首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
Most cells produce ATP in the mitochondria by oxidative phosphorylation. However, macrophages, which are major players in the innate immune system, use aerobic glycolysis to produce ATP. HIF-1 (hypoxia-inducible factor-1) regulates expression of glycolysis-related genes and maintains macrophage glycolytic activity. However, it is unclear how HIF-1 activity is maintained in macrophages during normoxia. In this study, we found that macrophages lacking membrane type 1 matrix metalloproteinase (MT1-MMP/MMP-14), a potent invasion-promoting protease, exhibited considerably lower ATP levels than wild-type cells. HIF-1 was activated by an unanticipated function of MT1-MMP, which led to the stimulation of ATP production via glycolysis. The cytoplasmic tail of MT1-MMP bound to FIH-1 (factor inhibiting HIF-1), which led to the inhibition of the latter by its recently identified inhibitor, Mint3/APBA3. We have thus identified a new function of MT1-MMP to mediate production of ATP so as to support energy-dependent macrophage functions by a previously unknown non-proteolytic mechanism.  相似文献   

2.
The functional activity of invasion-promoting membrane type 1 matrix metalloproteinase (MT1-MMP) is elevated in cancer. This elevated activity promotes cancer cell migration, invasion, and metastasis. MT1-MMP is synthesized as a zymogen, the latency of which is maintained by its prodomain. Excision by furin was considered sufficient for the prodomain release and MT1-MMP activation. We determined, however, that the full-length intact prodomain released by furin alone is a potent autoinhibitor of MT1-MMP. Additional MMP cleavages within the prodomain sequence are required to release the MT1-MMP enzyme activity. Using mutagenesis of the prodomain sequence and mass spectrometry analysis of the prodomain fragments, we demonstrated that the intradomain cleavage of the PGD↓L50 site initiates the MT1-MMP activation, whereas the 108RRKR111↓Y112 cleavage by furin completes the removal and the degradation of the autoinhibitory prodomain and the liberation of the functional activity of the emerging enzyme of MT1-MMP.  相似文献   

3.
Matrix metalloproteinases (MMPs) play roles in spatially dynamic processes, including morphogenesis, wound healing, and tumor invasion. Three-dimensional (3-D) type I collagen stimulates cellular activation of MMP-2, however, the mechanisms underlying this are controversial. The present study investigated mechanisms for 3-D collagen-induced MMP-2 activation in highly invasive human malignant mesothelioma cells. MMP-2 was effectively activated by cells cultured in 3-D collagen but not in 2-D collagen, whereas MMP-2 activation was not regulated by the flexibility of collagen. The 3-D collagen did not largely increase the gene expression of MMP-2 and MT1-MMP. However, MT1-MMP exposed to the cell surface was much increased by 3-D collagen, and loss of MT1-MMP abolished MMP-2 activation in response to 3-D collagen. MT1-MMP and integrin β1 translocated to pericellular regions interacting with collagen-coated microbeads, however their localization was different. Importantly, inhibition of integrin β1 function and expression did not affect 3-D collagen-induced cell surface localization of MT1-MMP and MMP-2 activation. Our results strongly suggest that 3-D collagen scaffolding may provide opportunity for direct and multivalent interaction with MT1-MMP, by which MMP-2 activation occur in abundant cell surface MT1-MMP-dependent manner, rather than a manner regulated by matrix stiffness and integrin β1 function.  相似文献   

4.
Understanding the function of invasion-promoting membrane type-1 matrix metalloproteinase (MT1-MMP) is of paramount importance for understanding cancer biology. MT1-MMP is synthesized in cells as a latent zymogen that requires the cleavage of its prodomain to exert the proteolytic activity. The mature alphav integrin subunit is also generated by endoproteolytic cleavage of the alphav subunit precursor (pro-alphav). Cleavage by furin is considered to be a principal event in the activation of both MT1-MMP and pro-alphav. To elucidate the alternative activation pathway of MT1-MMP and pro-alphav, we employed furin-negative LoVo cells, which co-express MT1-MMP with integrin alphavbeta3. In these cells the MT1-MMP proenzyme was rapidly trafficked to the plasma membrane via an unconventional Brefeldin A-resistant pathway and, then, autocatalytically processed on the cell surface. Next, the MT1-MMP activity converted the cell surface-associated pro-alphav into the mature alphav integrin, represented by the disulfide-bonded heavy and light chains, and promoted the formation of the functional integrin alphavbeta3 heterodimer. These events stimulated cell motility in vitro, and malignant invasion and tumor growth in vivo. Our data suggest that in furin-negative colon carcinoma cells MT1-MMP is autocatalytically processed and the active protease then operates as a prointegrin convertase. Our findings argue strongly that the processing by furin is not a prerequisite for the activation of MT1-MMP.  相似文献   

5.
6.
The epicardium is a major contributor of the cells that are required for the formation of coronary vessels. Mice lacking both copies of the gene encoding the Type III Transforming Growth Factor β Receptor (TGFβR3) fail to form the coronary vasculature, but the molecular mechanism by which TGFβR3 signals coronary vessel formation is unknown. We used intact embryos and epicardial cells from E11.5 mouse embryos to reveal the mechanisms by which TGFβR3 signals and regulates epicardial cell behavior. Analysis of E13.5 embryos reveals a lower rate of epicardial cell proliferation and decreased epicardially derived cell invasion in Tgfbr3−/− hearts. Tgfbr3−/− epicardial cells in vitro show decreased proliferation and decreased invasion in response to TGFβ1 and TGFβ2. Unexpectedly, loss of TGFβR3 also decreases responsiveness to two other important regulators of epicardial cell behavior, FGF2 and HMW-HA. Restoring full length TGFβR3 in Tgfbr3−/− cells rescued deficits in invasion in vitro in response TGFβ1 and TGFβ2 as well as FGF2 and HMW-HA. Expression of TGFβR3 missing the 3 C-terminal amino acids that are required to interact with the scaffolding protein GIPC1 did not rescue any of the deficits. Overexpression of GIPC1 alone in Tgfbr3−/− cells did not rescue invasion whereas knockdown of GIPC1 in Tgfbr3+/+ cells decreased invasion in response to TGFβ2, FGF2, and HMW-HA. We conclude that TGFβR3 interaction with GIPC1 is critical for regulating invasion and growth factor responsiveness in epicardial cells and that dysregulation of epicardial cell proliferation and invasion contributes to failed coronary vessel development in Tgfbr3−/− mice.  相似文献   

7.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21WAF1 and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin αvβ3 were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.  相似文献   

8.
9.
10.
Lin Y  Chang G  Wang J  Jin W  Wang L  Li H  Ma L  Li Q  Pang T 《Experimental cell research》2011,(14):2031-2040
Na+/H+ exchanger 1 (NHE1), an important regulator of intracellular pH (pHi) and extracellular pH (pHe), has been shown to play a key role in breast cancer metastasis. However, the exact mechanism by which NHE1 mediates breast cancer metastasis is not yet well known. We showed here that inhibition of NHE1 activity, with specific inhibitor Cariporide, could suppress MDA-MB-231 cells invasion as well as the activity and expression of MT1-MMP. Overexpression of MT1-MMP resulted in a distinguished increase in MDA-MB-231 cells invasiveness, but treatment with Cariporide reversed the MT1-MMP-mediated enhanced invasiveness. To explore the role of MAPK signaling pathways in NHE1-mediated breast cancer metastasis, we compared the difference of constitutively phosphorylated ERK1/2, p38 MAPK and JNK in non-invasive MCF-7 cells and invasive MDA-MB-231cells. Interestingly, we found that the phosphorylation levels of ERK1/2 and p38 MAPK in MDA-MB-231 cells were higher than in MCF-7 cells, but both MCF-7 cells and MDA-MB-231 cells expressed similar constitutively phosphorylated JNK. Treating MDA-MB-231 cells with Cariporide led to decreased phosphorylation level of both p38 MAPK and ERK1/2 in a time-dependent manner, but JNK activity was not influenced. Supplementation with MAPK inhibitor (MEK inhibitor PD98059, p38 MAPK inhibitor SB203580 and JNK inhibitor SP600125) or Cariporide all exhibited significant depression of MDA-MB-231 cells invasion and MT1-MMP expression. Furthermore, we co-treated MDA-MB-231 cells with MAPK inhibitor and Cariporide. The result showed that Cariporide synergistically suppressed invasion and MT1-MMP expression with MEK inhibitor and p38 MAPK inhibitor, but not be synergistic with the JNK inhibitor. These findings suggest that NHE1 mediates MDA-MB-231 cells invasion partly through regulating MT1-MMP in ERK1/2 and p38 MAPK signaling pathways dependent manner.  相似文献   

11.
The molecular mechanisms of ovarian cancer cell invasion under hypoxia remain unclear. Here we employed a 3D collagen model and chick chorioallantoic membrane (CAM) invasion assay to explore the influence of hypoxia on ovarian cancer cell invasion. Hypoxia (both 1% O2 and CoCl2 150 and 250 µM) induced HO-8910PM ovarian cancer cell invasion in 3D collagen and collagenolysis determined by hydroxyproline. Pretreatment with a hypoxia inducible factor-1α inhibitor, YC-1, or MMP inhibitor, GM6001, significantly inhibited 3D collagen invasion and degradation and cell proliferation. Hypoxia stimulated both mRNA and protein expressions of membrane-type 1 matrix metalloproteinase (MT1-MMP) and promoted MT1-MMP translocation to the cell surface in an YC-1 sensitive manner. MT1-siRNA transfection inhibited hypoxia-induced invasion, proliferation, and collagen degradation of cells in 3D collagen. Hypoxia stimulated Snail mRNA and protein expression as well as translocation to nucleus in an YC-1 sensitive manner. Overexpression of Snail with a recombinant plasmid in HO-8910PM cells resulted in an enhanced invasion in 3D collagen. Transfection with Snail-specific siRNA significantly decreased MT1-MMP expression and 3D collagen invasion. Hypoxia-treated cells significantly broke the upper CAM surface of 11-day-old chick embryos and infiltrated interstitial tissue, completely blocked in the presence of YC-1 or GM6001, or after MT1-MMP siRNA or Snail siRNA transfection. Together, these data suggest that hypoxia promotes HO-8910PM ovarian cancer cell traffic through 3D matrix via Snail-mediated MT1-MMP upregulation, a possible molecular mechanism of ovarian cancer cell invasion under hypoxia.  相似文献   

12.
MT1-MMP is a membrane-tethered enzyme capable of remodeling extracellular matrix. MT1-MMP-deficient mice exhibit systematic defects during development, especially in craniofacial development characterized by retarded calvarial bone formation. Recently, we identified MT1-MMP as a critical positive modulator of FGF signaling during intramembranous ossification. MT1-MMP cleaves ADAM9 to protect FGFR2 from ectodomain shedding. Depletion of ADAM9 in MT1-MMP-deficient mice significantly rescued the calvarial defects via restoring FGF signaling. Interestingly, this regulatory mechanism seems to be highly tissue-specific, as defective FGF2-induced corneal angiogenesis in Mmp14?/? mice could not be rescued by removal of ADAM9. In addition, MT1-MMP also cleaves another ADAM family member, ADAM15. Our current findings not only present a novel regulatory mechanism for FGF signaling but also reveal a functional crosstalk between MMP and ADAM families. Better understanding of the interplay between ADAMs and MT1-MMP and its consequences for signaling pathways will provide new insights into therapeutic approaches for the management of developmental disorders and various diseases, such as cancer.  相似文献   

13.
We evaluated cellular mechanisms involved in the activation pathway of matrix prometalloproteinase-2 (pro-MMP-2), an enzyme implicated in the malignant progression of many tumor types. Membrane type-1 matrix metalloproteinase (MT1-MMP) cleaves the N-terminal prodomain of pro-MMP-2 thus generating the activation intermediate that then matures into the fully active enzyme of MMP-2. Our results provide evidence on how a collaboration between MT1-MMP and integrin αvβ3 promotes more efficient activation and specific, transient docking of the activation intermediate and, further, the mature, active enzyme of MMP-2 at discrete regions of cells. We show that coexpression of MT1-MMP and integrin αvβ3 in MCF7 breast carcinoma cells specifically enhances in trans autocatalytic maturation of MMP-2. The association of MMP-2′s C-terminal hemopexin-like domain with those molecules of integrin αvβ3 which are proximal to MT1-MMP facilitates MMP-2 maturation. Vitronectin, a specific ligand of integrin αvβ3, competitively blocked the integrin-dependent maturation of MMP-2. Immunofluorescence and immunoprecipitation studies supported clustering of MT1-MMP and integrin αvβ3 at discrete regions of the cell surface. Evidently, the identified mechanisms appear to be instrumental to clustering active MMP-2 directly at the invadopodia and invasive front of αvβ3-expressing cells or in their close vicinity, thereby accelerating tumor cell locomotion.  相似文献   

14.
Localization of membrane type I matrix metalloproteinase (MT1-MMP) to the leading edge is thought to be a crucial step during cancer cell invasion. However, its mechanisms and functional impact on cellular invasion have not been clearly defined. In this report, we have identified the MT-LOOP, a loop region in the catalytic domain of MT1-MMP (163PYAYIREG170), as an essential region for MT1-MMP to promote cellular invasion. Deletion of the MT-LOOP effectively inhibited functions of MT1-MMP on the cell surface, including proMMP-2 activation, degradation of gelatin and collagen films, and cellular invasion into a collagen matrix. This is not due to loss of the catalytic function of MT1-MMP but due to inefficient localization of the enzyme to β1-integrin-rich cell adhesion complexes at the plasma membrane. We also found that an antibody that specifically recognizes the MT-LOOP region of MT1-MMP (LOOPAb) inhibited MT1-MMP functions, fully mimicking the phenotype of the MT-LOOP deletion mutant. We therefore propose that the MT-LOOP region is an interface for molecular interactions that mediate enzyme localization to cell adhesion complexes and regulate MT1-MMP functions. Our findings have revealed a novel mechanism regulating MT1-MMP during cellular invasion and have identified the MT-LOOP as a potential exosite target region to develop selective MT1-MMP inhibitors.  相似文献   

15.
We have recently shown that in macrophages proper operation of the survival pathways phosphatidylinositol-3-kinase (PI3K)/AKT and nuclear factor kappa B (NFkB) has an obligatory requirement for constitutive, non-regulated Ca2+ influx. In the present work we examined if Transient Receptor Potential Canonical 3 (TRPC3), a member of the TRPC family of Ca2+-permeable cation channels, contributes to the constitutive Ca2+ influx that supports macrophage survival. We used bone marrow-derived macrophages obtained from TRPC3−/− mice to determine the activation status of survival signaling pathways, apoptosis and their efferocytic properties. Treatment of TRPC3+/+ macrophages with the pro-apoptotic cytokine TNFα induced time-dependent phosphorylation of IκBα, AKT and BAD, and this was drastically reduced in TRPC3−/− macrophages. Compared to TRPC3+/+ cells TRPC3−/− macrophages exhibited reduced constitutive cation influx, increased apoptosis and impaired efferocytosis. The present findings suggest that macrophage TRPC3, presumably through its constitutive function, contributes to survival signaling and efferocytic properties.  相似文献   

16.
Interaction of the axon guidance receptor Neuropilin-1 (Npn-1) with its repulsive ligand Semaphorin 3A (Sema3A) is crucial for guidance decisions, fasciculation, timing of growth and axon–axon interactions of sensory and motor projections in the embryonic limb. At cranial levels, Npn-1 is expressed in motor neurons and sensory ganglia and loss of Sema3A–Npn-1 signaling leads to defasciculation of the superficial projections to the head and neck. The molecular mechanisms that govern the initial fasciculation and growth of the purely motor projections of the hypoglossal and abducens nerves in general, and the role of Npn-1 during these events in particular are, however, not well understood. We show here that selective removal of Npn-1 from somatic motor neurons impairs initial fasciculation and assembly of hypoglossal rootlets and leads to reduced numbers of abducens and hypoglossal fibers. Ablation of Npn-1 specifically from cranial neural crest and placodally derived sensory tissues recapitulates the distal defasciculation of mixed sensory-motor nerves of trigeminal, facial, glossopharyngeal and vagal projections, which was observed in Npn-1−/− and Npn-1Sema mutants. Surprisingly, the assembly and fasciculation of the purely motor hypoglossal nerve are also impaired and the number of Schwann cells migrating along the defasciculated axonal projections is reduced. These findings are corroborated by partial genetic elimination of cranial neural crest and embryonic placodes, where loss of Schwann cell precursors leads to aberrant growth patterns of the hypoglossal nerve. Interestingly, rostral turning of hypoglossal axons is not perturbed in any of the investigated genotypes. Thus, initial hypoglossal nerve assembly and fasciculation, but not later guidance decisions depend on Npn-1 expression and axon–Schwann cell interactions.  相似文献   

17.
MT1-MMP (MMP14) is a collagenolytic enzyme located at the cell surface and implicated in extracellular matrix (ECM) remodeling. Mmp14−/− mice present dwarfism, bone abnormalities, and premature death. We demonstrate herein that the loss of MT1-MMP also causes cardiac defects and severe metabolic changes, and alters the cytoskeleton and the nuclear lamina structure. Moreover, the absence of MT1-MMP induces a senescent phenotype characterized by up-regulation of p16INK4a and p21CIP1/WAF1, increased activity of senescence-associated β-galactosidase, generation of a senescence-associated secretory phenotype, and somatotroph axis alterations. Consistent with the role of retinoic acid signaling in nuclear lamina stabilization, treatment of Mmp14−/− mice with all-trans retinoic acid reversed the nuclear lamina alterations, partially rescued the cell senescence phenotypes, ameliorated the pathological defects in bone, skin, and heart, and extended their life span. These results demonstrate that nuclear architecture and cell senescence can be modulated by a membrane protease, in a process involving the ECM as a key regulator of nuclear stiffness under cell stress conditions.  相似文献   

18.
Mobilization from the bone marrow and the migration of bone-marrow-derived mesenchymal stem cells (BMSCs) through the peripheral circulation to injured tissue sites are regulated by multiple mechanical and chemical factors. We previously demonstrated that mechanical stretching promotes the migration but inhibits the invasion of BMSCs. However, the involved mechanisms, especially the mechanism of stretching-inhibited BMSC invasion, have not been thoroughly elucidated to date. In this study, we found that mechanical stretching with a 10% amplitude at a 1-Hz frequency for 8 hr significantly reduces BMSC invasion and downregulates the expression of membrane type-1 matrix metalloproteinases (MT1-MMP) at both the messenger RNA and protein levels. The overexpression of MT1-MMP restores mechanical stretching-reduced BMSC invasion. Moreover, phosphatidylinositol 3-kinase (PI3K)-dependent Akt phosphorylation in BMSCs was found to be inactivated by mechanical stretching. Pharmacological inhibitors of PI3K/Akt signaling (LY294002 or A443654) reduced the expression of MT1-MMP and impaired BMSC invasion. In addition, the upregulation of Akt phosphorylation by a pharmacological activator (SC79) increased MT1-MMP expression and suppressed mechanical stretching-reduced BMSC invasion. Taken together, our results suggest that mechanical stretching inhibits BMSC invasion by downregulating MT1-MMP expression by suppressing the PI3K/Akt signaling pathway.  相似文献   

19.
20.
Podosomes are dynamic cell adhesions that are also sites of extracellular matrix degradation, through recruitment of matrix-lytic enzymes, particularly of matrix metalloproteinases. Using total internal reflection fluorescence microscopy, we show that the membrane-bound metalloproteinase MT1-MMP is enriched not only at podosomes but also at distinct “islets” embedded in the plasma membrane of primary human macrophages. MT1-MMP islets become apparent upon podosome dissolution and persist beyond podosome lifetime. Importantly, the majority of MT1-MMP islets are reused as sites of podosome reemergence. siRNA-mediated knockdown and recomplementation analyses show that islet formation is based on the cytoplasmic tail of MT1-MMP and its ability to bind the subcortical actin cytoskeleton. Collectively, our data reveal a previously unrecognized phase in the podosome life cycle and identify a structural function of MT1-MMP that is independent of its proteolytic activity. MT1-MMP islets thus act as cellular memory devices that enable efficient and localized reformation of podosomes, ensuring coordinated matrix degradation and invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号