首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mutations resulting in constitutive production of maltase have been identified at each of the five MAL loci of Saccharomyces yeasts. Here we examine a dominant constitutive, glucose-repression-insensitive allele of the MAL4 locus (MAL4-C). Our results demonstrate that MAL4-C is an alteration in the MAL43 gene, which encodes the positive regulator of the MAL structural genes, and that its product is trans-acting. The MAL43 gene from the MAL4-C strain was cloned and integrated into a series of nonfermenting strains lacking a functional regulatory gene but carrying copies of the maltose permease and maltase structural genes. Expression of the maltase structural gene was both constitutive and insensitive to glucose repression in these transformants. The MAL4-C allele also results in constitutive expression of the unlinked MAL12 gene (encoding maltase) in this strain. In addition, the cloned MAL43 gene was shown to be dominant to the wild-type MAL63 gene. We also show that most of the glucose repression insensitivity of strains carrying the MAL4-C allele results from alteration of MAL43.  相似文献   

3.
4.
Maltose fermentation in Saccharomyces species requires the presence of at least one of five unlinked MAL loci: MAL1, MAL2, MAL3, MAL4, and MAL6. Each of these loci consists of a complex of genes involved in maltose metabolism; the complex includes maltase, a maltose permease, and an activator of these genes. At the MAL6 locus, the activator is encoded by the MAL63 gene. While the MAL6 locus has been the subject of numerous studies, the binding sites of the MAL63 activator have not been determined. In this study, we used Escherichia coli extracts containing the MAL63 protein to define the binding sites of the MAL63 protein in the divergently transcribed MAL61-62 promotor. When a DNA fragment containing these sites was placed upstream of a CYC1-lacZ gene, maltose induced beta-galactosidase. These sites therefore constitute an upstream activating sequence for the MAL genes.  相似文献   

5.
6.
In order for a yeast strain to ferment maltose it must contain any one of the five dominant MAL loci. Each dominant MAL locus thus far analyzed contains three genes: GENE 1, encoding maltose permease, GENE 2 encoding maltase and GENE 3 encoding a positive trans-acting regulatory protein. In addition to these dominant MAL loci, several naturally occurring, partially functional alleles of MAL1 and MAL3 have been identified. Here, we present genetic and molecular analysis of the three partially functional alleles of MAL1: the MAL1p allele which can express only the MAL activator; the MAL1 g allele which can express both a maltose permease and maltase; and the mal1(0) allele which can express only maltase. Based on our results, we propose that the MAL1p, MAL1g and mal1(0) alleles evolved from the dominant MAL1 locus by a series of rearrangements and/or deletions of this yeast telomere-associated locus as well as by other mutagenic processes of gene inactivation. One surprising finding is that the MAL1g-encoded maltose permease exhibits little sequence homology to the MAL1-encoded maltose permease though they appear to be functionally homologous.  相似文献   

7.
Saccharomyces yeasts ferment several alpha-glucosides including maltose, maltotriose, turanose, alpha-methylglucoside, and melezitose. In the utilization of these sugars transport is the rate-limiting step. Several groups of investigators have described the characteristics of the maltose permease (D. E. Kroon and V. V. Koningsberger, Biochim. Biophys. Acta 204:590-609, 1970; R. Serrano, Eur. J. Biochem. 80:97-102, 1977). However, Saccharomyces contains multiple alpha-glucoside transport systems, and these studies have never been performed on a genetically defined strain shown to have only a single permease gene. In this study we isolated maltose-negative mutants in a MAL6 strain and, using a high-resolution mapping technique, we showed that one class of these mutants, the group A mutants, mapped to the MAL61 gene (a member of the MAL6 gene complex). An insertion into the N-terminal-coding region of MAL61 resulted in the constitutive production of MAL61 mRNA and rendered the maltose permease similarly constitutive. Transformation by high-copy-number plasmids containing the MAL61 gene also led to an increase in the maltose permease. A deletion-disruption of MAL61 completely abolished maltose transport activity. Taken together, these results prove that this strain has only a single maltose permease and that this permease is the product of the MAL61 gene. This permease is able to transport maltose and turanose but cannot transport maltotriose, alpha-methylglucoside, or melezitose. The construction of strains with only a single permease will allow us to identify other maltose-inducible transport systems by simple genetic tests and should lead to the identification and characterization of the multiple genes and gene products involved in alpha-glucoside transport in Saccharomyces yeasts.  相似文献   

8.
The MAL1 locus of Saccharomyces cerevisiae comprises three genes necessary for maltose utilization. They include regulatory, maltose transport and maltase genes designated MAL1R, MAL1T and MAL1S respectively. Using a MAL1 strain transformed with an episomal, multicopy plasmid carrying the MAL2 locus, five recessive and one dominant mutant unable to grow on maltose, but still retaining a functional MAL1 locus were isolated. All the mutants could use glycerol, ethanol, raffinose and sucrose as a sole carbon source; expression of the maltase and maltose permease genes was severely and coordinately reduced. Only the dominant mutant failed to accumulate the MAL1R mRNA.  相似文献   

9.
Summary Fermentation of maltose by Saccharomyces strains depends on the presence of any one of five unlinked MAL loci (MAL1, MAL2, MAL3, MAL4 or MAL6). Earlier mutational analyses of MAL2 and MAL6 containing strains have identified a single complementation group at each of these two loci. However complementation analysis between naturally occurring Mal Saccharomyces strains isolated from the wild demonstrated the presence of two complementation groups (designated MALp and MALg) at the MAL1, MAL3 and MAL6 loci. The available evidence suggests that the MALp gene is functionally equivalent to the complementation group identified by mutational analysis at the MAL6 locus and that this gene encodes a protein involved in the regulation of the coordinate induction of both maltase and maltose permease synthesis.In this paper we report the isolation, in a well characterized MAL1 strain, of 47 mutants unable to ferment maltose. All the mutants, with one exception, map at the MAL1 locus. These mal1 mutants, except for one, are recessive to MAL1 and fall into two major complementation groups. Evidence is presented that these two classes of mutants identify both a gene involved in the regulation of maltose fermentation (MAL1R) and a gene involved in maltose transport (MAL1T). We also report here the isolation of a temperature sensitive maltose nonfermenting mutant mapping at the MAL1 locus identifying a third gene (MAL1S) at this locus. The maltase synthesized by this mutant, when assayed in cell-free extracts, is significantly more thermolabile than the wild type enzyme. Our findings demonstrate that MAL1 is a complex locus comprising at least three genes: MAL1R, a gene involved in the coordinate regulation of the synthesis of maltase and maltose transport; MAL1T, a gene encoding a component of the maltose transport system; and MAL1S, a likely candidate for the structural gene for maltase.  相似文献   

10.
Maltose fermentation in Saccharomyces spp. requires the presence of any one of five unlinked genes: MAL1, MAL2, MAL3, MAL4, or MAL6. Although the genes are functionally equivalent, their natures and relationships to each other are not known. At least three proteins are necessary for maltose fermentation: maltase, maltose permease, and a regulatory protein. The MAL genes may code for one or more of these proteins. Recently a DNA fragment containing a maltase structural gene has been cloned from a MAL6 strain, CB11, to produce plasmid pMAL9-26. We have conducted genetic and physical analyses of strain CB11. The genetic analysis has demonstrated the presence of two cryptic MAL genes in CB11, MAL1g and MAL3g (linked to MAL1 and to MAL3, respectively), in addition to the MAL6 locus. The physical analysis, which used a subclone of plasmid pMAL9-26 as a probe, detected three HindIII genomic fragments with homology to the probe. Each fragment was shown to be linked to one of the MAL loci genetically demonstrated to be present in CB11. Our results indicate that the cloned maltase structural gene in plasmid pMAL9-26 is linked to MAL6. Since the MAL6 locus has previously been shown to contain a regulatory gene, the MAL6 locus must be a complex locus containing at least two of the factors needed for maltose fermentation: the structural gene for maltase and the maltase regulatory protein. The absence of other fragments which hybridize to the MAL6-derived probe shows that either MAL2 and MAL4 are not related to MAL6, or the DNA corresponding to these genes is absent from the MAL6 strain CB11.  相似文献   

11.
The maltase structural gene MAL6 of the yeast Saccharomyces carlsbergensis has been cloned by transformation of a maltose nonfermenting recipient strain with autonomously replicating chimeric recombinant plasmids. One recombinant plasmid, pMAL26, was shown by positive hybridization translation, as well as by Southern and Northern blot experiments, to carry the MAL6 structural gene.  相似文献   

12.
13.
Maltose transport and maltase activities were inactivated during sporulation of a MAL constitutive yeast strain harboring different MAL loci. Both activities were reduced to almost zero after 5 h of incubation in sporulation medium. The inactivation of maltase and maltose permease seems to be related to optimal sporulation conditions such as a suitable supply of oxygen and cell concentration in the sporulating cultures, and occurs in the fully derepressed conditions of incubation in the sporulation acetate medium. The inactivation of maltase and maltose permease under sporulation conditions in MAL constitutive strains suggests an alternative mechanism for the regulation of the MAL gene expression during the sporulation process.  相似文献   

14.
15.
J. Wang  R. Needleman 《Genetics》1996,142(1):51-63
Maltose fermenting strains of Saccharomyces cerevisiae have one or more complex loci called MAL. Each locus comprises at least three genes: MALx1 encodes maltose permease, MALx2 encodes maltase, and MALx3 encodes an activator of MALx1 and MALx2 (x denotes one of five MAL loci, with x = 1, 2, 3, 4, or 6). The MAL43(c) allele is constitutive and relatively insensitive to glucose repression. To understand better this unique phenotype of MAL43(c), we have isolated several MAL63(c) constitutive mutants from a MAL6 strain. All constitutive mutants remain glucose repressible, and all have multiple amino acid substitutions in the C-terminal region, now making this region of Mal63(c)p similar to that of Mal43(c)p. These changes have been generated by gene conversion, which transfers DNA from the telomeres of chromosome II and chromosome III or XVI to chromosome VIII (MAL6). The removal of a Mig1p binding site from the MAL63(c) promoter leads to a loss of glucose repression, imitating the phenotype of MAL43(c). Conversely, addition of a Mig1p binding site to the promoter of MAL43(c) converts it to glucose sensitivity. Mig1p modulation of Mal63p and Mal43p expression therefore plays a substantial role in glucose repression of the MAL genes.  相似文献   

16.
17.
Summary We have physically and functionally identified three genes at the MAL6 locus of Saccharomyces carlsbergensis. Using multicopy yeast plasmid vectors, we have subcloned various segments of the entire MAL6 locus. The functional characterization of the MAL6 subcloned regions was determined by (1) analyzing biochemically the levels of MAL-encoded proteins (maltase [-D-glucosidase, E.C. 3.2.1.20] and maltose transport protein) in cells transformed with various MAL6 subclones, and (2) testing the ability of the subclones to complement the maltose fermentation defects of well characterized Mal mutants in the highly homologous MAL1 locus. The physical homology between MAL6 and MAL1 is in part demonstrated by the gene disruption of MAL1 using subcloned MAL6 DNA sequences. The results demonstrate that the MAL6 locus is a complex of at least three genes: MAL6R, MAL6T and MAL6S. These genes specify, respectively, a regulatory function, a maltose transport activity (presumably the maltose permease) and the structural gene for maltase. The functional organization of the MAL6 locus is thus identical to that which we had previously determined by mutational analysis for the MAL1 locus.  相似文献   

18.
Summary A new series of maltase negative mutants have been isolated from yeast strains carrying the MAL4 gene. These mutants are allelic to the MAL4 gene and fail to ferment maltose, sucrose, and alphamethylglucoside. Most revertants isolated from these mutants restore the ability to ferment above sugars, and also produce the same levels of maltase as the parental strains. One of the revertants (NA-520-R1), however, ferments maltose slowly, and produces 24 fold less enzyme than the parental strain. Genetic studies revealed that revertant (NA-520-R1), is not a truc back mutation but is carrying an extra-genic suppressor, which suppresses the mal4 allele in mutant (NA-520). Since several lines of published evidence indicate that the MAL4 gene is a regulatory gene, it is suggested that the MAL4 gene codes for a regulatory protein, which acts as positive regulatory element in maltase synthesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号