首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Vaccinia virus (VACV) stimulates long-term immunity against highly pathogenic orthopoxvirus infection of humans (smallpox) and mice (mousepox [ectromelia virus {ECTV}]) despite the lack of a natural host-pathogen relationship with either of these species. Previous research revealed that VACV is able to induce polyfunctional CD8(+) T-cell responses after immunization of humans. However, the degree to which the functional profile of T cells induced by VACV is similar to that generated during natural poxvirus infection remains unknown. In this study, we monitored virus-specific T-cell responses following the dermal infection of C57BL/6 mice with ECTV or VACV. Using polychromatic flow cytometry, we measured levels of degranulation, cytokine expression (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin-2 [IL-2]), and the cytolytic mediator granzyme B. We observed that the functional capacities of T cells induced by VACV and ECTV were of a similar quality in spite of the markedly different replication abilities and pathogenic outcomes of these viruses. In general, a significant fraction (≥50%) of all T-cell responses were positive for at least three functions both during acute infection and into the memory phase. In vivo killing assays revealed that CD8(+) T cells specific for both viruses were equally cytolytic (~80% target cell lysis after 4 h), consistent with the similar levels of granzyme B and degranulation detected among these cells. Collectively, these data provide a mechanism to explain the ability of VACV to induce protective T-cell responses against pathogenic poxviruses in their natural hosts and provide further support for the use of VACV as a vaccine platform able to induce polyfunctional T cells.  相似文献   

2.
The emergence of zoonotic orthopoxvirus infections and the threat of possible intentional release of pathogenic orthopoxviruses have stimulated renewed interest in understanding orthopoxvirus infections and the resulting diseases. Ectromelia virus (ECTV), the causative agent of mousepox, offers an excellent model system to study an orthopoxvirus infection in its natural host. Here, we investigated the role of the vaccinia virus ortholog N1L in ECTV infection. Respiratory infection of mice with an N1L deletion mutant virus (ECTVΔN1L) demonstrated profound attenuation of the mutant virus, confirming N1 as an orthopoxvirus virulence factor. Upon analysis of virus dissemination in vivo, we observed a striking deficiency of ECTVΔN1L spreading from the lungs to the livers or spleens of infected mice. Investigating the immunological mechanism controlling ECTVΔN1L infection, we found the attenuated phenotype to be unaltered in mice deficient in Toll-like receptor (TLR) or RIG-I-like RNA helicase (RLH) signaling as well as in those missing the type I interferon receptor or lacking B cells. However, in RAG-1(-/-) mice lacking mature B and T cells, ECTVΔN1L regained virulence, as shown by increasing morbidity and virus spread to the liver and spleen. Moreover, T cell depletion experiments revealed that ECTVΔN1L attenuation was reversed only by removing both CD4(+) and CD8(+) T cells, so the presence of either cell subset was still sufficient to control the infection. Thus, the orthopoxvirus virulence factor N1 may allow efficient ECTV infection in mice by interfering with host T cell function.  相似文献   

3.
As a group, poxviruses have been shown to infect a wide variety of animal species. However, there is individual variability in the range of species able to be productively infected. In this study, we observed that ectromelia virus (ECTV) does not replicate efficiently in cultured rabbit RK13 cells. Conversely, vaccinia virus (VACV) replicates well in these cells. Upon infection of RK13 cells, the replication cycle of ECTV is abortive in nature, resulting in a greatly reduced ability to spread among cells in culture. We observed ample levels of early gene expression but reduced detection of virus factories and severely blunted production of enveloped virus at the cell surface. This work focused on two important host range genes, named E3L and K3L, in VACV. Both VACV and ECTV express a functional protein product from the E3L gene, but only VACV contains an intact K3L gene. To better understand the discrepancy in replication capacity of these viruses, we examined the ability of ECTV to replicate in wild-type RK13 cells compared to cells that constitutively express E3 and K3 from VACV. The role these proteins play in the ability of VACV to replicate in RK13 cells was also analyzed to determine their individual contribution to viral replication and PKR activation. Since E3L and K3L are two relevant host range genes, we hypothesized that expression of one or both of them may have a positive impact on the ability of ECTV to replicate in RK13 cells. Using various methods to assess virus growth, we did not detect any significant differences with respect to the replication of ECTV between wild-type RK13 compared to versions of this cell line that stably expressed VACV E3 alone or in combination with K3. Therefore, there remain unanswered questions related to the factors that limit the host range of ECTV.  相似文献   

4.
Ectromelia virus (ECTV), a natural mouse pathogen and the causative agent of mousepox, is closely related to variola virus (VARV), which causes smallpox in humans. Mousepox is an excellent surrogate small-animal model for smallpox. Both ECTV and VARV encode a multitude of host response modifiers that target components of the immune system and that are thought to contribute to the high mortality rates associated with infection. Like VARV, ECTV encodes a protein homologous to the ectodomain of the host gamma interferon (IFN-gamma) receptor 1. We generated an IFN-gamma binding protein (IFN-gammabp) deletion mutant of ECTV to study the role of viral IFN-gammabp (vIFN-gammabp) in host-virus interaction and also to elucidate the contribution of this molecule to the outcome of infection. Our data show that the absence of vIFN-gammabp does not affect virus replication per se but does have a profound effect on virus replication and pathogenesis in mice. BALB/c mice, which are normally susceptible to infection with ECTV, were able to control replication of the mutant virus and survive infection. Absence of vIFN-gammabp from ECTV allowed the generation of an effective host immune response that was otherwise diminished by this viral protein. Mice infected with a vIFN-gammabp deletion mutant virus, designated ECTV-IFN-gammabp(Delta), produced increased levels of IFN-gamma and generated robust cell-mediated and antibody responses. Using several strains of mice that exhibit differential degrees of resistance to mousepox, we show that recovery or death from ECTV infection is determined by a balance between the host's ability to produce IFN-gamma and the virus' ability to dampen its effects.  相似文献   

5.
Nuara AA  Bai H  Chen N  Buller RM  Walter MR 《Journal of virology》2006,80(21):10675-10682
The orthopoxviruses ectromelia virus (ECTV) and vaccinia virus (VACV) express secreted gamma interferon binding proteins (IFN-gammaBPs) with homology to the ligand binding domains of the host's IFN-gamma receptor (IFN-gammaR1). Homology between these proteins is limited to the extracellular portions of the IFN-gammaR1 and the first approximately 200 amino acids of the IFN-gammaBPs. The remaining 60 amino acids at the C termini of the IFN-gammaBPs contain a single cysteine residue shown to be important in covalent dimerization of the secreted proteins. The function of the remaining C-terminal domain (CTD) has remained elusive, yet this region is conserved within all orthopoxvirus IFN-gammaBPs. Using a series of C-terminal deletion constructs, we have determined that the CTD is essential for IFN-gamma binding despite having no predicted homology to the IFN-gammaR1. Truncation of the ECTV IFN-gammaBP by more than two amino acid residues results in a complete loss of binding activity for both murine IFN-gamma and human IFN-gamma (hIFN-gamma), as measured by surface plasmon resonance (SPR) and bioassay. Equivalent truncation of the VACV IFN-gammaBP resulted in comparable loss of hIFN-gamma binding activity by SPR. Full-length IFN-gammaBPs were observed to form higher-ordered structures larger than the previously reported dimers. Mutants that were unable to bind IFN-gamma with high affinity in SPR experiments failed to assemble into these higher-ordered structures and migrated as dimers. We conclude that the unique CTD of orthopoxvirus IFN-gammaBPs is important for the assembly of covalent homodimers as well as the assembly of higher-ordered structures essential for IFN-gamma binding.  相似文献   

6.
The orthopoxvirus (OPV) vaccinia virus (VACV) requires an intact F13L gene to produce enveloped virions (EV) and to form plaques in cell monolayers. Simultaneous introduction of an exogenous gene and F13L into F13L-deficient VACV results in expression of the foreign gene and restoration of plaque size. This is used as a method to rapidly generate VACV recombinants without the need for drug selection. However, whether other OPVs require the orthologs of F13L to generate EV and form plaques, whether F13L orthologs and EV are important for OPV pathogenesis in natural hosts, and whether a system based on F13L ortholog deficiency can be used to generate recombinant OPVs other than VACV have not been reported. The F13L ortholog in ectromelia virus (ECTV), the agent of mousepox, is EVM036. We show that ECTV lacking EVM036 formed small plaques and was highly attenuated in vivo but still induced strong antibody responses. Reintroduction of EVM036 in tandem with the DsRed gene resulted in a virus that expressed DsRed in infected cells but was indistinguishable from wild-type ECTV in terms of plaque size and in vivo virulence. Thus, our data show that, like F13L in VACV, EVM036 is required for ECTV plaque formation and that EVM036 and EV are important for ECTV virulence. Our experiments also suggest that OPVs deficient in F13L orthologs could serve as safer anti-OPV vaccines. Further, our results demonstrate that ECTV deficient in EVM036 can be exploited for the rapid generation of fully virulent ECTV expressing foreign genes of interest.  相似文献   

7.
Post-exposure vaccination with vaccinia virus (VACV) has been suggested to be effective in minimizing death if administered within four days of smallpox exposure. While there is anecdotal evidence for efficacy of post-exposure vaccination this has not been definitively studied in humans. In this study, we analyzed post-exposure prophylaxis using several attenuated recombinant VACV in a mouse model. A recombinant VACV expressing murine interferon gamma (IFN-γ) was most effective for post-exposure protection of mice infected with VACV and ectromelia virus (ECTV). Untreated animals infected with VACV exhibited severe weight loss and morbidity leading to 100% mortality by 8 to 10 days post-infection. Animals treated one day post-infection had milder symptoms, decreased weight loss and morbidity, and 100% survival. Treatment on days 2 or 3 post-infection resulted in 40% and 20% survival, respectively. Similar results were seen in ECTV-infected mice. Despite the differences in survival rates in the VACV model, the viral load was similar in both treated and untreated mice while treated mice displayed a high level of IFN-γ in the serum. These results suggest that protection provided by IFN-γ expressed by VACV may be mediated by its immunoregulatory activities rather than its antiviral effects. These results highlight the importance of IFN-γ as a modulator of the immune response for post-exposure prophylaxis and could be used potentially as another post-exposure prophylaxis tool to prevent morbidity following infection with smallpox and other orthopoxviruses.  相似文献   

8.
Previous studies have suggested that, differing from model Ags, viruses that replicate extensively in the host still induce normal CD8+ T cell responses in the absence of CD28 costimulation. Because these studies were performed with viruses that do not normally cause acute disease, an important remaining question is whether CD28 costimulation is required for CD8+ T cell-mediated resistance to widely replicating but pathogenic viruses. To address this question, we studied the role of CD28 costimulation in CD8+ T cell-mediated resistance to mousepox, a disease of the mouse caused by the natural mouse pathogen, the ectromelia virus (ECTV). C57BL/6 (B6) mice are naturally resistant to mousepox, partly due to a fast and strong CD8+ T cell response. We found that B6 mice deficient in CD28 (CD28 knockout (KO)) are highly susceptible to lethal mousepox during the early stages of ECTV infection but can be protected by immunization with the antigenically related vaccinia virus (VACV) or by adoptive transfer of CD28 KO anti-VACV memory CD8+ cells. Of interest, a thorough comparison of the CD8+ T cell responses to ECTV and VACV suggests that the main reason for the susceptibility of CD28 KO mice to mousepox is a reduced response at the early stages of infection. Thus, while in the absence of CD28 costimulation the end point strength of the T cell responses to nonpathogenic viruses may appear normal, CD28 costimulation increases the speed of the T cell response and is essential for resistance to a life-threatening acute viral disease.  相似文献   

9.
Using two-photon-induced fluorescence lifetime imaging microscopy, we corroborate an interaction (previously demonstrated by yeast two-hybrid domain analysis) of full-length vaccinia virus (VACV; an orthopoxvirus) A36 protein with the cellular microtubule motor protein kinesin. Quenching of enhanced green fluorescent protein (EGFP), fused to the C terminus of VACV A36, by monomeric red fluorescent protein (mDsRed), fused to the tetratricopeptide repeat (TPR) domain of kinesin, was observed in live chicken embryo fibroblasts infected with either modified vaccinia virus Ankara (MVA) or wild-type fowlpox virus (FWPV; an avipoxvirus), and the excited-state fluorescence lifetime of EGFP was reduced from 2.5 ± 0.1 ns to 2.1 ± 0.1 ns due to resonance energy transfer to mDsRed. FWPV does not encode an equivalent of intracellular enveloped virion surface protein A36, yet it is likely that this virus too must interact with kinesin to facilitate intracellular virion transport. To investigate possible interactions between innate FWPV proteins and kinesin, recombinant FWPVs expressing EGFP fused to the N termini of FWPV structural proteins Fpv140, Fpv168, Fpv191, and Fpv198 (equivalent to VACV H3, A4, p4c, and A34, respectively) were generated. EGFP fusions of intracellular mature virion (IMV) surface protein Fpv140 and type II membrane protein Fpv198 were quenched by mDsRed-TPR in recombinant FWPV-infected cells, indicating that these virion proteins are found within 10 nm of mDsRed-TPR. In contrast, and as expected, EGFP fusions of the IMV core protein Fpv168 did not show any quenching. Interestingly, the p4c-like protein Fpv191, which demonstrates late association with preassembled IMV, also did not show any quenching.  相似文献   

10.
Background information. Vaccinia virus (VACV) was used as a surrogate of variola virus (genus Orthopoxvirus), the causative agent of smallpox, to study orthopoxvirus infection. VACV infects cells via attachment and fusion of the viral membrane with the host cell membrane. Glycosphingolipids, expressed in multiple organs, are major components of lipid rafts and have been associated with the infectious route of several pathogens. Results. We demonstrate that the VACV‐WR (VACV Western‐Reserve strain) displays no binding to Cer (ceramide) or to Gal‐Cer (galactosylceramide), but binds to a natural sulfated derivative of these molecules: the Sulf (sulfatide) 3′ sulfogalactosylceramide. The interaction between Sulf and VACV‐WR resulted in a time‐dependent inhibition of virus infection. Virus cell attachment was the crucial step inhibited by Sulf. Electron microscopy showed that SUVs (small unilamellar vesicles) enriched in Sulf bound to VACV particles. Both the A27 and L5 viral membrane proteins were shown to interact with Sulf, indicating that they could be the major viral ligands for Sulf. Soluble Sulf was successful in preventing mortality, but not morbidity, in a lethal mouse model infection with VACV‐WR. Conclusions. Together the results suggest that Sulf could play a role as an alternate receptor for VACV‐WR and probably other Orthopoxviruses.  相似文献   

11.
Even though smallpox has been eradicated, the threat of accidental or intentional release has highlighted the fact there is little consensus about correlates of protective immunity or immunity against re-infection with the causative poxvirus, variola virus (VARV). As the existing vaccine for smallpox has unacceptable rates of side effects and complications, new vaccines are urgently needed. Surrogate animal models of VARV infection in humans, including vaccinia virus (VACV) and ectromelia virus (ECTV) infection in mice, monkeypox virus (MPXV) infection in macaques have been used as tools to dissect the immune response to poxviruses. Mousepox, caused by ECTV, a natural mouse pathogen, is arguably the best surrogate small-animal model, as it shares many aspects of virus biology, pathology and clinical features with smallpox in humans. The requirements for recovery from a primary ECTV infection have been well characterized and include type I and II interferons, natural killer cells, CD4T cells, CD8T cell effector function and antibody. From a vaccine standpoint, it is imperative that the requirements for recovery from secondary infection are also identified. We have investigated host immune parameters in response to a secondary ECTV infection, and have identified that interferon and CD8T cell effector functions are not essential; however, T- and B-cell interaction and antibody are absolutely critical for recovery from a secondary challenge. The central role of antibody has been also been identified in the secondary response to other poxviruses. These findings have important clinical implications and would greatly assist the design of therapeutic interventions and new vaccines for smallpox.  相似文献   

12.
Vaccinia virus (VACV) is the prototypic orthopoxvirus and the vaccine used to eradicate smallpox. Here we show that VACV strain Western Reserve protein 169 is a cytoplasmic polypeptide expressed early during infection that is excluded from virus factories and inhibits the initiation of cap-dependent and cap-independent translation. Ectopic expression of protein 169 causes the accumulation of 80S ribosomes, a reduction of polysomes, and inhibition of protein expression deriving from activation of multiple innate immune signaling pathways. A virus lacking 169 (vΔ169) replicates and spreads normally in cell culture but is more virulent than parental and revertant control viruses in intranasal and intradermal murine models of infection. Intranasal infection by vΔ169 caused increased pro-inflammatory cytokines and chemokines, infiltration of pulmonary leukocytes, and lung weight. These alterations in innate immunity resulted in a stronger CD8+ T-cell memory response and better protection against virus challenge. This work illustrates how inhibition of host protein synthesis can be a strategy for virus suppression of innate and adaptive immunity.  相似文献   

13.
14.
We assessed several routes of immunization with vaccinia virus (VACV) in protecting mice against ectromelia virus (ECTV). By a wide margin, skin scarification provided the greatest protection. Humoral immunity and resident-memory T cells notwithstanding, several approaches revealed that circulating, memory CD8+ T cells primed via scarification were functionally superior and conferred enhanced virus control. Immunization via the epithelial route warrants further investigation, as it may also provide enhanced defense against other infectious agents.  相似文献   

15.
16.
Orthopoxviruses (OPVs), which include the agent of smallpox (variola virus), the zoonotic monkeypox virus, the vaccine and zoonotic species vaccinia virus, and the mouse pathogen ectromelia virus (ECTV), form two types of infectious viral particles: the mature virus (MV), which is cytosolic, and the enveloped virus (EV), which is extracellular. It is believed that MVs are required for viral entry into the host, while EVs are responsible for spread within the host. Following footpad infection of susceptible mice, ECTV spreads lymphohematogenously, entering the liver at 3 to 4 days postinfection (dpi). Afterwards, ECTV spreads intrahepatically, killing the host. We found that antibodies to an MV protein were highly effective at curing mice from ECTV infection when administered after the virus reached the liver. Moreover, a mutant ECTV that does not make EV was able to spread intrahepatically and kill immunodeficient mice. Together, these findings indicate that MVs are sufficient for the spread of ECTV within the liver and could have implications regarding the pathogenesis of other OPVs, the treatment of emerging OPV infections, as well as strategies for preparedness in case of accidental or intentional release of pathogenic OPVs.  相似文献   

17.
The ubiquitin-like modifier ISG15 is one of the most predominant proteins induced by type I interferons (IFN). In this study, murine embryo fibroblast (MEFs) and mice lacking the gene were used to demonstrate a novel role of ISG15 as a host defense molecule against vaccinia virus (VACV) infection. In MEFs, the growth of replication competent Western Reserve (WR) VACV strain was affected by the absence of ISG15, but in addition, virus lacking E3 protein (VVDeltaE3L) that is unable to grow in ISG15+/+ cells replicated in ISG15-deficient cells. Inhibiting ISG15 with siRNA or promoting its expression in ISG15-/- cells with a lentivirus vector showed that VACV replication was controlled by ISG15. Immunoprecipitation analysis revealed that E3 binds ISG15 through its C-terminal domain. The VACV antiviral action of ISG15 and its interaction with E3 are events independent of PKR (double-stranded RNA-dependent protein kinase). In mice lacking ISG15, infection with VVDeltaE3L caused significant disease and mortality, an effect not observed in VVDeltaE3L-infected ISG15+/+ mice. Pathogenesis in ISG15-deficient mice infected with VVDeltaE3L or with an E3L deletion mutant virus lacking the C-terminal domain triggered an enhanced inflammatory response in the lungs compared with ISG15+/+-infected mice. These findings showed an anti-VACV function of ISG15, with the virus E3 protein suppressing the action of the ISG15 antiviral factor.  相似文献   

18.
Type I interferons (IFN-I) are antiviral cytokines that signal through the ubiquitous IFN-I receptor (IFNAR). Following footpad infection with ectromelia virus (ECTV), a mouse-specific pathogen, C57BL/6 (B6) mice survive without disease, while B6 mice broadly deficient in IFNAR succumb rapidly. We now show that for survival to ECTV, only hematopoietic cells require IFNAR expression. Survival to ECTV specifically requires IFNAR in both natural killer (NK) cells and monocytes. However, intrinsic IFNAR signaling is not essential for adaptive immune cell responses or to directly protect non-hematopoietic cells such as hepatocytes, which are principal ECTV targets. Mechanistically, IFNAR-deficient NK cells have reduced cytolytic function, while lack of IFNAR in monocytes dampens IFN-I production and hastens virus dissemination. Thus, during a pathogenic viral infection, IFN-I coordinates innate immunity by stimulating monocytes in a positive feedback loop and by inducing NK cell cytolytic function.  相似文献   

19.
Vaccinia virus (VACV) has been attracting attention recently not only as a vector for various vaccines but also as an immunization tool against smallpox because of its potential use as a bioterrorism agent. It has become evident that in spite of a long history of studies of VACV, its tissue pathogenesis remains to be fully understood. Here, we investigated the pathogenesis of VACV and its interactions with human immunodeficiency virus type 1 (HIV-1) in the context of human lymphoid tissues. We found that ex vivo-cultured tonsillar tissue supports productive infection by the New York City Board of Health strain, the VACV strain of the Dryvax vaccine. VACV readily infected both T and non-T (B) lymphocytes and depleted cells of both of these subsets equally over a 12-day period postinfection. Among T lymphocytes, CD8(+) cells are preferentially depleted in accordance with their preferential infection: the probability that a CD8(+) T cell will be productively infected is almost six times higher than for a CD4(+) T cell. T cells expressing CCR5 and the activation markers CD25, CD38, and HLA-DR are other major targets for infection by VACV in lymphoid tissue. As a consequence, VACV predominantly inhibits the replication of the R5(SF162) phenotype of HIV-1 in coinfected tissues, as R5-tropic HIV-1 requires activated CCR5(+) CD4(+) cells for productive infection. Human lymphoid tissue infected ex vivo by VACV can be used to investigate interactions of VACV with other viruses, in particular HIV-1, and to evaluate various VACV vectors for the purpose of recombinant vaccine development.  相似文献   

20.
Viral manipulation of transduction pathways associated with key cellular functions such as survival, response to microbial infection, and cytoskeleton reorganization can provide the supportive milieu for a productive infection. Here, we demonstrate that vaccinia virus (VACV) infection leads to activation of the stress-activated protein kinase (SAPK)/extracellular signal-regulated kinase (ERK) 4/7 (MKK4/7)-c-Jun N-terminal protein kinase 1/2 (JNK1/2) pathway; further, the stimulation of this pathway requires postpenetration, prereplicative events in the viral replication cycle. Although the formation of intracellular mature virus (IMV) was not affected in MKK4/7- or JNK1/2-knockout (KO) cells, we did note an accentuated deregulation of microtubule and actin network organization in infected JNK1/2-KO cells. This was followed by deregulated viral trafficking to the periphery and enhanced enveloped particle release. Furthermore, VACV infection induced alterations in the cell contractility and morphology, and cell migration was reduced in the JNK-KO cells. In addition, phosphorylation of proteins implicated with early cell contractility and cell migration, such as microtubule-associated protein 1B and paxillin, respectively, was not detected in the VACV-infected KO cells. In sum, our findings uncover a regulatory role played by the MKK4/7-JNK1/2 pathway in cytoskeleton reorganization during VACV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号