首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The structures of methanol dehydrogenase (MEDH) from two closely related methylotrophic bacteria, Methylophilus methylotrophus and W3A1, have been determined at 2.6-A resolution. The molecule, a quinoprotein of molecular mass of about 138 kDa, contains two heavy (H) and two light (L) subunits of unknown sequence and two molecules of noncovalently associated pyrroloquinoline quinone. The two enzymes crystallize isomorphously in space group P2(1) with one H2L2 heterotetramer in the asymmetric unit. The electron density map of the M. methylophilus enzyme was obtained by multiple isomorphous replacement with anomalous scattering and improved by solvent leveling and electron density averaging. For model building, the amino acid sequence of MEDH from Paracoccus denitrificans for the H subunit and from Methylobacterium extorquens AM1 for the L subunit were used to represent the unknown amino acid sequence. At the present time, 579 and 57 amino acid residues for the large and small subunits, respectively, have been fitted into the map. The phases for MEDH from M. methylophilus were used directly to analyze the W3A1 structure, and both structures were refined to R-factors (where R = sigma[Fo-Fc[/sigma Fo) of 0.277 and 0.266, respectively. The L subunit contains a long alpha-helix and an extended N-terminal segment, both lying on the molecular surface of the H subunit. The H subunit contains eight antiparallel beta-sheets, each consisting of four strands arranged topologically like the letter W. The eight Ws are arranged circularly, forming the main disc-shaped body of the subunit, with some short helices and loops connecting the consecutive Ws, as well as some excursions within and between some of the Ws. The pyrroloquinoline quinone prosthetic group is located in the central channel of the large subunit near the surface of the molecule. The topology of the eight-W folding unit is similar to those of the six- and seven-W folding units previously reported for three other proteins, neuraminidase, methylamine dehydrogenase, and galactose oxidase.  相似文献   

2.
The three-dimensional structure of the quinoprotein methylamine dehydrogenase from Paracoccus dentrificans (PD-MADH) has been determined at 2.8 A resolution by the molecular replacement method combined with map averaging procedures, using data collected from an area detector. The structure of methylamine dehydrogenase from Thio-bacillus versutus, which contains an "X-ray" sequence, was used as the starting search model. MADH consists of 2 heavy (H) and 2 light (L) subunits related by a molecular 2-fold axis. The H subunit is folded into seven four-stranded beta segments, forming a disk-shaped structure, arranged with pseudo-7-fold symmetry. A 31-residue elongated tail exists at the N-terminus of the H subunit in MADH from T. versutus but is partially digested in this crystal form of MADH from P. denitrificans, leaving the H subunit about 18 residues shorter. Each L subunit contains 127 residues arranged into 10 beta-strands connected by turns. The active site of the enzyme is located in the L subunit and is accessible via a hydrophobic channel between the H and L subunits. The redox cofactor of MADH, tryptophan tryptophylquinone is highly unusual. It is formed from two covalently linked tryptophan side chains at positions 57 and 107 of the L subunit, one of which contains an orthoquinone.  相似文献   

3.
Tyrosinase catalyzes the conversion of phenolic compounds into their quinone derivatives, which are precursors for the formation of melanin, a ubiquitous pigment in living organisms. Because of its importance for browning reactions in the food industry, the tyrosinase from the mushroom Agaricus bisporus has been investigated in depth. In previous studies the tyrosinase enzyme complex was shown to be a H(2)L(2) tetramer, but no clues were obtained of the identities of the subunits, their mode of association, and the 3D structure of the complex. Here we unravel this tetramer at the molecular level. Its 2.3 ? resolution crystal structure is the first structure of the full fungal tyrosinase complex. The complex comprises two H subunits of ~392 residues and two L subunits of ~150 residues. The H subunit originates from the ppo3 gene and has a fold similar to other tyrosinases, but it is ~100 residues larger. The L subunit appeared to be the product of orf239342 and has a lectin-like fold. The H subunit contains a binuclear copper-binding site in the deoxy-state, in which three histidine residues coordinate each copper ion. The side chains of these histidines have their orientation fixed by hydrogen bonds or, in the case of His85, by a thioether bridge with the side chain of Cys83. The specific tyrosinase inhibitor tropolone forms a pre-Michaelis complex with the enzyme. It binds near the binuclear copper site without directly coordinating the copper ions. The function of the ORF239342 subunits is not known. Carbohydrate binding sites identified in other lectins are not conserved in ORF239342, and the subunits are over 25 ? away from the active site, making a role in activity unlikely. The structures explain how calcium ions stabilize the tetrameric state of the enzyme.  相似文献   

4.
We have previously shown that the E31C-substituted epsilon subunit of F1 can be cross-linked by disulfide bond formation to the Q42C-substituted c subunit of F0 in the Escherichia coli F1F0-ATP synthase complex (Zhang, Y., and Fillingame, R. H. (1995) J. Biol. Chem. 270, 24609-24614). The interactions of subunits epsilon and c are thought to be central to the coupling of H+ transport through F0 to ATP synthesis in F1. To further define the domains of interaction, we have introduced additional Cys into subunit epsilon and subunit c and tested for cross-link formation following sulfhydryl oxidation. The results show that Cys, in a continuous stretch of residues 26-33 in subunit epsilon, can be cross-linked to Cys at positions 40, 42, and 44 in the polar loop region of subunit c. The results are interpreted, and the subunit interaction is modeled using the NMR and x-ray diffraction structures of the monomeric subunits together with information on the packing arrangement of subunit c in a ring of 12 subunits. In the model, residues 26-33 form a turn of antiparallel beta-sheet which packs between the polar loop regions of adjacent subunit c at the cytoplasmic surface of the c12 oligomer.  相似文献   

5.
Membrane-bound succinate dehydrogenases (succinate:quinone reductases, SQR) and fumarate reductases (quinol:fumarate reductases, QFR) couple the oxidation of succinate to fumarate to the reduction of quinone to quinol and also catalyse the reverse reaction. SQR (respiratory complex II) is involved in aerobic metabolism as part of the citric acid cycle and of the aerobic respiratory chain. QFR is involved in anaerobic respiration with fumarate as the terminal electron acceptor, and is part of an electron transport chain catalysing the oxidation of various donor substrates by fumarate. QFR and SQR complexes are collectively referred to as succinate:quinone oxidoreductases (EC 1.3.5.1), have very similar compositions and are predicted to share similar structures. The complexes consist of two hydrophilic and one or two hydrophobic, membrane-integrated subunits. The larger hydrophilic subunit A carries covalently bound flavin adenine dinucleotide and subunit B contains three iron-sulphur centres. QFR of Wolinella succinogenes and SQR of Bacillus subtilis contain only one hydrophobic subunit (C) with two haem b groups. In contrast, SQR and QFR of Escherichia coli contain two hydrophobic subunits (C and D) which bind either one (SQR) or no haem b group (QFR). The structure of W. succinogenes QFR has been determined at 2.2 A resolution by X-ray crystallography (C.R.D. Lancaster, A. Kr?ger, M. Auer, H. Michel, Nature 402 (1999) 377-385). Based on this structure of the three protein subunits and the arrangement of the six prosthetic groups, a pathway of electron transfer from the quinol-oxidising dihaem cytochrome b to the site of fumarate reduction and a mechanism of fumarate reduction was proposed. The W. succinogenes QFR structure is different from that of the haem-less QFR of E. coli, described at 3.3 A resolution (T.M. Iverson, C. Luna-Chavez, G. Cecchini, D.C. Rees, Science 284 (1999) 1961-1966), mainly with respect to the structure of the membrane-embedded subunits and the relative orientations of soluble and membrane-embedded subunits. Also, similarities and differences between QFR transmembrane helix IV and transmembrane helix F of bacteriorhodopsin and their implications are discussed.  相似文献   

6.
Cn12 isolated from the venom of the scorpion Centruroides noxius has 67 amino-acid residues, closely packed with four disulfide bridges. Its primary structure and disulfide bridges were determined. Cn12 is not lethal to mammals and arthropods in vivo at doses up to 100 microg per animal. Its 3D structure was determined by proton NMR using 850 distance constraints, 36 phi angles derived from 36 coupling constants obtained by two different methods, and 22 hydrogen bonds. The overall structure has a two and half turn alpha-helix (residues 24-32), three strands of antiparallel beta-sheet (residues 2-4, 37-40 and 45-48), and a type II turn (residues 41-44). The amino-acid sequence of Cn12 resembles the beta scorpion toxin class, although patch-clamp experiments showed the induction of supplementary slow inactivation of Na(+) channels in F-11 cells (mouse neuroblastoma N18TG-2 x rat DRG2), which means that it behaves more like an alpha scorpion toxin. This behaviour prompted us to analyse Na(+) channel binding sites using information from 112 Na(+) channel gene clones available in the literature, focusing on the extracytoplasmic loops of the S5-S6 transmembrane segments of domain I and the S3-S4 segments of domain IV, sites considered to be responsible for binding alpha scorpion toxins.  相似文献   

7.
4-Oxalocrotonate tautomerase (4-OT), a homohexamer consisting of 62 residues per subunit, catalyzes the isomerization of unsaturated alpha-keto acids using Pro-1 as a general base (Stivers et al., 1996a, 1996b). We report the backbone and side-chain 1H, 15N, and 13C NMR assignments and the solution secondary structure for 4-OT using 2D and 3D homonuclear and heteronuclear NMR methods. The subunit secondary structure consists of an alpha-helix (residues 13-30), two beta-strands (beta 1, residues 2-8; beta 2, residues 39-45), a beta-hairpin (residues 50-57), two loops (I, residues 9-12; II, 34-38), and two turns (I, residues 30-33; II, 47-50). The remaining residues form coils. The beta 1 strand is parallel to the beta 2 strand of the same subunit on the basis of cross stand NH(i)-NH(j) NOEs in a 2D 15N-edited 1H-NOESY spectrum of hexameric 4-OT containing two 15N-labeled subunits/hexamer. The beta 1 strand is also antiparallel to another beta 1 strand from an adjacent subunit forming a subunit interface. Because only three such pairwise interactions are possible, the hexamer is a trimer of dimers. The diffusion constant, determined by dynamic light scattering, and the rotational correlation time (14.5 ns) estimated from 15N T1/T2 measurements, are consistent with the hexameric molecular weight of 41 kDa. Residue Phe-50 is in the active site on the basis of transferred NOEs to the bound partial substrate 2-oxo-1,6-hexanedioate. Modification of the general base, Pro-1, with the active site-directed irreversible inhibitor, 3-bromopyruvate, significantly alters the amide 15N and NH chemical shifts of residues in the beta-hairpin and in loop II, providing evidence that these regions change conformation when the active site is occupied.  相似文献   

8.
The majority of bacterial membrane-bound NiFe-hydrogenases and formate dehydrogenases have homologous membrane-integral cytochrome b subunits. The prototypic NiFe-hydrogenase of Wolinella succinogenes (HydABC complex) catalyzes H2 oxidation by menaquinone during anaerobic respiration and contains a membrane-integral cytochrome b subunit (HydC) that carries the menaquinone reduction site. Using the crystal structure of the homologous FdnI subunit of Escherichia coli formate dehydrogenase-N as a model, the HydC protein was modified to examine residues thought to be involved in menaquinone binding. Variant HydABC complexes were produced in W. succinogenes, and several conserved HydC residues were identified that are essential for growth with H2 as electron donor and for quinone reduction by H2. Modification of HydC with a C-terminal Strep-tag II enabled one-step purification of the HydABC complex by Strep-Tactin affinity chromatography. The tagged HydC, separated from HydAB by isoelectric focusing, was shown to contain 1.9 mol of heme b/mol of HydC demonstrating that HydC ligates both heme b groups. The four histidine residues predicted as axial heme b ligands were individually replaced by alanine in Strep-tagged HydC. Replacement of either histidine ligand of the heme b group proximal to HydAB led to HydABC preparations that contained only one heme b group. This remaining heme b could be completely reduced by quinone supporting the view that the menaquinone reduction site is located near the distal heme b group. The results indicate that both heme b groups are involved in electron transport and that the architecture of the menaquinone reduction site near the cytoplasmic side of the membrane is similar to that proposed for E. coli FdnI.  相似文献   

9.
Storage proteins of the albumin solubility fraction from seeds of Bertholletia excelsa H.B.K. were separated by reversed-phase high-performance liquid chromatography and their primary structures were determined by gas-phase sequencing on intact polypeptides and on the overlapping tryptic and thermolysin peptides. The 2S storage proteins consist of two subunits linked by disulphide bridges. The large subunit (8.5 kDa) is expressed in at least six different isoforms while the small subunit (3.6 kDa) consists of only one form. These proteins are extremely rich in glutamine, glutamic acid, arginine and the sulphur-containing amino acids cysteine and methionine. One of the variants even contains a sequence of six methionine residues in a row. Comparison with known sequences of 2S proteins of other dicotyledonous plants shows limited but distinct sequence homology. In particular, the positions of the cysteine residues relative to each other appear to be completely conserved, suggesting that tertiary structure constraints imposed by disulphide bridges dominate sequence conservation. It has been proposed that the two subunits of a related protein (the Brassica napus storage protein) is cleaved from a precursor polypeptide [Crouch, M. L., Tenbarge, K. M., Simon, A. E. & Ferl, R. (1983) J. Mol. Appl. Genet. 2,273-283]. The amino acid sequence homology of the Brazil nut protein with the former suggests that a similar protein processing event could occur.  相似文献   

10.
Adhesive type 1 pili from uropathogenic Escherichia coli strains are heat and denaturant resistant, filamentous protein complexes. Individual pilus subunits associate through "donor strand complementation," whereby the incomplete immunoglobulin-like fold of each subunit is completed by the N-terminal extension of a neighboring subunit. We show that antiparallel donor strand insertion generally causes nonequilibrium behavior in protein folding and extreme activation energy barriers for dissociation of subunit-subunit complexes. We identify the most kinetically stable, noncovalent protein complex known to date. The complex between the pilus subunit FimG and the donor strand peptide of the subunit FimF shows an extrapolated dissociation half-life of 3 x 10(9) years. The 15 residue peptide forms ideal intermolecular beta sheet H-bonds with FimG over 10 residues, and its hydrophobic side chains strongly interact with the hydrophobic core of FimG. The results show that kinetic stability and nonequilibrium behavior in protein folding confers infinite stability against dissociation in extracellular protein complexes.  相似文献   

11.
Platelet factor 4 (PF4), which is released by platelets during coagulation, binds very tightly to negatively charged oligosaccharides such as heparin. To date, six other proteins are known that are homologous in sequence with PF4 but have quite different functions. The structure of a tetramer of bovine PF4 complexed with one Ni(CN)4(2-) molecule has been determined at 3.0 A resolution and refined to an R factor of 0.28. The current model contains residues 24-85, no solvent, and one overall temperature factor. Residues 1-13, which carried an oligosaccharide chain, were removed with elastase to induce crystallization; residues 14-23 and presumably 86-88 are disordered in the electron density map. Because no heavy atom derivative was isomorphous with the native crystals, the complex of PF4 with one Ni(CN)4(2-) molecule was solved using a single, highly isomorphous Pt(CN)4(2-) derivative and the iterative, single isomorphous replacement method. The secondary structure of the PF4 subunit, from amino- to carboxyl-terminal end, consists of an extended loop, three strands of antiparallel beta-sheet arranged in a Greek key, and one alpha-helix. The tetramer contains two extended, six-stranded beta-sheets, each formed by two subunits, which are arranged back-to-back to form a "beta-bilayer" structure with two buried salt bridges sandwiched in the middle. The carboxyl-terminal alpha-helices, which contain lysine residues that are thought to be intimately involved in binding heparin, are arranged as antiparallel pairs on the surface of each extended beta-sheet.  相似文献   

12.
T P Ko  J D Ng    A McPherson 《Plant physiology》1993,101(3):729-744
The three-dimensional structure of the vicilin storage protein canavalin, from Canavalia ensiformis, has been determined in a hexagonal crystal by x-ray diffraction methods. The model has been refined at 2.6 A resolution to an R factor of 0.197 with acceptable geometry. Because of proteolysis, 58 of 419 amino acids of the canavalin polypeptide are not visible in the electron density map. The canavalin subunit is composed of two extremely similar structural domains that reflect the tandem duplication observed in the cDNA and in the amino acid sequence. Each domain consists of two elements, a compact, eight-stranded beta-barrel having the "Swiss roll" topology and an extended loop containing several short alpha-helices. The root mean square deviation between 84 pairs of corresponding C alpha atoms making up the strands of the two beta-barrels in a subunit is 0.78 A, and for 112 pairs of structurally equivalent C alpha atoms of the two domains the deviation is 1.37 A. The interface between domains arises from the apposition of broad hydrophobic surfaces formed by side chains originating from one side of the beta-barrels, supplemented by at least four salt bridges. The interfaces between subunits in the trimer are supplied by the extended loop elements. These interfaces are also composed primarily of hydrophobic residues supplemented by six salt bridges. The canavalin subunits have dimensions about 40 x 40 x 86 A, and the oligomer is a disk-shaped molecule about 88 A in diameter with a thickness of about 40 A. The distribution of domains lends a high degree of pseudo-32-point group symmetry to the molecule. There is a large channel of 18 A diameter, lined predominantly by hydrophilic and charged amino acids, running through the molecule along the 3-fold axis. The majority of residues conserved between domains and among vicilins occur at the interface between subunits but appear otherwise arbitrarily distributed within the subunit, although predominantly on its exterior.  相似文献   

13.
Transcarboxylase (TC) from Propionibacterium shermanii, a biotin-dependent enzyme, catalyzes the transfer of a carboxyl group from methylmalonyl-CoA to pyruvate to form propionyl-CoA and oxalacetate. Within the multi-subunit enzyme complex, the 1.3S subunit functions as the carboxyl group carrier and also binds the other two subunits to assist in the overall assembly of the enzyme. The 1.3S subunit is a 123 amino acid polypeptide (12.6 kDa) to which biotin is covalently attached at Lys 89. The three-dimensional solution structure of the full-length holo-1.3S subunit of TC has been solved by multidimensional heteronuclear NMR spectroscopy. The C-terminal half of the protein (51-123) is folded into a compact all-beta-domain comprising of two four-stranded antiparallel beta-sheets connected by short loops and turns. The fold exhibits a high 2-fold internal symmetry and is similar to that of the biotin carboxyl carrier protein (BCCP) of acetyl-CoA carboxylase, but lacks an extension that has been termed "protruding thumb" in BCCP. The first 50 residues, which have been shown to be involved in intersubunit interactions in the intact enzyme, appear to be disordered in the isolated 1.3S subunit. The molecular surface of the folded domain has two distinct surfaces: one side is highly charged, while the other comprises mainly hydrophobic, highly conserved residues.  相似文献   

14.
Splicing of eukaryal intron-containing tRNAs requires the action of the heterotetrameric splicing endonuclease, which is composed of two catalytic subunits, Sen34 and Sen2, and two structural subunits, Sen15 and Sen54. Here we report the solution structure of the human tRNA splicing endonuclease subunit HsSen15. To facilitate the structure determination, we removed the disordered 35 N-terminal and 14 C-terminal residues of the full-length protein to produce HsSen15(36-157). The structure of HsSen15(36-157), the first for a subunit of a eukaryal splicing endonuclease, revealed that the protein possesses a novel homodimeric fold. Each monomer consists of three alpha-helices and a mixed antiparallel/parallel beta-sheet, arranged in a topology similar to that of the C-terminal domain of Methanocaldococcus jannaschii endonuclease. The dimeric interface is dominated by a beta-barrel structure, formed by face-to-face packing of two, three-stranded beta-sheets. Each of the beta-sheets results from reciprocal parallel pairing of one beta-strand from one subunit with two other beta-strands from the symmetric subunit. The structural model provides insights into the functional assembly of the human tRNA splicing endonuclease.  相似文献   

15.
An antiparallel actin dimer has been proposed to be an intermediate species during actin filament nucleation. We now show that latrunculin A, a marine natural product that inhibits actin polymerization, arrests polylysine-induced nucleation at the level of an antiparallel dimer, resulting in its accumulation. These dimers, when composed of pyrene-labeled actin subunits, give rise to a fluorescent excimer, permitting detection during polymerization in vitro. We report the crystallographic structure of the polylysine-actin-latrunculin A complex at 3.5-A resolution. The non-crystallographic contact is consistent with a dimeric structure and confirms the antiparallel orientation of its subunits. The crystallographic contacts reveal that the mobile DNase I binding loop of one subunit of a symmetry-related antiparallel actin dimer is partially stabilized in the interface between the two subunits of a second antiparallel dimer. These results provide a potential explanation for the paradoxical nucleation of actin filaments that have exclusively parallel subunits by a dimer containing antiparallel subunits.  相似文献   

16.
We have isolated essentially full-length cDNA clones for human ferritin H and L chains from a human liver cDNA library. This allows the first comparison of H and L nucleotide and amino acid sequences from the same species as well as ferritin L cDNA sequences from different species. We conclude that human H and L ferritins are related proteins which diverged about the time of evolution of birds and mammals. We also deduce the secondary structure of the H and L subunits and compare this with the known structure of horse spleen ferritin. We find that residues involved in subunit interaction in shell assembly are highly conserved in H and L sequences. However, we find several interesting differences in H subunits at the amino acid residues involved in iron transport and deposition. These substitutions could account for known differences in the uptake, storage, and release of iron from isoferritins of different subunit composition.  相似文献   

17.
Primary structure of the reaction center from Rhodopseudomonas sphaeroides   总被引:17,自引:0,他引:17  
The reaction center is a pigment-protein complex that mediates the initial photochemical steps of photosynthesis. The amino-terminal sequences of the L, M, and H subunits and the nucleotide and derived amino acid sequences of the L and M structural genes from Rhodopseudomonas sphaeroides have previously been determined. We report here the sequence of the H subunit, completing the primary structure determination of the reaction center from R. sphaeroides. The nucleotide sequence of the gene encoding the H subunit was determined by the dideoxy method after subcloning fragments into single-stranded M13 phage vectors. This information was used to derive the amino acid sequence of the corresponding polypeptide. The termini of the primary structure of the H subunit were established by means of the amino and carboxy terminal sequences of the polypeptide. The data showed that the H subunit is composed of 260 residues, corresponding to a molecular weight of 28,003. A molecular weight of 100,858 for the reaction center was calculated from the primary structures of the subunits and the cofactors. Examination of the genes encoding the reaction center shows that the codon usage is strongly biased towards codons ending in G and C. Hydropathy analysis of the H subunit sequence reveals one stretch of hydrophobic residues near the amino terminus; the L and M subunits contain five such stretches. From a comparison of the sequences of homologous proteins found in bacterial reaction centers and photosystem II of plants, an evolutionary tree was constructed. The analysis of evolutionary relationships showed that the L and M subunits of reaction centers and the D1 and D2 proteins of photosystem II are descended from a common ancestor, and that the rate of change in these proteins was much higher in the first billion years after the divergence of the reaction center and photosystem II than in the subsequent billion years represented by the divergence of the species containing these proteins.  相似文献   

18.
Coagulation factor XI (FXI) is a covalent homodimer consisting of two identical subunits of 80 kDa linked by a disulfide bond formed by Cys-321 within the Apple 4 domain of each subunit. Because FXI(C321S) is a noncovalent dimer, residues within the interface between the two subunits must mediate its homodimeric structure. The crystal structure of FXI demonstrates formation of salt bridges between Lys-331 of one subunit and Glu-287 of the other subunit and hydrophobic interactions at the interface of the Apple 4 domains involving Ile-290, Leu-284, and Tyr-329. FXI(C321S), FXI(C321S,K331A), FXI(C321S,E287A), FXI(C321S,I290A), FXI(C321S,Y329A), FXI(C321S,L284A), FXI(C321S,K331R), and FXI(C321S,H343A) were expressed in HEK293 cells and characterized using size exclusion chromatography, analytical ultracentrifugation, electron microscopy, and functional assays. Whereas FXI(C321S) and FXI(C321S,H343A) existed in monomer/dimer equilibrium (K(d) approximately 40 nm), all other mutants were predominantly monomers with impaired dimer formation by analytical ultracentrifugation (K(d)=3-38 microm). When converted to the active enzyme, FXIa, all the monomeric mutants activated FIX similarly to wild-type dimeric FXIa. In contrast, these monomeric mutants could not be activated efficiently by FXIIa, thrombin, or autoactivation in the presence of dextran sulfate. We conclude that salt bridges formed between Lys-331 of one subunit and Glu-287 of the other together with hydrophobic interactions at the interface, involving residues Ile-290, Leu-284, and Tyr-329, are essential for homodimer formation. The dimeric structure of FXI is essential for normal proteolytic activation of FXI by FXIIa, thrombin, or FXIa either in solution or on an anionic surface but not for FIX activation by FXIa in solution.  相似文献   

19.
Moens PD  Wahl MC  Jameson DM 《Biochemistry》2005,44(9):3298-3305
The "stalk" of the prokaryotic 50S ribosomal subunit is comprised of four copies of the protein L7/L12. In Escherichia coli, L7/L12 is a dimeric protein at micromolar concentrations, which is able to undergo rapid subunit exchange. A recent structural study indicated a tetrameric arrangement of the L12 proteins isolated from Thermotoga maritima, in which the proteins engaged in two different dimerization modes. In one mode, the two monomers of L12 form a tight symmetric and parallel dimer held together by a four-helix bundle, which encompasses the hinge region between the N- and C-terminal domains. In the other mode, the two monomers bind through their N-terminal region in an antiparallel configuration, in which one monomer comprises an alpha-helical hinge and the other monomer adopts an elongated shape with an unfolded hinge region. Presently, it is unclear which dimer contact prevails in solution and on the ribosome. Using cysteine mutants of T. maritima labeled with fluorescent probes, we investigated the mode of interactions between L12 subunits. Data from Forster resonance energy transfer experiments support a dimerization of L12 in solution, in which two monomers bind through their N-terminal region in an antiparallel configuration. We also demonstrate that the rate of subunit exchange in T. maritima L12 is significantly slower at 25 degrees C than that in the E. coli system. The exchange rate increases with increasing temperature and approaches the one observed for the E. coli system at 50 degrees C. Possible factors responsible for this difference are discussed.  相似文献   

20.
Renal gamma-glutamyl transpeptidases: structural and immunological studies   总被引:2,自引:0,他引:2  
Mammalian kidney gamma-glutamyl transpeptidases are compared with respect to subunit size, amino-terminal sequences of the two subunits, immunological, and some catalytic properties. The species-related variation in the apparent molecular weight of the subunits has been shown to be primarily due to the extent and nature of protein glycosylation. Using antibodies raised against the native enzymes and isolated sodium dodecyl sulfate-treated subunits, it is shown that the transpeptidases share some antigenic determinants. Some of these determinants in the highly glycosylated transpeptidase subunits can be detected by the antibodies only upon deglycosylation of the subunits. The amino-terminal sequences of the subunits exhibit considerable homology, in agreement with the immunological data. Thus, there are two segments of identity (3 and 5 residues in length, respectively) in the first 17 amino-terminal residues of the heavy subunits of rat, bovine, dog, and human kidney transpeptidases (papain-solubilized). Of particular interest is the finding of 91 to 96% identity in the first 23 amino-terminal residues of the small subunit of these transpeptidases. The small subunit contains the gamma-glutamyl binding site of the enzyme. There are three segments of identity (7, 6, and 8 residues in length, respectively) in the first 23 residues, each separated by either a Ser or an Ala residue. The first 7 amino-terminal residues of the small subunit in all four species are identical, indicating a high degree of specificity in the proteolytic processing of the common, single-chain precursor of the two subunits. Differences noted between transpeptidases in their relative acceptor specificity and in their susceptibility to inactivation by the glutamine antagonist, AT-125 (acivicin), must reflect subtle structural differences in their active center domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号