首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The apicomplexan parasites Theileria annulata and Theileria parva cause severe lymphoproliferative disorders in cattle. Disease pathogenesis is linked to the ability of the parasite to transform the infected host cell (leukocyte) and induce uncontrolled proliferation. It is known that transformation involves parasite dependent perturbation of leukocyte signal transduction pathways that regulate apoptosis, division and gene expression, and there is evidence for the translocation of Theileria DNA binding proteins to the host cell nucleus. However, the parasite factors responsible for the inhibition of host cell apoptosis, or induction of host cell proliferation are unknown. The recent derivation of the complete genome sequence for both T. annulata and T. parva has provided a wealth of information that can be searched to identify molecules with the potential to subvert host cell regulatory pathways. This review summarizes current knowledge of the mechanisms used by Theileria parasites to transform the host cell, and highlights recent work that has mined the Theileria genomes to identify candidate manipulators of host cell phenotype.  相似文献   

2.
The apicomplexan parasite, Theileria annulata, dedifferentiates and induces continuous division of infected bovine myeloid cells. Re-expression of differentiation markers and a loss of proliferation occur upon treatment with buparvaquone, implying that parasite factors actively maintain the altered status of the infected cell. The factors that induce this unique transformation event have not been identified. However, parasite polypeptides (TashAT family) that are located in the infected leucocyte nucleus have been postulated to function as modulators of host cell phenotype. In this study differential RNA display and proteomic analysis were used to identify altered mRNA and polypeptide expression profiles in a bovine macrophage cell line (BoMac) transfected with TashAT2. One of the genes identified by differential display was found to encode an ubiquitin-like protease (bUBP43) belonging to the UBP43 family. The bUBP43 gene and the gene encoding its ubiquitin-like substrate, bISG15, were expressed at a low level in T. annulata-infected cells. However, infected cells were refractory to induction of elevated bISG15 expression by lipopolysaccharide or type 1 interferons while TashAT2-transfected cells showed no induction when treated with camptothecin. Modulation of the ISGylation system may be of relevance to the establishment of the transformed infected host cell, as ISGylation is associated with resistance to intracellular infection by pathogens, stimulation of the immune response and terminal differentiation of leukaemic cells.  相似文献   

3.
4.
The propagation of apicomplexan parasites through transmitting vectors is dependent on effective dissemination of parasites inside the mammalian host. Intracellular Toxoplasma and Theileria parasites face the challenge that their spread inside the host depends in part on the motile capacities of their host cells. In response, these parasites influence the efficiency of dissemination by altering adhesive and/or motile properties of their host cells. Theileria parasites do so by targeting signalling pathways that control host cell actin dynamics. The resulting enforced polar host cell morphology facilitates motility and invasiveness, by establishing focal adhesion and invasion structures at the leading edge of the infected cell. This parasite strategy highlights mechanisms of motility regulation that are also likely relevant for immune or cancer cell motility.  相似文献   

5.
Adult Hyalomma ticks were examined for the presence of Theileria annulata infection using the Polymerase Chain Reaction (PCR). A 372 bp DNA fragment derived from the small ribosomal RNA gene of T. annulata was amplified from 45 out of 50 (90%) H. dromedarii ticks and from 36 out of 50 (72%) H. marginatum marginatum ticks. No product was amplified from non-infected control ticks. Restriction enzyme digestion with Sac II confirmed that the product was derived from the targeted T. annulata gene. As a further confirmation it was shown that both species of Hyalomma ticks were able to transmit T. annulata to experimental calves. PCR detection of Theileria parasites in ticks was compared with conventional staining of dissected salivary glands using methyl green pyronin and its comparative advantages are discussed.  相似文献   

6.
Theileria annulata is an intracellular protozoan parasite that infects B cells and macrophages of ruminants. Macrophages infected with T. annulata are de-differentiated and display tumour cell properties and a metastatic behaviour. How parasitized cells adapt their morphology, motility and invasive behaviour has not yet been addressed in detail. In this study, I investigated the regulation of host cell actin dynamics in T. annulata-transformed macrophages and how this affects host cell morphology and motility. T. annulata was found to promote the formation of filamentous-actin-rich podosome-type adhesions (PTAs) and lamellipodia, and to establish a polarized morphology of the infected cell. Characteristic for parasite-dependent host cell polarization is that infected cells display a single, persistent lamellipodium. Src kinases--in particular Hck--are required for the polar extension of this lamellipodium. Hck does so by promoting the clustered assembly of PTAs and accumulation of proteins of the Ezrin, Radixin, Moesin (ERM) family in lamellipodia. Polar accumulation of PTAs and ERM proteins correlates with focal matrix degradation underneath lamellipodia. These findings suggest that T. annulata equips its host cell with properties to adhere and invade. These properties are likely to promote the motile behaviour required for dissemination of infected cells in vivo.  相似文献   

7.
Pathogen–host interactions are modulated at multiple levels by both the pathogen and the host cell. Modulation of host cell functions is particularly intriguing in the case of the intracellular Theileria parasite, which resides as a multinucleated schizont free in the cytosol of the host cell. Direct contact between the schizont plasma membrane and the cytoplasm enables the parasite to affect the function of host cell proteins through direct interaction or through the secretion of regulators. Structure and dynamics of the schizont plasma membrane are poorly understood and whether schizont membrane dynamics contribute to parasite propagation is not known. Here we show that the intracellular Theileria schizont can dynamically change its shape by actively extending filamentous membrane protrusions. We found that isolated schizonts bound monomeric tubulin and in vitro polymerized microtubules, and monomeric tubulin polymerized into dense assemblies at the parasite surface. However, we established that isolated Theileria schizonts free of host cell microtubules maintained a lobular morphology and extended filamentous protrusions, demonstrating that host microtubules are dispensable both forthe maintenance of lobular schizont morphology and for the generation of membrane protrusions. These protrusions resemble nanotubes and extend in an actin polymerization‐dependent manner; using cryo‐electron tomography, we detected thin actin filaments beneath these protrusions, indicating that their extension is driven by schizont actin polymerization. Thus the membrane of the schizont and its underlying actin cytoskeleton possess intrinsic activity for shape control and likely function as a peri‐organelle to interact with and manipulate host cell components.  相似文献   

8.
9.
The economic importance of bovine theilerioses has prompted several new approaches to understanding the diseases in the hope of developing more efficient methods of control. Most Theileria species that infect cattle cause a lymphoproli ferative disease. Sporozoites, injected into the host bloodstream by the tick vectors, rapidly invade host lymphocytes and stimulate rapid division of infected cells. As these rupture, merozoites are released which invade red blood cells ready to infect feeding ticks again. The process by which Theileria parasites can control host lymphocytes, and induce them to divide in synchrony with the parasites themselves, is poorly understood but seems to be the key to pathogenesis. In this article, Michael Dyer and Andrew Tait discuss the possible mechanisms of cellular control in the light of recent work revealing sequences homologous to oncogenes in the DNA of T. annulata.  相似文献   

10.
11.
12.
The apicomplexan parasite Theileria annulata is the only intracellular eukaryote that is known to induce the proliferation of mammalian cells. However, as the parasite undergoes stage differentiation, host cell proliferation is inhibited, and the leukocyte is eventually destroyed. We have isolated a parasite gene (SuAT1) encoding an AT hook DNA binding polypeptide that has a predicted signal peptide, PEST motifs, nuclear localization signals, and domains which indicate interaction with regulatory components of the higher eukaryotic cell cycle. The polypeptide is localized to the nuclei of macroschizont-infected cells and was detected at significant levels in cells that were undergoing parasite stage differentiation. Transfection of an uninfected transformed bovine macrophage cell line, BoMac, demonstrated that SuAT1 can modulate cellular morphology and alter the expression pattern of a cytoskeletal polypeptide in a manner similar to that found during the infection of leukocytes by the parasite. Our findings indicate that Theileria parasite molecules that are transported to the leukocyte nucleus have the potential to modulate the phenotype of infected cells.  相似文献   

13.
Detection of Theileria annulata carrier cattle by PCR   总被引:2,自引:0,他引:2  
A simple method for treating bovine blood samples for direct detection of T. annulata in carriers, after polymerase chain reaction (PCR) amplification of small subunit ribosomal RNA (SSU rRNA) gene is described. The threshold of detection of the PCR-assay was an erythrocytic parasitaemia of 0.00008% corresponding to 16 infected bovine erythrocytes. In 50 known carriers, 42 were positive in PCR, in which 8 cattle revealed presence of T. annulata in stained blood smear under microscope.  相似文献   

14.
Flow cytometry and monoclonal antibodies to bovine leucocyte surface antigens were used to identify the types of host cells that the sporozoites of Theileria annulata infect in cattle, to determine whether virulent schizont-infected cell lines (lines) differed phenotypically from avirulent lines, and to establish whether attenuation in vitro was accompanied by the preferential growth of particular host cell types. The surface antigens of four pairs of T. annulata (Ta) (Hisar) lines derived ex vivo and in vitro, including the virulent ex vivo-derived Ta Hisar S45 line, were consistent with a myeloid origin for all lines, irrespective of their derivation. The profiles of lines derived from cattle inoculated with a virulent line showed that the schizonts liberated from inoculated cells had transferred to myeloid cells. A number of other lines infected with different stocks of T. annulata expressed myeloid markers; a single line expressed CD21, a B cell marker. During prolonged in vitro culture, the parasites in the ex vivo (virulent)- and in vitro (avirulent)-derived Ta Hisar S45 myeloid lines became clonal, as defined by glucose phosphate isomerase (GPI) polymorphism, and the virulent line became attenuated. The two lines retained phenotypic profiles indicative of a myeloid origin but coexpressed some lymphoid antigens (CD2, CD4, CD8), although not CD3. Cloned schizont-infected lines, representing the three parasite GPI isotypes which constituted the virulent line, expressed similar patterns of myeloid and lymphoid markers to the virulent parent line. Some schizont-infected clones failed to establish as lines during the early weeks of culture because the cells died as the parasites differentiated into merozoites at 37 degrees C, the temperature at which schizont-infected cells normally grow exponentially. These results provided no evidence that prolonged culture induces preferential growth or loss of particular host cell types. However, a number of the alterations in host cell surface antigens induced by prolonged culture were shown to be linked to permanent changes in the parasite genome.  相似文献   

15.
Toxosplasma gondii is the model parasite of the phylum Apicomplexa, which contains numerous obligate intracellular parasites of medical and veterinary importance, including Eimeria, Sarcocystis, Cryptosporidium, Cyclospora, and Plasmodium species. Members of this phylum actively enter host cells by a multistep process with the help of microneme protein (MIC) complexes that play important roles in motility, host cell attachment, moving junction formation, and invasion. T. gondii (Tg)MIC1-4-6 complex is the most extensively investigated microneme complex, which contributes to host cell recognition and attachment via the action of TgMIC1, a sialic acid-binding adhesin. Here, we report the structure of TgMIC4 and reveal its carbohydrate-binding specificity to a variety of galactose-containing carbohydrate ligands. The lectin is composed of six apple domains in which the fifth domain displays a potent galactose-binding activity, and which is cleaved from the complex during parasite invasion. We propose that galactose recognition by TgMIC4 may compromise host protection from galectin-mediated activation of the host immune system.  相似文献   

16.
Apicomplexan parasites of the genera Theileria and Plasmodium have complicated life cycles including infection of a vertebrate intermediate host and an arthropod definitive host. As the Plasmodium parasite progresses through its life cycle, it enters a number of different cell types, both in its mammalian and mosquito hosts. The fate of these cells varies greatly, as do the parasite and host molecules involved in parasite-host interactions. In mammals, Plasmodium parasites infect hepatocytes and erythrocytes whereas Theileria infects ruminant leukocytes and erythrocytes. Survival of Plasmodium-infected hepatocytes and Theileria-infected leukocytes depends on parasite-mediated inhibition of host cell apoptosis but only Theileria-infected cells exhibit a fully transformed phenotype. As the development of both parasites progresses towards the merozoite stage, the parasites no longer promote the survival of the host cell and the infected cell is finally destroyed to release merozoites. In this review we describe similarities and differences of parasite-host cell interactions in Plasmodium-infected hepatocytes and Theileria-infected leukocytes and compare the observed phenotypes to other parasite stages interacting with host cells.  相似文献   

17.
18.
Tropical theileriosis or Mediterranean Coast Fever - caused by Theileria annulata - is a disease of cattle widely distributed across southern Europe, north Africa and central Asia. Its distribution broadly corresponds with that of its main ixodid tick vectors Hyalomma excavatum and H. detritum (Fig. 1). 'Exotic' cattle (Bos taurus) are particularly susceptible with mortalities up to 40-80% in some areas, whereas indigenous cattle (B. indicus) generally suffer much lower mortalities (about 10%) confined mainly to calves. But because imported non-immune cattle are so susceptible, T. annulata represents a major constraint to livestock improvement programmes in many parts of the middle east and Asia. Cattle that recover from T. annulata infection generally show a solid, long-lasting immunity. For many years there have been programmes to protect cattle by inoculation with blood from sick animals, and more recently using live attenuated T. annulata vaccines prepared from cultured schizont-infected lymphoid cells. This article reviews a 14 year immunization programme against T. annulata in Iran.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号