首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anaerobic nitrogen-fixing consortia consisting of N2-fixing clostridia and diverse nondiazotrophic bacteria were previously isolated from various gramineous plants (K. Minamisawa, K. Nishioka, T. Miyaki, B. Ye, T. Miyamoto, M. You, A. Saito, M. Saito, W. Barraquio, N. Teaumroong, T. Sein, and T. Tadashi, Appl. Environ. Microbiol. 70:3096-3102, 2004). For this work, clostridial populations and their phylogenetic structures in a stand of the grass Miscanthus sinensis in Japan were assessed by a 16S rRNA gene-targeted terminal restriction fragment length polymorphism (TRFLP) analysis combined with most-probable-number (MPN) counts. PCR primers and restriction enzymes were optimized for analyses of the plant clostridia. Clostridia were detected in strongly surface-sterilized leaves, stems, and roots of the plants at approximately 10(4) to 10(5) cells/g of fresh weight; they made up a large proportion of N2-fixing bacterial populations, as determined by MPN counts associated with an acetylene reduction assay. Phylogenetic grouping by MPN-TRFLP analysis revealed that the clostridial populations belonged to group II of cluster XIVa and groups IV and V of cluster I; this result was supported by a culture-independent TRFLP analysis using direct DNA extraction from plants. When phylogenetic populations from M. sinensis and the soil around the plants were compared, group II clostridia were found to exist exclusively in M. sinensis.  相似文献   

2.
We report here the existence of anaerobic nitrogen-fixing consortia (ANFICOs) consisting of N2-fixing clostridia and diverse nondiazotrophic bacteria in nonleguminous plants; we found these ANFICOs while attempting to overcome a problem with culturing nitrogen-fixing microbes from various gramineous plants. A major feature of ANFICOs is that N2 fixation by the anaerobic clostridia is supported by the elimination of oxygen by the accompanying bacteria in the culture. In a few ANFICOs, nondiazotrophic bacteria specifically induced nitrogen fixation of the clostridia in culture. ANFICOs are widespread in wild rice species and pioneer plants, which are able to grow in unfavorable locations. These results indicate that clostridia are naturally occurring endophytes in gramineous plants and that clostridial N2 fixation arises in association with nondiazotrophic endophytes.  相似文献   

3.
Primer sets specific for 16S rRNA genes were designed for four phylogenetic groups of clostridia known to contain mesophilic cellulolytic species. Specific amplification of these groups from landfill leachate DNA extracts demonstrated the widespread occurrence of clostridia from the Clostridium thermocellum and C. leptum groups. In contrast, the C. botulinum group was never detected, and the C. coccoides-C. lentocellum group was only occasionally detected. Amplification products were analyzed by temporal thermal gel electrophoresis to generate profiles of the clostridial groups and to identify dominant bands. Sequence analysis of 17 landfill clones confirmed that the primers were specific for the clostridial subgroups and that the cloned sequences had a close relationship with known cellulose-degrading clostridia. The primers have therefore been authenticated for use in the rapid identification of clostridia in anaerobic environments.  相似文献   

4.
We report here the existence of anaerobic nitrogen-fixing consortia (ANFICOs) consisting of N(2)-fixing clostridia and diverse nondiazotrophic bacteria in nonleguminous plants; we found these ANFICOs while attempting to overcome a problem with culturing nitrogen-fixing microbes from various gramineous plants. A major feature of ANFICOs is that N(2) fixation by the anaerobic clostridia is supported by the elimination of oxygen by the accompanying bacteria in the culture. In a few ANFICOs, nondiazotrophic bacteria specifically induced nitrogen fixation of the clostridia in culture. ANFICOs are widespread in wild rice species and pioneer plants, which are able to grow in unfavorable locations. These results indicate that clostridia are naturally occurring endophytes in gramineous plants and that clostridial N(2) fixation arises in association with nondiazotrophic endophytes.  相似文献   

5.
Inoculated and non-inoculated seedlings of maize were grown in fertile clayloam soils of Egypt and Belgium under subtropical conditions provided in a greenhouse. Acetylene-reducing activity and microbial counts were determined during a period ranging from 6 to 12 weeks after sowing. Irrespective of soil origin, N2-fixing spirilla and Azotobacter were common under maize cultivation. Inoculation resulted in a transitional increase in their numbers at early stages of growth. Nitrogenase activity was not detected in the rhizosphere of young plants. The maximum activities measured (81 to 1,436 nmol of C2H4 g−1 h−1) occurred close to the 50 to 70% silking stage. Inoculation with N2-fixing spirilla, particularly in Nile Delta soil, doubled the amount of N2 fixed in a late period of growth (12 weeks), whereas inoculation with Azotobacter had no noticeable effect.  相似文献   

6.
Soybean plants (Glycine max [L.] Merr. cv Williams), which were symbiotic with Bradyrhizobium japonicum, and which grew well upon reduced nitrogen supplied solely through N2 fixation processes, often exhibited excess accumulation of starch and sucrose and diminished soluble protein in their source leaves. Nitrate and ammonia, when supplied to the nodulated roots of N2-fixing plants, mediated a reduction of foliar starch accumulation and a corresponding increase in soluble protein in the source leaves. This provided an opportunity to examine the potential metabolic adjustments by which NO3 and NH4+ (N) sufficiency or deficiency exerted an influence upon soybean leaf starch synthesis. When compared with soybean plants supplied with N, elevated starch accumulation was focused in leaf palisade parenchyma tissue of N2-fixing plants. Foliar activities of starch synthesis pathway enzymes including fructose-1,6-bisphosphate phosphatase, phosphohexoisomerase, phosphoglucomutase (PGM), as well as adenosine diphosphate glucose pyrophosphorylase (in some leaves) exhibited highest activities in leaf extracts of N2-fixing plants when expressed on a leaf protein basis. This was interpreted to mean that there was an adaptation of these enzyme activities in the leaves of N2-fixing plants, and this contributed to an increase in starch accumulation. Another major causal factor associated with increased starch accumulation was the elevation in foliar levels of fructose-6-phosphate, glucose-6-phosphate, and glucose-1-phosphate (G1P), which had risen to chloroplast concentrations considerably in excess of the Km values for their respective target enzymes associated with starch synthesis, e.g. elevated G1P with respect to adenosine diphosphate glucose pyrophosphorylase (ADPG-PPiase) binding sites. The cofactor glucose-1,6-bisphosphate (G1,6BP) was found to be obligate for maximal PGM activity in soybean leaf extracts of N2-fixing as well as N-supplemented plants, and G1,6BP levels in N2-fixing plant leaves was twice that of levels in N-supplied treatments. However the concentration of chloroplastic G1,6BP in illuminated leaves was computed to be saturating with respect to PGM in both N2-fixing and N-supplemented plants. This suggested that the higher level of this cofactor in N2-fixing plant leaves did not confer any higher PGM activation and was not a factor in higher starch synthesis rates. Relative to plants supplied with NO3 and NH4+, the source leaf glycerate-3-phosphate (3-PGA) and orthophosphate (Pi) concentrations in leaves of N2-fixing plants were two to four times higher. Although Pi is a physiological competitive inhibitor of leaf chloroplast ADPG-PPiase, and hence, starch synthesis, elevated chloroplast 3-PGA levels in N2-fixing plant leaves apparently prevented interference of Pi with ADPG-PPiase catalysis and starch synthesis.  相似文献   

7.
The aim of this study was to determine the effects of different agricultural treatments and plant communities on the diversity of ammonia oxidizer populations in soil. Denaturing gradient gel electrophoresis (DGGE), coupled with specific oligonucleotide probing, was used to analyze 16S rRNA genes of ammonia oxidizers belonging to the β subgroup of the division Proteobacteria by use of DNA extracted from cultivated, successional, and native deciduous forest soils. Community profiles of the different soil types were compared with nitrification rates and most-probable-number (MPN) counts. Despite significant variation in measured nitrification rates among communities, there were no differences in the DGGE banding profiles of DNAs extracted from these soils. DGGE profiles of DNA extracted from samples of MPN incubations, cultivated at a range of ammonia concentrations, showed the presence of bands not amplified from directly extracted DNA. Nitrosomonas-like bands were seen in the MPN DNA but were not detected in the DNA extracted directly from soils. These bands were detected in some samples taken from MPN incubations carried out with medium containing 1,000 μg of NH4+-N ml−1, to the exclusion of bands detected in the native DNA. Cell concentrations of ammonia oxidizers determined by MPN counts were between 10- and 100-fold lower than those determined by competitive PCR (cPCR). Although no differences were seen in ammonia oxidizer MPN counts from the different soil treatments, cPCR revealed higher numbers in fertilized soils. The use of a combination of traditional and molecular methods to investigate the activities and compositions of ammonia oxidizers in soil demonstrates differences in fine-scale compositions among treatments that may be associated with changes in population size and function.  相似文献   

8.
Miliusa sinensis Finet and Gagnep. have recently been subjected to numerous scientific studies pursuing its structure and biological properties. The chromatographic separation of the components from the methanolic extract of M. sinensis leaves yielded three new bisstyryls, namely, sinenbisstyryls A–C (13). The structures of the new compounds were determined via interpretation of their spectroscopic data. Of the isolated compounds, sinenbisstyryl A (1) exhibited cytotoxic activity against the A549 human lung, HepG2 human hepatocyte carcinoma, MCF7 human breast, and DU145 human prostate cancer cell lines, with IC50 values of between 11.46 μM and 19.01 μM in four cases.  相似文献   

9.
The DNA recombination and repair machinery of Mycoplasma pneumoniae is composed of a limited set of approximately 11 proteins. Two of these proteins were predicted to be encoded by neighboring open reading frames (ORFs) MPN340 and MPN341. Both ORFs were found to have sequence similarity with genes that encode proteins belonging to the DNA helicase superfamily 1 (SF1). Interestingly, while a homolog of the MPN341 ORF is present in the genome of Mycoplasma genitalium (ORF MG244), MPN340 is an M. pneumoniae-specific ORF that is not found in other mycoplasmas. Moreover, the length of MPN340 (1590 base pairs [bp]) is considerably shorter than that of MPN341 (2148 bp). Examination of the MPN340-encoded amino acid sequence indicated that it may lack a so-called 2B subdomain, which is found in most SF1 DNA helicases. Also, the MPN340-encoded amino acid sequence was found to differ between subtype 1 strain M129 and subtype 2 strain FH at three amino acid positions. Both protein variants, which were termed PcrAs M129 and PcrAs FH, respectively, as well as the MPN341- and MG244-encoded proteins (PcrAMpn and PcrAMge, respectively), were purified, and tested for their ability to interact with DNA. While PcrAMpn and PcrAMge were found to bind preferentially to single-stranded DNA, both PcrAs M129 and PcrAs FH did not demonstrate significant DNA binding. However, all four proteins were found to have divalent cation- and ATP-dependent DNA helicase activity. The proteins displayed highest activity on partially double-stranded DNA substrates carrying 3′ single-stranded extensions.  相似文献   

10.
Miscanthus sinensis is a moderately invasive ornamental grass species being considered as a bioenergy species in the USA and elsewhere. In this study, we show the range of environmental conditions tolerated by this species in wild populations in the USA and in Japan. Six naturalized populations in the USA and five native populations in Japan were sampled in summer 2009. In each population, environmental factors (canopy cover and soil fertility) were measured, along with measurements of size and morphology for 30 plants. Relationships between M. sinensis size and environmental variables in the two countries were determined using linear mixed effects models. Results indicated that M. sinensis can tolerate extremely wide variation in soil and climate conditions in the populations we sampled across both ranges, suggesting that it could be successfully grown across a wide distribution in the USA, both intentionally as a bioenergy crop and unintentionally as an escaped invader. Plant size generally responded to different environmental conditions in both ranges, with USA plants being negatively influenced by canopy cover and Japanese plants being positively influenced by soil fertility measures. We recommend caution in growing M. sinensis for bioenergy or ornamental purposes to minimize escape outside of its native range.  相似文献   

11.
Kobayashi M., Yokogawa M., Mori M. and Tatibana M. 1978. Pyrimidine nucleotide biosynthesis in Clonorchis sinensis and Paragonimus ohirai. International Journal for Parasitology8: 471–477. A carbamoyl phosphate synthetase was detected in the cytosol fractions of the adult worms of Clonorchis sinensis and Paragonimus ohirai. The enzyme was partially purified and was shown to utilize both l-glutamine and ammonia and does not require N-acetyl-l-glutamate. The enzyme was subject to specific feedback inhibition by end products such as UDP, UTP, CDP, dUDP and dCDP and was stimulated by 5-phosphoribosyl-1-pyrophosphate. These properties of the synthetase were similar to those of carbamoyl phosphate synthetase II demonstrated in mammalian tissues Some other enzyme activities of this pathway were also detected in both species. Paragonimus ohirai actively incorporated 14CO2 into uridine nucleotides; accumulation of intermediates of the pathway was not seen. These results indicate that the carbamoyl phosphate synthetase plays a key and regulatory step of de novo pyrimidine nucleotide biosynthesis in these worms.  相似文献   

12.
High-N2-fixing activities of Frankia populations in root nodules on Alnus glutinosa improve growth performance of the host plant. Therefore, the establishment of active, nodule-forming populations of Frankia in soil is desirable. In this study, we inoculated Frankia strains of Alnus host infection groups I, IIIa, and IV into soil already harboring indigenous populations of infection groups (IIIa, IIIb, and IV). Then we amended parts of the inoculated soil with leaf litter of A. glutinosa and kept these parts of soil without host plants for several weeks until they were spiked with [15N]NO3 and planted with seedlings of A. glutinosa. After 4 months of growth, we analyzed plants for growth performance, nodule formation, specific Frankia populations in root nodules, and N2 fixation rates. The results revealed that introduced Frankia strains incubated in soil for several weeks in the absence of plants remained infective and competitive for nodulation with the indigenous Frankia populations of the soil. Inoculation into and incubation in soil without host plants generally supported subsequent plant growth performance and increased the percentage of nitrogen acquired by the host plants through N2 fixation from 33% on noninoculated, nonamended soils to 78% on inoculated, amended soils. Introduced Frankia strains representing Alnus host infection groups IIIa and IV competed with indigenous Frankia populations, whereas frankiae of group I were not found in any nodules. When grown in noninoculated, nonamended soil, A. glutinosa plants harbored Frankia populations of only group IIIa in root nodules. This group was reduced to 32% ± 23% (standard deviation) of the Frankia nodule populations when plants were grown in inoculated, nonamended soil. Under these conditions, the introduced Frankia strain of group IV was established in 51% ± 20% of the nodules. Leaf litter amendment during the initial incubation in soil without plants promoted nodulation by frankiae of group IV in both inoculated and noninoculated treatments. Grown in inoculated, amended soils, plants had significantly lower numbers of nodules infected by group IIIa (8% ± 6%) than by group IV (81% ± 11%). On plants grown in noninoculated, amended soil, the original Frankia root nodule population represented by group IIIa of the noninoculated, nonamended soil was entirely exchanged by a Frankia population belonging to group IV. The quantification of N2 fixation rates by 15N dilution revealed that both the indigenous and the inoculated Frankia populations of group IV had a higher specific N2-fixing capacity than populations belonging to group IIIa under the conditions applied. These results show that through inoculation or leaf litter amendment, Frankia populations with high specific N2-fixing capacities can be established in soils. These populations remain infective on their host plants, successfully compete for nodule formation with other indigenous or inoculated Frankia populations, and thereby increase plant growth performance.  相似文献   

13.
The response of legumes to inoculation with rhizobia can be affected by many factors. Little work has been undertaken to examine how indigenous populations or rhizobia affect this response. We conducted a series of inoculation trials in four Hawaiian soils with six legume species (Glycine max, Vigna unguiculata, Phaseolus lunatus, Leucaena leucocephala, Arachis hypogaea, and Phaseolus vulgaris) and characterized the native rhizobial populations for each species in terms of the number and effectiveness of the population for a particular host. Inoculated plants had, on average, 76% of the nodules formed by the inoculum strain, which effectively eliminated competition from native strains as a variable between soils. Rhizobia populations ranged from less than 6 × 100/g of soil to 1 × 104/g of soil. The concentration of nitrogen in shoots of inoculated plants was not higher than that in uninoculated controls when the most probable number MPN counts of rhizobia were at or above 2 × 101/g of soil unless the native population was completely ineffective. Tests of random isolates from nodules of uninoculated plants revealed that within most soil populations there was a wide range of effectiveness for N2 fixation. All populations had isolates that were ineffective in fixing N2. The inoculum strains generally did not fix more N2 than the average isolate from the soil population in single-isolate tests. Even when the inoculum strain proved to be a better symbiont than the soil rhizobia, there was no response to inoculation. Enhanced N2 fixation after inoculation was related to increased nodule dry weights. Although inoculation generally increased nodule number when there were less than 1 × 102 rhizobia per g of soil, there was no corresponding increase in nodule dry weight when native populations were effective. Most species compensated for reduced nodulation in soils with few rhizobia by increasing the size of nodules and therefore maintaining a nodule dry weight similar to that of inoculated plants with more nodules. Even when competition by native soil strains was overcome with a selected inoculum strain, it was not always possible to enhance N2 fixation when soil populations were above a threshold number and had some effective strains.  相似文献   

14.
We simultaneously determined the phylogenetic identification and substrate uptake patterns of sulfate-reducing bacteria (SRB) inhabiting a sewer biofilm with oxygen, nitrate, or sulfate as an electron acceptor by combining microautoradiography and fluorescent in situ hybridization (MAR-FISH) with family- and genus-specific 16S rRNA probes. The MAR-FISH analysis revealed that Desulfobulbus hybridized with probe 660 was a dominant SRB subgroup in this sewer biofilm, accounting for 23% of the total SRB. Approximately 9 and 27% of Desulfobulbus cells detected with probe 660 could take up [14C]propionate with oxygen and nitrate, respectively, as an electron acceptor, which might explain the high abundance of this species in various oxic environments. Furthermore, more than 40% of Desulfobulbus cells incorporated acetate under anoxic conditions. SRB were also numerically important members of H2-utilizing and 14CO2-fixing microbial populations in this sewer biofilm, accounting for roughly 42% of total H2-utilizing bacteria hybridized with probe EUB338. A comparative 16S ribosomal DNA analysis revealed that two SRB populations, related to the Desulfomicrobium hypogeium and the Desulfovibrio desulfuricans MB lineages, were found to be important H2 utilizers in this biofilm. The substrate uptake characteristics of different phylogenetic SRB subgroups were compared with the characteristics described to date. These results provide further insight into the correlation between the 16S rRNA phylogenetic diversity and the physiological diversity of SRB populations inhabiting sewer biofilms.  相似文献   

15.
Nineteen reported compounds (1–19) were obtained from the dried petioles and leaves of Aquilaria sinensis (Thymelaeacea) by phytochemical methods. Their structures were determined on the basis of spectroscopic methods. Among them, compounds 6–14 and 16 were firstly obtained from the genus Aquilaria, 2 and 3 were obtained from A. sinensis for the first time. In addition, the chemotaxonomic relationships between A. sinensis and some other plants were also discussed.  相似文献   

16.
Ophiocordyceps sinensis (Ascomycota: Ophiocordycipitaceae) is a native fungal parasite of Hepialidae caterpillars and one of the most economically important medicinal caterpillar fungi in China. However, little is known about the phylogenetic and evolutionary relationships between O. sinensis and its host insects. In this study, nuclear ITS and β-tubulin sequences from O. sinensis and mitochondrial COI, COII, and Cytb sequences from its hosts were analyzed across 33 populations sampled from five regions in China. Phylogenetically, both O. sinensis and its hosts were divided into three geographically correlated clades, and their phylogenies were congruent. Analysis of molecular variance and calculated coefficients of genetic differentiation revealed significant genetic divergence among the clades within both O. sinensis (FST= 0.878, NST=0.842) and its hosts (FST=0.861, NST=0.816). Estimated gene flow was very low for O. sinensis (Nm=0.04) and the host insects (Nm=0.04) among these three clades. Mantel tests demonstrated a significant correlation (P<0.01) between the genetic distances for O. sinensis and its hosts, as well as a significant association (P<0.05) between geographic and genetic distances in both. The similar phylogenetic relationships, geographic distributions, and genetic structure and differentiation between O. sinensis and its hosts imply that they have coevolved.  相似文献   

17.
Cyanoprokaryote assemblages in eight productive tropical Brazilian waters   总被引:4,自引:0,他引:4  
Huszar  V. L. M.  Silva  L. H. S.  Marinho  M.  Domingos  P.  Sant'Anna  C. L. 《Hydrobiologia》2000,424(1-3):67-77
  相似文献   

18.
A new class of 2(1H)-pyrimidinone derivatives was identified as potential EGFR T790M inhibitors against TKI-resistant NSCLC. These novel compounds inhibited the EGFR T790M kinase activity at concentrations in the range of 85.3 to 519.9 nM. In particular, compound 7e exhibited the strongest activity against both EGFRWT (IC50 = 96.9 nM) and EGFRT790M (IC50 = 85.3 nM) kinases in the cells. Compared with inhibitor 7e, compound 7b displayed enhanced antiproliferative activity against gefitinib-resistant H1975 cells harboring the EGFR T790M mutation. In addition, compound 7b also has low toxicity against the normal human liver cells LO2, with an IC50 of 11.1 µM. Moreover, both the AO/EB and DAPI staining assays also demonstrated the inhibitory efficacy of 7b against the resistant H1975 cells. This contribution provides a new scaffold 2(1H)-pyrimidinone as potential EGFR T790M inhibitor against drug-resistant NSCLC.  相似文献   

19.
The genus Burkholderia comprises 19 species, including Burkholderia vietnamiensis which is the only known N2-fixing species of this bacterial genus. The first isolates of B. vietnamiensis were recovered from the rhizosphere of rice plants grown in a phytotron, but its existence in natural environments and its geographic distribution were not reported. In the present study, most N2-fixing isolates recovered from the environment of field-grown maize and coffee plants cultivated in widely separated regions of Mexico were phenotypically identified as B. cepacia using the API 20NE system. Nevertheless, a number of these isolates recovered from inside of maize roots, as well as from the rhizosphere and rhizoplane of maize and coffee plants, showed similar or identical features to those of B. vietnamiensis TVV75T. These features include nitrogenase activity with 10 different carbon sources, identical or very similar nifHDK hybridization patterns, very similar protein electrophoregrams, identical amplified 16S rDNA restriction (ARDRA) profiles, and levels of DNA-DNA reassociation higher than 70% with total DNA from strain TVV75T. Although the ability to fix N2 is not reported to be a common feature among the known species of the genus Burkholderia, the results obtained show that many diazotrophic Burkholderia isolates analyzed showed phenotypic and genotypic features different from those of the known N2-fixing species B. vietnamiensis as well as from those of B. kururiensis, a bacterium identified in the present study as a diazotrophic species. DNA-DNA reassociation assays confirmed the existence of N2-fixing Burkholderia species different from B. vietnamiensis. In addition, this study shows the wide geographic distribution and substantial capability of N2-fixing Burkholderia spp. for colonizing diverse host plants in distantly separated environments.  相似文献   

20.

Key message

Typical toxic symptom only occurred in B-toxic C. grandis leaves. B-toxicity induced PCD of C. grandis leaf phloem tissue. The lower leaf free B might contribute to the higher B-tolerance of C. sinensis.

Abstract

Seedlings of ‘Xuegan’ (Citrus sinensis) and ‘Sour pummelo’ (Citrus grandis) differing in boron (B)-tolerance were irrigated with nutrient solution containing 10 (control) or 400 (B-toxic) μM H3BO3 for 15 weeks. Thereafter, the effects of B-toxicity on leaf photosynthesis, chlorophyll, plant B absorption and distribution, root and leaf anatomy were investigated to elucidate the possible B-tolerant mechanisms of Citrus plants. Typical toxic symptom only occurred in B-toxic C. grandis leaves. Similarly, B-toxicity only affected C. grandis photosynthesis and chlorophyll. Although total B concentration in B-toxic roots and leaves was similar between the two species, leaves from B-toxic C. grandis plant middle had higher free B and lower bound B as compared with those from C. sinensis. Effects of B-toxicity on leaf structure were mainly limited to the mesophyll cells and the phloem of leaf veins. Although irregular cell wall thickening was observed in leaf cortex cells and phloem tissue of B-toxic C. grandis and C. sinensis leaves, exocytosis only occurred in the companion cells and the parenchyma cells of B-toxic C. sinensis leaf phloem. Also, B-toxicity induced cell death of phloem tissue through autophagy in C. grandis leaf veins. B-toxicity caused death of root epidermal cells of the two Citrus species. B-toxicity restrained degradation of middle lamella, but did not alter ultrastructure of Golgi apparatus and mitochondria in root elongating zone cells. In conclusion, C. sinensis was more tolerant to B-toxicity than C. grandis. The lower leaf free B and higher bound B might contribute to the higher B-tolerance of C. sinensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号