首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The accumulation of labelled inositol mono-, bis-, and trisphosphate in rat cerebral cortex slices was examined following preincubation with [3H]inositol. The muscarinic receptor agonist carbachol produced a rapid and sustained increased accumulation of each labelled inositol phosphate both in the presence and absence of 5 mM lithium. Lithium potentiated carbachol-stimulated accumulation of inositol monophosphate (EC50 0.5 mM) and inositol bisphosphate (EC50 4 mM) in a concentration-dependent manner. However, exposure to lithium in the presence of the muscarinic agonist produced a concentration- and time-dependent inhibition of inositol trisphosphate accumulation that was not related to receptor desensitisation. Although the present data do suggest that polyphosphoinositides are substrates for agonist-stimulated phospholipase C in brain, these results may not be entirely consistent with the production of inositol mono- and bisphosphate through inositol trisphosphate dephosphorylation. Furthermore, these data suggest site(s) additional to inositol monophosphatase that are affected by lithium.  相似文献   

2.
We have investigated the effects of in vivo lithium treatment on cerebral inositol phospholipid metabolism. Twice-daily treatment of rats with LiCl (3 mEq/kg) for 3 or 16 days resulted in a 25-40% reduction in agonist-stimulated inositol phosphate production, compared with NaCl-treated controls, in cortical slices prelabelled with [3H]inositol. A small effect was also seen with 5-hydroxytryptamine (5-HT) 24 h after a single dose of LiCl (10 mEq/kg). Dose-response curves to carbachol and 5-HT showed that lithium treatment reduced the maximal agonist response without altering the EC50 value. This inhibition was not affected by the concentration of LiCl in the assay buffer. Stimulation of inositol phosphate formation by 10 mM NaF in membranes prepared from cortex of 3-day lithium-treated rats was also inhibited, by 35% compared with NaCl-treated controls. Lithium treatment did not alter the kinetic profile of inositol polyphosphate formation in cortical slices stimulated with carbachol. Muscarinic cholinergic and 5-HT2 bindings were unaltered by lithium, as was cortical phospholipase C activity and isoproterenol-stimulated cyclic AMP formation. [3H]Inositol labelling of phosphatidylinositol 4,5-bisphosphate was significantly enhanced by 3-day lithium treatment. The results, therefore, indicate that subacute or chronic in vivo lithium treatment reduces agonist-stimulated inositol phospholipid metabolism in cerebral cortex; this persistent inhibition appears to be at the level of G-protein-phospholipase C coupling.  相似文献   

3.
The in vitro and ex vivo effects of lithium on muscarinic cholinergic inositol phospholipid hydrolysis and muscarinic cholinergic inhibition of dopamine D1-receptor-stimulated cyclic AMP formation were examined in rat brain slices. Following chronic lithium feeding, carbachol-stimulated inositol phosphate accumulation was reduced ex vivo in slices of cerebral cortex but not in striatal slices. Lithium (1 mM) in vitro had no direct effect on dopamine D1-receptor-stimulated cyclic AMP formation, but enhanced the inhibitory effect of carbachol on the D1 response, in striatal slices, and this was not significantly altered by prior lithium feeding. Lithium therefore has effects on two discrete muscarinic responses in rat brain which are apparently maintained after chronic exposure to the ion and might be relevant to its antimanic actions.  相似文献   

4.
Abstract: Intracerebral injection of [3H]inositoi into gerbil brain resulted in labeling of phosphoinositides and inositolphosphates in various subcellular membrane fractions. Phosphatidylinositol (PI) comprised >90% of the radioactivity of inositol lipids. However, the level of labeled poly-PI (with respect to PI) was higher in synaptosomes than in other membrane fractions. Ischemia induced in gerbils by ligation of the common carotid arteries resulted in a 30% decrease in labeled poly-PI in brain homogenates and this decrease was largely attributed to the poly-PI in synaptosomes (50% decrease). Among the inositol phosphates, the ischemia induction resulted in a decrease in labeling of inositol trisphosphate (63%) and inositol bisphosphate (38%), but labeling of inositol phosphate (IP) was increased by 59%. The results suggested a rapid turnover of the inositol phosphates in the gerbil brain. In general, changes in inositol lipids and inositol phosphates due to ischemia were attenuated after pretreatment with lithium (3 meq/kg) injected intraperitoneally 5 h prior to ligation. Surprisingly, lithium treatment alone did not cause an increase in IP labeling in the gerbil brain.  相似文献   

5.
Phosphoinositide turnover stimulated by 5-hydroxytryptamine (5-HT) receptors in the intact rat brain was studied using an in vivo method. Phosphoinositides in the rat brain were prelabeled with [3H]inositol injected into the lateral cerebral ventricles. The rats were killed by microwave irradiation after 48 h and the contents in the frontal cortex of 3H-inositol phosphates, [3H]inositol-1-monophosphate [( 3H]IP1), [3H]inositol-1,4-bisphosphate [( 3H]IP2), and a mixture of [3H]inositol-1,4,5-trisphosphate and [3H]inositol-1,3,4-trisphosphate [( 3H]IP3) were assayed by HPLC. Lithium treatment (10 mEq/kg, i.p., 2 h before) increased the content of [3H]IP1 and [3H]IP2. 5-Methoxy-N,N-dimethyltryptamine (5-MeODMT) and quipazine, 5-HT agonists, significantly increased the amount of 3H-inositol phosphates under lithium pretreatment. The response to 5-MeODMT was inhibited by ritanserin, a 5-HT2 antagonist, but not by (-)-propranolol, a 5-HT1 antagonist. These results suggest that phosphoinositide turnover in the rat frontal cortex in vivo is stimulated by 5-HT2 receptor activation. It is considered that this method will be useful for measurement of 5-HT2 receptor-stimulated phosphoinositide turnover in vivo to examine the in vivo effects of various psychotropic drugs such as antidepressants.  相似文献   

6.
A method and model are described to quantify in vivo turnover rates and half-lives of fatty acids within brain phospholipids. These kinetic parameters can be calculated by operational equations from measured rates of incorporation of intravenously injected fatty acid radiotracers into brain phospholipids. To do this, it is necessary to determine a dilution factor , which estimates the contribution to the brain precursor acyl-CoA pool of fatty acids released from phospholipids through the action of PLA1, or PLA2. Some calculated fatty acid half-lives are minutes to hours, consistent with active participation of phospholipids in brain function and structure. The fatty acid method can be used to identify enzyme targets of drugs acting on phospholipid metabolism. For example, a reduced brain turnover of arachidonate by chronic lithium, demonstrated in rats by the fatty acid method, suggests that this agent, which is used to treat bipolar disorder, has for its target an arachidonate-specific PLA2. In another context, when combined with in vivo imaging by quantitative autoradiography in rodents or positron emission tomography in macaques or humans, the fatty acid method can localize and quantify normal and modified PLA2-mediated signal transduction in brain.  相似文献   

7.
Members of lower and higher inositol phosphates distinctly participate in signal transduction (1). Relatively little is known regarding possible biological functions of inositol phosphates in functionally different areas of the intact brain. A detailed study on the regional distribution of biologically important inositol phosphates may help elucidate their physiological functions in different brain regions in the regional tissue context. We now show a novel technique which allows fixation and subsequent dissection of whole rat brains into small volume elements for mapping of the whole range of inositol phosphates from Ins(1,4,5)P3 to InsP6. The method has been successfully applied to investigate regional differences of a broader spectrum of inositol phosphates in microdissected brain tissue and to construct 3D-maps of these signaling compounds. The technique can be particularly well employed to investigate regional changes in the spectrum of higher inositol phosphates and phosphoinositides upon neuronal stimulation induced by motor activity or drug treatment.  相似文献   

8.
Abstract: Two methods for the measurement of receptor-activated phosphoinositide turnover were evaluated for their degree of correspondence in slices of rat brain; they involved the Li+-dependent accumulations of either [3H]-inositol-labeled inositol phosphates or [3H]cytidine-labeled CDP-diacylglycerol. In contrast to the expectation that the ratio of these two responses would remain approximately constant, varying degrees of correspondence were obtained. The two extremes are exemplified by carbachol, which elicited large increases in both inositol phosphate and CDP-diacylglycerol labeling, and endothelin, which gave a robust inositol phosphate response with little or no accumulation of 3H-CDP-diacylglycerol. No instance of the presence of the latter response in the absence of 3H-inositol phosphate accumulation was observed. Measurement of 3H-CDP-diacylglycerol accumulation thus may add additional insight into the regulation of phosphoinositide turnover and the complex actions of Li+.  相似文献   

9.
Regional and whole-brain tryptophan-hydroxylating activity and serotonin turnover were investigated in portacaval shunted (PCS) rats using an in vivo decarboxylase inhibition assay. To saturate tryptophan hydroxylation with amino acid substrate, rats were administered a high dose of tryptophan 1 h prior to analysis of brain tryptophan, 5-hydroxytryptophan, serotonin, and 5-hydroxyindoleacetic acid. The analysis revealed, as expected, higher brain concentrations of tryptophan and 5-hydroxyindoles and increased serotonin synthesis rate in PCS rats as compared with shamoperated controls. Saturating levels of brain tryptophan were achieved in both PCS and sham animals after exogenous tryptophan administration. The tryptophan load resulted in increased brain serotonin turnover in all regions and in whole brain compared with rats that did not receive a tryptophan load. Tryptophan-loaded PCS rats showed increased brain serotonin turnover compared with tryptophan-loaded sham rats. Regionally, this supranormal tryptophan-hydroxylating activity was most pronounced in the mesencephalon-pons followed by the cortex. It is concluded that, at least in the PCS rat, brain tryptophan hydroxylation is an inducible process. Since it is known that brain tissue from PCS rats undergoes a redox shift toward a reduced state and that the essential cofactor tetrahydrobiopterin is active in tryptophan hydroxylation only when present in its reduced form, it is hypothesized that this is the reason for the supranormal tryptophan-hydroxylating activity displayed by the PCS rats. The hypothesis further suggests that alterations in tetrahydrobiopterin availability may serve as a mechanism by which brain tryptophan hydroxylation, and therefore serotonin turnover, can be regulated with high sensitivity in vivo.  相似文献   

10.
The effect of phorbol esters and forskolin pretreatment on basal and histamine-induced accumulation of inositol phosphates and catecholamine release was examined in cultures of bovine adrenal chromaffin cells. Histamine caused a dose-dependent, Ca2+-dependent accumulation of total inositol phosphates with an EC50 at approximately 1 microM and an eight- to 10-fold increase at 100 microM within 30 min of incubation. Histamine (10 microM) also caused the release of cellular catecholamines amounting to some 2.8% of cellular stores released over a 20-min period. Both the inositol phosphate and catecholamine responses were completely blocked by the H1-antagonist mepyramine and were insensitive to the H2-antagonist cimetidine. Examination of the time course of accumulation of the individual inositol phosphates stimulated by histamine revealed an early and sustained rise in inositol 1,4-bisphosphate content but not inositol 1,4,5-trisphosphate content at 1 min and the overall largest accumulation of inositol monophosphate after 30 min of stimulation. Pretreatment with the tumor-promoting phorbol ester phorbol 12-myristate 13-acetate (PMA) resulted in a dose-dependent, time-dependent inhibition of histamine-induced inositol phosphate formation and catecholamine secretion. In this inhibitory action, PMA exhibited high potency (IC50 of approximately 0.5 nM), an effect not shared by the inactive phorbol ester 4-alpha-phorbol 12,13-didecanoate. Pretreatment with forskolin, on the other hand, only marginally inhibited the histamine-induced inositol phospholipid metabolism and catecholamine secretion. These data suggest that protein kinase C activation in chromaffin cells may mediate a negative feedback control on inositol phospholipid metabolism.  相似文献   

11.
The effects of in vivo electrical stimulation of the sympathetic nerve of the eye on phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis in rabbit iris and release of arachidonate and prostaglandin (PG) E2 into aqueous humor were investigated. myo-[3H]Inositol or [1-14C]arachidonate was injected intracamerally into each eye 3 h before electrical stimulation of one of the sympathetic trunks. Tissue phosphoinositides were determined by TLC, and 3H-labeled inositol phosphates were analyzed by either ion-exchange chromatography or HPLC. The aqueous humor was analyzed for 14C-labeled arachidonate and PGE2 by radiochromatography and for unlabeled PGE2 by radioimmunoassay. The results obtained from this study can be summarized as follows: (a) The rates of in vivo incorporation of myo-[3H]inositol into phosphoinositides and accumulation of 3H-labeled inositol phosphates in the iris muscle increased with time and then leveled off between 3 and 5 h. (b) Distribution of 3H radioactivity in inositol phosphates, as determined by HPLC, showed that of the total radioactivity in inositol phosphates, 53.6% was recovered in myo-inositol 1-phosphate, 36% in myo-inositol bisphosphate, 0.95% in myo-inositol 1,3,4-trisphosphate (1,3,4-IP3), and 2.6% in 1,4,5-IP3. (c) Electrical stimulation of the sympathetic nerve resulted in a significant loss of 3H radioactivity from PIP2 and a concomitant increase of that in IP3, an observation indicating that PIP2 is the physiological substrate for alpha 1-adrenergic receptors in this tissue. (d) Release of IP3 and liberation of arachidonate for PGE2 synthesis are dependent on the duration of stimulation and the intensity (voltage) of stimulus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Grange  Eric  Rabin  Olivier  Bell  Jane  Chang  Michael C. J. 《Neurochemical research》1998,23(10):1251-1257
The Fatty Acid method was used to determine whether incorporation of plasma radiolabeled arachidonic acid into brain phospholipids is controlled by phospholipase A2. Awake rats received an i.v. injection of a phospholipase A2 inhibitor, manoalide (10 mg/kg), and then were infused i.v. with [1-14C]arachidonate or [3H]arachidonate. Animals were killed after infusion by microwave irradiation, and tracer distribution was analyzed in brain phospholipid, neutral lipid and acyl-CoA pools. Calcium-independent phospholipase A2 activity in brain homogenate was reduced by manoalide, whereas phospholipase C activity was unaffected. At 60 min but not at 20 or 40 min after its injection, manoalide had significantly decreased by 50% incorporation of unesterified arachidonate into and turnover within brain phospholipids, taking into account dilution of the brain arachidonoyl-CoA pool by recycled arachidonate. Manoalide also increased by 100% the net rate of unesterified arachidonate incorporation into brain triacylglycerol. This study indicates that manoalide can be used to inhibit brain phospholipase A2 in vivo, and that phospholipase A2 plays a critical role in arachidonate turnover in brain phospholipids and neutral lipids.  相似文献   

13.
Wistar rats were injected intraperitoneally with 10 mg/kg of protriptyline according to one of the following schedules: a single dose or daily for 4 days (short-term), or daily for 2 or 13 weeks (long-term). Total lipid, total phospholipid, and individual phospholipid contents in the brain were determined. Further, the incorporation of 32P into individual phospholipids in vivo and the fatty acid composition of phosphatidylethanolamine in the brains of rats treated with protriptyline for 13 weeks were studied. Three alternative phases of changes of total and individual phospholipid contents in the brain during 13 weeks of experimentation were distinguished. An increase of phospholipid contents after 4 days, a decrease after 2 weeks, and a further increase after 13 weeks of protriptyline administration were found. However, phosphatidylinositol and phosphatidic acid levels after 13 weeks of protriptyline administration were diminished. The decrease of specific radioactivity of phosphatidylethanolamine, phosphatidylcholine, and phosphatidylserine and the increase of phosphatidylinositol, phosphatidic acid, and sphingomyelin in rats treated with the drug for a longer period of time were noted. No greater differences in fatty acid composition of phosphatidylethanolamine in the brains of the same group of rats were observed as compared to control. These results indicate that during long-term treatment with protriptyline the contents of lipids and phospholipids in rat brain are altered. The modification of the biological function of phospholipids in brain cell membranes is suggested.  相似文献   

14.
Abstract: The effects of lithium on muscarinic cholinoceptor-stimulated phosphoinositide turnover have been investigated in rat hippocampal, striatal, and cerebral cortical slices using [3H]inositol or [3H]cytidine prelabelling and inositol 1,4,5-trisphosphate [lns(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [lns(1,3,4,5)P4] mass determination methods. Carbachol addition resulted in maintained increases in lns(1,4,5)P3 and lns(1,3,4,5)P4 mass levels in hippocampus and cerebral cortex, whereas in striatal slices these responses declined significantly over a 30-min incubation period. Carbachol-stimulated lns(1,4,5)P3 and lns(1,3,4,5)P4 accumulations were inhibited by lithium in all brain regions studied in a time-and concentration-dependent manner. For example, in hippocampal slices significant inhibitory effects of LiCl were observed at times > 10 min after agonist challenge; IC50 values for inhibition of agonist-stimulated lns(1,4,5)P3 and lns(1,3,4,5)P4 accumulations by lithium were 0.22 ± 0.09 and 0.33 ± 0.13 mM, respectively. [3H]CMP-phosphatidate accumulation increased in all brain regions when slices were stimulated by agonist and lithium. The ability of myo-inositol to reverse these effects, as well as lithium-suppressed lns(1,4,5)P3 accumulation, implicates myo-inositol depletion in the action of lithium in the hippocampus and cortex at least. The results of this study suggest that although significant differences in the magnitude and time courses of changes in inositol (poly)phosphate metabolites occur in different brain regions, lithium evokes qualitatively similar enhancements of [3H]inositol monophosphate and [3H]CMP-phosphatidate levels and inhibitions of lns(1,4,5)P3 and lns(1,3,4,5)P4 accumulations. However, the inability of striatal slices to sustain carbachol-stimulated inositol polyphosphate accumulation in the absence of lithium and the inability to reverse effects with myo-inositol may indicate differences in phosphoinositide signalling in this brain region.  相似文献   

15.
myo-Inositol is an essential biomolecule that is synthesized by myo-inositol monophosphatase (IMPase) from inositol monophosphate species. The enzymatic activity of IMPase is inhibited by lithium, a drug used for the treatment of mood swings seen in bipolar disorder. Therefore, myo-inositol is thought to have an important role in the mechanism of bipolar disorder, although the details remain elusive. We screened an ethyl nitrosourea mutant mouse library for IMPase gene (Impa) mutations and identified an Impa1 T95K missense mutation. The mutant protein possessed undetectable enzymatic activity. Homozygotes died perinatally, and E18.5 embryos exhibited striking developmental defects, including hypoplasia of the mandible and asymmetric fusion of ribs to the sternum. Perinatal lethality and morphological defects in homozygotes were rescued by dietary myo-inositol. Rescued homozygotes raised on normal drinking water after weaning exhibited a hyper-locomotive trait and prolonged circadian periods, as reported in rodents treated with lithium. Our mice should be advantageous, compared with those generated by the conventional gene knock-out strategy, because they carry minimal genomic damage, e.g. a point mutation. In conclusion, our results reveal critical roles for intracellular myo-inositol synthesis in craniofacial development and the maintenance of proper brain function. Furthermore, this mouse model for cellular inositol depletion could be beneficial for understanding the molecular mechanisms underlying the clinical effect of lithium and myo-inositol-mediated skeletal development.  相似文献   

16.
The effects of sodium valproate (VPA; 100, 200, and 400 mg/kg, i.p.) on ventral hippocampal and anterior caudate putamen extracellular levels of dopamine (DA) and 5-hydroxytryptamine (5-HT) were examined using in vivo microdialysis. VPA induced dose-related increases in dialysate DA, 3,4-dihydroxyphenylacetic acid, and 5-HT in the ventral hippocampus. Anterior caudate putamen dialysate 5-HT was also dose dependently elevated by the drug, whereas DA levels tended to decrease with increasing VPA dose. In contrast, VPA (200, 400, and 800 mg/kg, i.p.) produced no significant elevation of DA in posterior caudate putamen dialysates, although 5-HT levels were significantly elevated at the 400- and 800-mg/kg doses. In all three regions studied, dialysate concentrations of 5-hydroxyindoleacetic acid and homovanillic acid remained at basal levels following VPA treatments. The results are discussed with regard to the possible anticonvulsant mode of action of VPA.  相似文献   

17.
The purpose of the present study is to clarify the effects of hypoxia on the activity of the dopaminergic neurons in the brain and its mechanism of action. For this purpose, the effects of hypoxia on the extracellular levels of 3,4-dihy-droxyphenylethylamine (dopamine) were examined in the rat Striatum using in vivo brain microdialysis in the presence or absence of pretreatment with either tetrodotoxin (a blocker of voltage-dependent sodium channels) or nomifensine (a blocker of dopamine reuptake). Exposure to various degrees of hypoxia (15, 10, and 8% O2 in N2) increased dopamine levels in striatal dialysates to 200, 400, and 1,100%, respectively, of the control value. On reoxygenation, dopamine levels in the dialysates rapidly returned to the control level. Reexposure to hypoxia increased the dopamine levels to the same extent as during the first exposure. After addition of tetrodotoxin (40 mUM) to the perfusion fluid or pretreatment with nomifensine (100 mg/kg, i.p.), exposure to hypoxia no longer increased the dopamine levels. These results suggest that although hypoxia induces an increase in the extracellular dopamine levels (hence, an apparent increase in the activity of the dopaminergic neurons), this increase is not the result of an increase in dopamine release itself, but rather the result of inhibition of the dopamine reuptake mechanism.  相似文献   

18.
The in vivo effects of kainate (1 mM) on fluxes of 45Ca2+, and endogenous amino acids, were examined in the rat striatum using the brain microdialysis technique. Kainate evoked a rapid decrease in dialysate 45Ca2+, and an increase in the concentration of amino acids in dialysates in Ca2+-free dialysates. Taurine was elevated six- to 10-fold, glutamate two- to threefold, and aspartate 1.5- to twofold. There was also a delayed increase in phosphoethanolamine, whereas nonneuroactive amino acids were increased only slightly. The kainic acid-evoked reduction in dialysate 45Ca2+ activity was attenuated in striata lesioned previously with kainate, suggesting the involvement of intrinsic striatal neurons in this response. The increase in taurine concentration induced by kainate was slightly smaller under these conditions. Decortication did not affect the kainate-evoked alterations in either dialysate 45Ca2+ or amino acids. These data suggest that kainate does not release acidic amino acids from their transmitter pools located in corticostriatal terminals.  相似文献   

19.
The purpose of the present study is to clarify the effects of the administration of choline on the in vivo release and biosynthesis of acetylcholine (ACh) in the brain. For this purpose, the changes in the extracellular concentration of choline and ACh in the rat striatum following intracerebroventricular administration of choline were determined using brain microdialysis. We also determined changes in the tissue content of choline and ACh. When the striatum was dialyzed with Ringer solution containing 10 microM physostigmine, ACh levels in dialysates rapidly and dose dependently increased following administration of various doses of choline and reached a maximum within 20 min. In contrast, choline levels in dialysates increased after a lag period of 20 min following the administration. When the striatum was dialyzed with physostigmine-free Ringer solution, ACh could not be detected in dialysates both before and even after choline administration. After addition of hemicholinium-3 to the perfusion fluid, the choline-induced increase in ACh levels in dialysates was abolished. Following administration of choline, the tissue content of choline and ACh increased within 20 min. These results suggest that administered choline is rapidly taken up into the intracellular compartment of the cholinergic neurons, where it enhances both the release and the biosynthesis of ACh.  相似文献   

20.
Abstract: Portal-systemic encephalopathy (PSE) is characterized by neuropsychiatric symptoms progressing through stupor and coma. Previous studies in human autopsy tissue and in experimental animal models of PSE suggest that alterations in levels of brain amino acids may play a role in the pathogenesis of PSE. To assess this possibility, levels of amino acids were measured using in vivo cerebral microdialysis in frontal cortex of portacaval-shunted rats administered ammonium acetate (3.85 mmol/kg, i.p.) to precipitate severe PSE. Sham-operated rats served as controls. Portacaval shunting resulted in significant increases of levels of extracellular glutamine (threefold, p < 0.001), alanine (38%, p < 0.01), aspartate (44%, p < 0.05), phenylalanine (170%, p < 0.001), tyrosine (140%, p < 0.001), tryptophan (63%, p < 0.001), leucine (75%, p < 0.001), and serine (60%, p < 0.001). Administration of ammonium acetate to sham-operated animals led to a significant increase in extracellular glutamine and taurine content, but this response was absent in shunted rats. The lack of taurine release into extracellular fluid following ammonium acetate administration in portacaval-shunted rats could relate to the phenomenon of brain edema in these animals. Ammonium acetate administration resulted in significant increases in the extracellular concentrations of phenylalanine and tyrosine in both sham-operated and portacaval-shunted rats. Severe PSE was not accompanied by significant increases in extracellular fluid concentrations of glutamate, aspartate, GABA, tryptophan, leucine, or serine, suggesting that increased spontaneous release of these amino acids in cerebral cortex is not implicated in the pathogenesis of hepatic coma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号