首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 505 毫秒
1.
BACKGROUND: Insights in the herpesvirus-cell interactions are of general cell biology interest, especially to studies of intracellular transport, and of considerable significance in the efforts to generate drugs, vaccines, and gene therapy. However, the pathway of virus particle egress and maturation is a contentious issue. MATERIALS AND METHODS: The intracellular transport was inhibited in cultured herpes simplex virus type 1 (HSV-1) infected human fibroblasts by brefeldin A (BFA). The virus-cell interactions including the viral envelopment, transport of HSV-1 virions, and transport of viral glycoprotein D (gD-1) and glycoprotein C (gC-1) were studied by titration assay, immunoblot, immunofluorescence light microscopy, and immunogold electron microscopy of cryosections. RESULTS: gD-1 and gC-1 were synthesized and normally transported to the plasma membranes of untreated HSV-1 infected host cells. BFA (1 microg/ml medium) effectively blocked the transport of the glycoproteins to the plasma membranes and affected the tubulin and vimentin of the cytoskeleton. Viral particles and glycoproteins accumulated in the perinuclear space and the endoplasmic reticulum of BFA treated cells. Withdrawal of BFA influence up to 9 hr resulted in restored tubulin and vimentin, transport of glycoproteins to the plasma membranes, and steady release of infectious viral particles to the extracellular space superior to the cellular assembly of new virions. The ultrastructural data presented support that the primary envelopment of viral particles occur at the nuclear membranes containing immature glycoproteins followed by multiple de-envelopments and re-envelopments of the virions during the transport and maturation in the endoplasmic reticulum and the Golgi complex. CONCLUSIONS: BFA-induced changes include the cytoskeleton with significant effect on HSV-1 maturation and egress. The data support a multiple-step envelopment of HSV-1 in a common pathway of glycoprotein synthesis and virion egress.  相似文献   

2.
Herpes simplex virus 1 (HSV-1) viral glycoproteins gD (carboxyl terminus), gE, gK, and gM, the membrane protein UL20, and membrane-associated protein UL11 play important roles in cytoplasmic virion envelopment and egress from infected cells. We showed previously that a recombinant virus carrying a deletion of the carboxyl-terminal 29 amino acids of gD (gDΔct) and the entire gE gene (ΔgE) did not exhibit substantial defects in cytoplasmic virion envelopment and egress (H. C. Lee et al., J. Virol. 83:6115-6124, 2009). The recombinant virus ΔgM2, engineered not to express gM, produced a 3- to 4-fold decrease in viral titers and a 50% reduction in average plaque sizes in comparison to the HSV-1(F) parental virus. The recombinant virus containing all three mutations, gDΔct-ΔgM2-ΔgE, replicated approximately 1 log unit less efficiently than the HSV-1(F) parental virus and produced viral plaques which were on average one-third the size of those of HSV-1(F). The recombinant virus ΔUL11-ΔgM2, engineered not to express either UL11 or gM, replicated more than 1 log unit less efficiently and produced significantly smaller plaques than UL11-null or gM-null viruses alone, in agreement with the results of Leege et al. (T. Leege et al., J. Virol. 83:896-907, 2009). Analyses of particle-to-PFU ratios, relative plaque size, and kinetics of virus growth and ultrastructural visualization of glycoprotein-deficient mutant and wild-type virions indicate that gDΔct, gE, and gM function in a cooperative but not redundant manner in infectious virion morphogenesis. Overall, comparisons of single, double, and triple mutant viruses generated in the same HSV-1(F) genetic background indicated that lack of either UL20 or gK expression caused the most severe defects in cytoplasmic envelopment, egress, and infectious virus production, followed by the double deletion of UL11 and gM.  相似文献   

3.
F Jones  C Grose 《Journal of virology》1988,62(8):2701-2711
Varicella-zoster virus (VZV) encodes several glycoproteins which are present on both mature viral envelopes and the surfaces of infected cell membranes. Mechanisms of VZV glycoprotein transport and virion envelopment were investigated by both continuous radiolabeling and pulse-chase analyses with tritiated fucose in VZV-infected cells. We studied in detail the large cytoplasmic vacuoles which were present in infected cells but absent from uninfected cells. The specific activity in each subcellular compartment was defined by quantitative electron microscope autoradiography, using a cross-fire probability matrix analysis to more accurately assess the individual compartment demarcated by the silver grains. By these techniques, we documented a progression of activity originating in the Golgi apparatus and traveling through the post-Golgi region into virus-induced cytoplasmic vacuoles and finally to areas of the cellular membrane associated with the egress of viral particles. Significant amounts of radiolabel were not observed in the nucleus, and only low levels of radiolabel were associated with the cellular membrane not involved with the egress of viral particles. In addition, immunolabeling of Lowicryl-embedded VZV-infected cells demonstrated the presence of VZV glycoproteins within cytoplasmic vacuole membranes as well as on virion envelopes. These observations suggested that cytoplasmic vacuoles harbored VZV-specified glycoproteins and were also the predominant site of VZV virion envelopment within the infected cell. Neither enveloped nor unenveloped viral particles were observed within the Golgi apparatus itself.  相似文献   

4.
The mouse L-cell mutant gro29 was selected for its ability to survive infection by herpes simplex virus type 1 (HSV-1) and is defective in the propagation of HSV-1 and vesicular stomatitis virus (F. Tufaro, M. D. Snider, and S. L. McKnight, J. Cell Biol. 105:647-657, 1987). In this report, we show that gro29 cells harbor a lesion that inhibits the egress of HSV-1 virions during infection. We also found that HSV-1 glycoprotein D was slow to traverse the secretory pathway en route to the plasma membrane of infected gro29 cells. The movement of glycoproteins was not blocked entirely, however, and immunofluorescence experiments revealed that infected gro29 cells contained roughly 10% of the expected amount of glycoprotein D on their cell surface at 12 h postinfection. Furthermore, nucleocapsids and virions assembled inside the cells during infection, suggesting that the lesion in gro29 cells impinged on a late step in virion maturation. Electron micrographs of infected cells revealed that many of the intracellular virions were contained in irregular cytoplasmic vacuoles, similar to those that accumulate in HSV-1-infected cells treated with the ionophore monensin. We conclude from these results that gro29 harbors a defect that blocks the egress of HSV-1 virions from the infected cell without seriously impeding the flux of individual glycoproteins to the cell surface. We infer that HSV-1 maturation and egress require a host cell component that is either reduced or absent in gro29 cells and that this lesion, although not lethal to the host cell, cannot be tolerated by HSV-1 during its life cycle.  相似文献   

5.
Varicella-zoster virus (VZV) encodes at least six glycoproteins. Glycoprotein I (gI), the product of open reading frame 67, is a 58- to 62-kDa glycoprotein found in VZV-infected cells. We constructed two VZV gI deletion mutants. Immunoprecipitation of VZV gE from infected cells indicated that cells infected with VZV deleted for gI expressed a gE that was larger (100 kDa) than that expressed in cells infected with the parental virus (98 kDa). Cell-associated or cell-free VZV deleted for gI grew to lower titers in melanoma cells than did parental VZV. While VZV deleted for gI replicated in other human cells, the mutant virus replicated to very low titers in primary guinea pig and monkey cells and did not replicate in Vero cells. When compared with the parental virus, rescued viruses, in which the gI deletion was restored with a wild-type allele, showed a similarly sized gE and comparable growth patterns in melanoma and Vero cells. VZV deleted for gI entered Vero cells; however, viral DNA synthesis was impaired in these cells. The VZV gI mutant was slightly impaired for adsorption to human cells. Thus, VZV gI is required for replication of the virus in Vero cells, for efficient replication of the virus in nonhuman cells, and for normal processing of gE.  相似文献   

6.
The mouse L-cell mutant gro29 is defective for egress of herpes simplex virus type 1 (HSV-1) virions and is significantly reduced in HSV-1 glycoprotein export (B. W. Banfield and F. Tufaro, J. Virol. 64:5716-5729, 1990). In this report, we demonstrate that pseudorabies virus (PRV), a distantly related alphaherpesvirus, shows a distinctive set of defects after infection of gro29 cells. Specifically, we identify defects in the rate and extent of viral glycoprotein export, infectious particle formation, plaque formation, and virus egress. The initial rate of viral glycoprotein synthesis was unaffected in gro29 cells, but the extent of export from the endoplasmic reticulum to the Golgi apparatus was impaired and export through the Golgi apparatus became essentially blocked late in infection. Moreover, by using a secreted variant of a viral membrane protein, we found that export from the Golgi apparatus out of the cell was also defective in gro29 cells. PRV does not form plaques on gro29 monolayers. A low level of infectious virus is formed and released early after infection, but further virus egress is blocked. Taken together, these observations suggest that the gro29 phenotype involves either multiple proteins or a single protein used at multiple steps in viral glycoprotein export and virus egress from cells. Moreover, this host cell protein is required by both HSV and PRV for efficient propagation in infected cells.  相似文献   

7.
Envelope glycoprotein M (gM) and the complex formed by glycoproteins E (gE) and I (gI) are involved in the secondary envelopment of pseudorabies virus (PrV) particles in the cytoplasm of infected cells. In the absence of the gE-gI complex and gM, envelopment is blocked and capsids surrounded by tegument proteins accumulate in the cytoplasm (A. R. Brack, J. Dijkstra, H. Granzow, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 73:5364-5372, 1999). Here we demonstrate by yeast two-hybrid analyses that the cytoplasmic domains of gE and gM specifically interact with the C-terminal part of the UL49 gene product of PrV, which represents a major tegument protein and which is homologous to VP22 of herpes simplex virus type 1. However, deletion of the UL49 gene from PrV had only minor effects on viral replication, and ultrastructural analyses of infected cells confirmed that virus maturation and egress, including secondary envelopment in the cytoplasm, were not detectably affected by the absence of UL49. Moreover, the UL49 gene product was shown to be dispensable for virion localization of gE and gM, and mutants lacking either gE or gM incorporated the UL49 protein efficiently into virus particles. In contrast, a PrV mutant with deletions of gE-gI and gM failed to incorporate the UL49 protein despite apparently unaltered intracytoplasmic UL49 expression. In summary, we describe specific interactions between herpesvirus envelope and tegument proteins which may play a role in secondary envelopment during herpesvirus virion maturation.  相似文献   

8.
The UL20 gene product of pseudorabies virus functions in virus egress.   总被引:11,自引:10,他引:1       下载免费PDF全文
The UL20 open reading frame is positionally conserved in different alphaherpesvirus genomes and is predicted to encode an integral membrane protein. A previously described UL20- mutant of herpes simplex virus type 1 (HSV-1) exhibited a defect in egress correlating with retention of virions in the perinuclear space (J. D. Baines, P. L. Ward, G. Campadelli-Fiume, and B. Roizman, J. Virol. 65:6414-6424, 1991). To analyze UL20 function in a related but different herpesvirus, we constructed a UL20- pseudorabies virus (PrV) mutant by insertional mutagenesis. Similar to HSV-1, UL20- PrV was found to be severely impaired in both cell-to-cell spread and release from cultured cells. The severity of this defect appeared to be cell type dependent, being more prominent in Vero than in human 143TK- cells. Surprisingly, electron microscopy revealed the retention of enveloped virus particles in cytoplasmic vesicles of Vero cells infected with UL20- PrV. This contrasts with the situation in the UL20- HSV-1 mutant, which accumulated virions in the perinuclear cisterna of Vero cells. Therefore, the UL20 gene products of PrV and HSV-1 appear to be involved in distinct steps of viral egress, acting in different intracellular compartments. This might be caused either by different functions of the UL20 proteins themselves or by generally different egress pathways of PrV and HSV-1 mediated by other viral gene products.  相似文献   

9.
HEp-2 cells or Vero cells infected with herpes simplex virus type 1 were exposed to the ionophore monensin, which is thought to block the transit of membrane vesicles from the Golgi apparatus to the cell surface. We found that yields of extracellular virus were reduced to less than 0.5% of control values by 0.2 microM monensin under conditions that permitted accumulation of cell-associated infectious virus at about 20% of control values. Viral protein synthesis was not inhibited by monensin, whereas late stages in the post-translational processing of the viral glycoproteins were blocked. The transport of viral glycoproteins to the cell surface was also blocked by monensin. Although the assembly of nucleocapsids appeared to be somewhat inhibited in monensin-treated cells, electron microscopy revealed that nucleocapsids were enveloped to yield virions, and electrophoretic analyses showed that the isolated virions contained immature forms of the envelope glycoproteins. Most of the virions which were assembled in monensin-treated cells accumulated in large intracytoplasmic vacuoles, whereas most of the virions produced by and associated with untreated cells were found attached to the cell surface. Our results implicate the Golgi apparatus in the egress of herpes simplex virus from infected cells and also suggest that complete processing of the viral envelope glycoproteins is not essential for nucleocapsid envelopment or for virion infectivity.  相似文献   

10.
An Fc-binding glycoprotein, designated gE, was detected previously in cells infected with herpes simplex virus type 1 (HSV-1) and in virion preparations isolated from infected cells. For the studies reported here, we purified gE from HSV-1 strain HFEM(syn) by affinity chromatography and preparative electrophoresis and then immunized a rabbit to produce an antiserum to glycoprotein gE. We found that this antiserum selectively precipitated gE and its precursors from detergent-solubilized extracts of HSV-1 strain HFEM(syn)-infected HEp-2 cells, from extracts of other cell lines infected with the same virus, and from extracts of HEp-2 cells infected with several other HSV-1 strains. The antiserum did not precipitate any proteins from uninfected cells. The several forms of gE detected by immunoprecipitation accumulated in variable quantities in different cells infected with the different virus strains and also varied slightly with respect to electrophoretic mobility, suggesting some differences in the gE's from different HSV-1 strains and some effects of the host cell on the nature and extent of post-translational processing. One of the electrophoretic forms of gE previously detected in purified preparations of virions could be precipitated by anti-gE from extracts of purified HSV-1 strain HFEM(syn) virions. Moreover, anti-gE neutralized HSV-1 infectivity, but only in the presence of complement. Finally, F(ab')2 fragments of the anti-gE immunoglobulin partially inhibited the binding of 125I-labeled immunoglobulin G to the Fc receptors on HSV-1-infected cells.  相似文献   

11.
We reinvestigated major steps in the replicative cycle of pseudorabies virus (PrV) by electron microscopy of infected cultured cells. Virions attached to the cell surface were found in two distinct stages, with a distance of 12 to 14 nm or 6 to 8 nm between virion envelope and cell surface, respectively. After fusion of virion envelope and cell membrane, immunogold labeling using a monoclonal antibody against the envelope glycoprotein gE demonstrated a rapid drift of gE from the fusion site, indicating significant lateral movement of viral glycoproteins during or immediately after the fusion event. Naked nucleocapsids in the cytoplasm frequently appeared close to microtubules prior to transport to nuclear pores. At the nuclear pore, nucleocapsids invariably were oriented with one vertex pointing to the central granulum at a distance of about 40 nm and viral DNA appeared to be released via the vertex region into the nucleoplasm. Intranuclear maturation followed the typical herpesvirus nucleocapsid morphogenesis pathway. Regarding egress, our observations indicate that primary envelopment of nucleocapsids occurred at the inner leaflet of the nuclear membrane by budding into the perinuclear cisterna. This nuclear membrane-derived envelope exhibited a smooth surface which contrasts the envelope obtained by putative reenvelopment at tubular vesicles in the Golgi area which is characterized by distinct surface projections. Loss of the primary envelope and release of the nucleocapsid into the cytoplasm appeared to occur by fusion of envelope and outer leaflet of the nuclear membrane. Nucleocapsids were also found engulfed by both lamella of the nuclear membrane. This vesiculation process released nucleocapsids surrounded by two membranes into the cytoplasm. Our data also indicate that fusion between the two membranes then leads to release of naked nucleocapsids in the Golgi area. Egress of virions appeared to occur via transport vesicles containing one or more virus particles by fusion of vesicle and cell membrane. Our data thus support biochemical data and mutant virus studies of (i) two steps of attachment, (ii) the involvement of microtubules in the transport of nucleocapsids to the nuclear pore, and (iii) secondary envelopment in the trans-Golgi area in PrV infection.  相似文献   

12.
Polyvalent rabbit antisera against herpes simplex virus type 1 and 2 (HSV-1 and HSV-2), cytomegalovirus (CMV), and Epstein-Barr virus (EBV), monospecific antisera against affinity-purified HSV-2 glycoproteins gB and gG, and a panel of monoclonal antibodies against HSV and EBV proteins were used to analyze cross-reactive molecules in cells infected with the four herpesviruses. A combination of immunoprecipitation and Western blotting with these reagents was used to determine that all four viruses coded for a glycoprotein that cross-reacted with HSV-1 gB. CMV coded for proteins that cross-reacted with HSV-2 gC, gD, and gE. Both CMV and EBV coded for proteins that cross-reacted with HSV-2 gG. Antigenic counterparts to the p45 nucleocapsid protein of HSV-2 were present in HSV-1 and CMV, and counterparts of the major DNA-binding protein and the ribonucleotide reductase of HSV-1 were present in all the viruses. The EBV virion glycoprotein gp85 was immunoprecipitated by antisera to HSV-1, HSV-2, and CMV. Antisera to CMV and EBV neutralized the infectivity of both HSV-1 and HSV-2 at high concentrations. This suggests that cross-reactivity between these four human herpesviruses may have pathogenic as well as evolutionary significance.  相似文献   

13.
The Golgi apparatus is fragmented and dispersed in Vero cells but not in human 143TK- cells infected with wild-type herpes simplex virus 1. Moreover, a recombinant virus lacking the gene encoding the membrane protein UL20 (UL20- virus) accumulates in the space between the inner and outer nuclear membranes of Vero cells but is exported and spreads from cell to cell in 143TK- cell cultures. Here we report that in Vero cells infected with UL20- virus, the virion envelope glycoproteins were of the immature type, whereas the viral glycoproteins associated with cell membranes were fully processed up to the addition of sialic acid, a trans-Golgi function. Moreover, the amounts of viral glycoproteins accumulating in the plasma membranes were considerably smaller than those detected on the surface of Vero cells infected with wild-type virus. In contrast, the amounts of viral glycoproteins present on the plasma membranes of 143TK- cells infected with wild-type or UL20- virus were nearly identical. We conclude that (i) in Vero cells infected with UL20- virus the block in the export of virions is at the entry into the exocytic pathway, and a second block in the exocytosis of viral glycoproteins associated with cytoplasmic membranes is due to an impairment of transport beyond Golgi fragments containing trans-Golgi enzymes and not to a failure of the Golgi oligosaccharide-processing functions; (ii) these defects are manifested in cells in which the Golgi apparatus is fragmented; and (iii) the UL20 protein compensates for these defects by enabling transport to and from the fragmented Golgi apparatus.  相似文献   

14.
In the course of herpes simplex virus 1 (HSV-1) replication in human epidermoid carcinoma no. 2 cells, the synthesis and glycosylation of host cell proteins ceases and is replaced by the synthesis and glycosylation of virus-specified polypeptides. Analyses of the synthesis of viral glycoproteins show that the glycosylation of viral polypeptides occurs late in the virus growth cycle and that certain of the precursors to major vital glycoproteins are members of the gamma group of polypeptides, i.e., polypeptides synthesized at increasing rates until 12 to 15 h postinfection. Viral glycoproteins are formed by stepwise additions of heterosaccharide chains to completed precursor polypeptides. The precursor and the highly glycosylated product are separable by gel electrophoresis and are localized in different fractions of infected cells. Within 15 min of their synthesis, precursor polypeptides acquire heterosaccharide chains of about 2,000 molecular weight, which contain glucosamine but little or nor fucose or sialic acid. Both precursor and product of this first stage of glycosylation are absent or present in low concentrations in the surface membranes of the infected cell and in the virion. The partially glycosylated product is then conjugated further in a slow, discontinuous process to form the mature glycoprotein of the virion and plasma membrane. These mature products bear large heterosaccharide units with molecular weights greater than 4,000 to 5,000; these contain fucose and sialic acid as well as glucosamine. Heterosaccharide chains from infected and uninfected cells are distributed among discrete size classes and the smallest chains consist of multiple saccharide residues.  相似文献   

15.
16.
Kenyon TK  Cohen JI  Grose C 《Journal of virology》2002,76(21):10980-10993
Like all alphaherpesviruses, varicella-zoster virus (VZV) infection proceeds by both cell-cell spread and virion production. Virions are enveloped within vacuoles located near the trans-Golgi network (TGN), while in cell-cell spread, surface glycoproteins fuse cells into syncytia. In this report, we delineate a potential role for serine/threonine phosphorylation of the cytoplasmic tail of the predominant VZV glycoprotein, gE, in these processes. The fact that VZV gE (formerly called gpI) is phosphorylated has been documented (E. A. Montalvo and C. Grose, Proc. Natl. Acad. Sci. USA 83:8967-8971, 1986), although respective roles of viral and cellular protein kinases have never been delineated. VZV ORF47 is a viral serine protein kinase that recognized a consensus sequence similar to that of casein kinase II (CKII). During open reading frame 47 (ORF47)-specific in vitro kinase assays, ORF47 phosphorylated four residues in the cytoplasmic tail of VZV gE (S593, S595, T596, and T598), thus modifying the known phosphofurin acidic cluster sorting protein 1 domain. CKII phosphorylated gE predominantly on the two threonine residues. In wild-type-virus-infected cells, where ORF47-mediated phosphorylation predominated, gE endocytosed and relocalized to the TGN. In cells infected with a VZV ORF47-null mutant, internalized VZV gE recycled to the plasma membrane and did not localize to the TGN. The mutant virus also formed larger syncytia than the wild-type virus, linking CKII-mediated gE phosphorylation with increased cell-cell spread. Thus, ORF47 and CKII behaved as "team players" in the phosphorylation of VZV gE. Taken together, the results showed that phosphorylation of VZV gE by ORF47 or CKII determined whether VZV infection proceeded toward a pathway likely involved with either virion production or cell-cell spread.  相似文献   

17.
E Maidji  S Tugizov  T Jones  Z Zheng    L Pereira 《Journal of virology》1996,70(12):8402-8410
Human cytomegalovirus (CMV) encodes accessory glycoproteins that are dispensable for virus growth in nonpolarized cells in culture. We report that CMV deletion mutants lacking the gene for accessory glycoprotein US9 in the unique short component of the viral genome are impaired in plaque formation in polarized human retinal pigment epithelial (ARPE-19) cells. Comparison of CMV deletion mutants in US9 with herpes simplex virus type 1 deletion mutants lacking glycoproteins gE and gI showed that both of these mutants are impaired in altering junctional complexes and increasing paracellular permeability in polarized ARPE-19 cells cultured on permeable filter supports. Results of functional studies indicate that CMV US9 and homologs of gE have analogous roles in promoting virus spread across lateral membranes of polarized epithelial cells.  相似文献   

18.
The glycoprotein of vesicular stomatitis (VS) virus was selectively liberated from the virion membrane by the dialyzable nonionic detergent, beta-D-octylglucoside. The isolated viral glycoprotein could be rendered virtually free of phospholipid and detergent, under which conditions it formed tail-to-tail glycoprotein micelles in the form of rosettes. When mixtures of viral glycoprotein and egg lecithin were dialyzed free of octylglucoside, glycoprotein vesicles formed spontaneously with spikes protruding in the same external orientation as the VS virion membrane. The glycoprotein vesicles exhibited increased and uniform buoyant density, indicating relative homogeneity in the proportion of glycoprotein and phosphatidylcholine in each glycoprotein liposome. Evidence for similar insertion and orientation of VS viral glycoprotein in both phosphatidylcholine vesicles and virion membrane was substantiated by the finding that proteolytic digestion with thermolysin gave rise to hydrophobic glycoprotein tail fragments in vesicle or virion membranes that migrated identically in polyacrylamide gels.  相似文献   

19.
We have identified and characterized two small virus-specific polypeptides which are produced during infection of cells with Sindbis virus, but which are not incorporated into the mature virion. The larger of these is a glycoprotein with an approximate molecular weight of 9,800 and is found predominantly in the medium of infected cells. Three independent lines of evidence demonstrate conclusively that this 9,800-dalton glycoprotein is produced during the proteolytic conversion of the precursor polypeptide, PE2, to the virion glycoprotein E2. This small glycoprotein is therefore analogous to the virion glycoprotein E3 of the very closely related alphavirus, Semliki Forest virus. The 9,800-dalton glycoprotein of Sindbis virus, unlike the E3 glycoprotein of Semliki Forest virus, is not, however, present in the viral particle. The other virus-specific polypeptide is 4,200 daltons in size, does not appear to be a glycoprotein, and is neither incorporated into the mature virus nor released into the culture medium. The gene for this small polypeptide is present in the viral 26S mRNA (the mRNA which encodes all the viral structural polypeptides) and appears to be located in the portion of the mRNA which encodes the two viral glycoproteins. The possibility that this 4,200-dalton polypeptide functions as a signal peptide during the synthesis of the viral membrane glycoproteins is discussed.  相似文献   

20.
Herpes simplex virus (HSV) glycoprotein gD is a major component of the virion envelope and is thought to play an important role in the initial stages of viral infection and stimulates the production of high titers of neutralizing antibodies. We assumed that gD plays an essential role in virus replication, and so to complement viruses with mutations in the gD gene we constructed a cell line, denoted VD60, which is capable of expressing high levels of gD after infection with HSV. A recombinant virus, designated F-gD beta, in which sequences encoding gD and a nonessential glycoprotein, gI, were replaced by Escherichia coli beta-galactosidase sequences, was selected on the basis that it produced blue plaques on VD60 cell monolayers under agarose overlays containing 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal). F-gD beta was able to replicate normally on complementing VD60 cells. However, F-gD beta was unable to form plaques on noncomplementing Vero cells. Virions lacking gD were produced in normal amounts by Vero cells infected with F-gD beta, and the virus particles were distributed throughout the cytoplasm and on the cell surface, suggesting that gD is not essential for HSV envelopment and egress. Virions lacking gD were able to bind to cells, but were unable to initiate synthesis of viral early polypeptides. Plaque production of F-gD beta particles lacking gD was enhanced by polyethylene glycol treatment, suggesting that gD is essential for penetration of HSV into cells. Other HSV glycoproteins have been implicated in the entry of virus into cells, and thus this process appears to involve multiple interactions at the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号