −50 mV, +5 mV, and +65 mV, respectively.

In intact cells, cytochrome bT is reduced immediately after anaerobiosis or cyanide treatment, and rapidly oxidized when uncoupler is added. Addition of antimycin A instead of uncoupler to the anaerobic cells causes oxidation of mainly cytochrome bT while addition of antimycin A to the aerobic cells results in a reduction of the cytochrome bT.  相似文献   


17.
R.M. Bertina  P.I. Schrier  E.C. Slater 《BBA》1973,305(3):503-518
1. The fluorescence of aurovertin increases about 100-fold on binding to sub-mitochondrial particles.

2. The mitochondrial ATPase (F1) binds one mole aurovertin/mole F1 with a dissociation constant of 6·10−8 M.

3. The fluorescence of mitochondrion-bound aurovertin is maximal during State-3 respiration and is partially quenched on anaerobiosis, addition of respiratory inhibitor, oligomycin or uncoupler, or transition to State 4. This quenching is still present when the binding site is saturated with aurovertin, showing that the quantum yield of fluorescence is lowered.

4. Aurovertin is bound co-operatively to State-3 mitochondria.

5. The curve relating inhibition of State-3 respiration to aurovertin concentration is more sharply sigmoidal than the binding curve.

6. An analysis of the binding and inhibition data leads to the conclusion that aurovertin induces a conformation change in the binding site on F1 in two ways: (i) directly by acting as an allosteric effector of an oligomeric system, (ii) indirectly by inhibiting State-3 respiration which changes the allosteric constant of the oligomeric system.

7. The concentration of the aurovertin-binding site in both rat-liver and rat-heart mitochondria is about the same as that of the antimycin-binding and oligomycin-binding sites.  相似文献   


18.
《BBA》1970,205(3):513-519
1. The oligomycin-sensitive Mg2+-dependent ATPase activity of mitochondria isolated from wild-type yeast Saccharomyces cerevisiae was only slightly inhibited by atractyloside at concentrations which entirely prevented oxidative phosphorylation. This indicated that most of the ATPase in these mitochondrial preparations was located outside the atractyloside-sensitive barrier and did not participate in the energy-transfer process.

2. ATPase activity of mitochondria isolated from nuclear gene mutants deficient in a single cytochrome, a, b, or c, respectively, was strongly inhibited by oligomycin. The mitochondria from these mutants, like those from the wild-type strain, were able to incorporate amino acids into protein.

3. Mitochondrial ATPase activity of single nuclear gene mutants deficient in both cytochromes a and b was only slightly inhibited by oligomycin. These mitochondria were incapable of incorporating amino acids into protein. The mitochondria from these nuclear mutants thus resembled mitochondria of cytoplasmic respiration-deficient mutants.

4. The results suggest that mitochondrial cytochromes may be coded by nuclear genes and that product(s) of mitochondrial protein synthesis may be required for integrating the cytochromes a and b and the components of the oligomycin-sensitive ATPase complex into the mitochondrial membranes.  相似文献   


19.
Mucidin similar to antimycin inhibits the electron flow to cytochrome c and the enzyme activities dependent on cytochrome c reduction in the cells of Paracoccus denitrificans, but it does not inhibit the electron flow to nitrate reductase and cytochrome o. Unlike antimycin mucidin does not permit a residual electron flow through the cytochrome bc1 region. In the presence of antimycin the electron flow to nitrate is lower than in using mucidin in contrast with a higher extent of cytochrome b reduction. This result is in contradiction to the participation of the constitutive cytochrome b as an electron donor in the nitrate reduction.  相似文献   

20.
S.C. Huber  G.E. Edwards   《BBA》1976,449(3):420-433
1. Cyclic photophosphorylation driven by white light, as followed by 14CO2 fixation by mesophyll chloroplast preparations of the C4 plant Digitaria sanguinalis, was specifically inhibited by disalicylidenepropanediamine (DSPD), antimycin A, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIb), 1-ethyl-3(3-dimethylaminopropyl)-carbodiimide (EDAC), and KCN suggesting that ferredoxin, cytochrome b563, plastoquinone, cytochrome f, and plastocyanin are obligatory intermediates of cyclic electron flow. It was found that 0.2 μM DCMU and 40 μM o-phenanthroline blocked noncyclic electron flow, stimulated cyclic photophosphorylation, and caused a partial reversal (40–100%) of the inhibition by DBMIB and antimycin A, but not DSPD.

2. Cyclic photophosphorylation could also be activated using only far-red illumination. Under this condition, however, cyclic photophosphorylation was much less sensitive to the inhibitors DBMIB, EDAC and antimycin A, but remained completely sensitive to DSPD and KCN. Inhibition in far-red light was not increased by preincubating the chloroplasts with the various inhibitors for several minutes in white light.

3. The striking correspondence between the effects of photosystem II inhibitors, DCMU and o-phenanthroline, on cyclic photophosphorylation under white light and cyclic photophosphorylation under far-red light (in the absence of photosystem II inhibitors) suggests that electrons flowing from photosystem II may regulate the pathway of cyclic electron flow.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号