首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
1,4-β-D-glucan cellobiohydrolase Ⅰ (CBH Ⅰ), p-nitrophenyl β-D-cellobioside, p-nitrophenol and cellobiose show distinct ultraviolet spectra, allowing the design of an assay to track the dynamic process of p-nitrophenyl β-D-cellobioside hydrolysis by CBH Ⅰ. Based on the linear relationship between p-nitrophenol formation in the hydrolysate and its first derivative absorption curve of AUC340-400 m (area under the curve), a new sensitive assay for the determination of CBH Ⅰ activity was developed. The dynamic parameters of catalysis reaction, such as Vm and kcat, can all be derived from this result. The influence of β-glucosidase and endoglucanase in crude enzyme sample on the assay was discussed in detail. This approach is useful for accurate determination of the activity of CBHs.  相似文献   

2.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (EC 1.2.1.12),a key enzyme ofcarbon metabolism,was purified and characterized to homogeneity from skeletal muscle of Camelusdromedarius.The protein was purified approximately 26.8 folds by conventional ammonium sulphatefractionation followed by Blue Sepharose CL-6B chromatography,and its physical and kinetic propertieswere investigated.The native protein is a homotetramer with an apparent molecular weight of approximately146 kDa.Isoelectric focusing analysis showed the presence of only one GAPDH isoform with an isoelectricpoint of 7.2.The optimum pH of the purified enzyme was 7.8.Studies on the effect of temperature onenzyme activity revealed an optimal value of approximately 28-32 ℃ with activation energy of 4.9 kcal/mol.The apparent K_m values for NAD~ and DL-glyceraldehyde-3-phophate were estimated to be 0.025±0.040mM and 0.21±0.08 mM, respectively. The V_(max) of the purified protein was estimated to be 52.7±5.9 U/mg.These kinetic parameter values were different from those described previously, reflecting protein differencesbetween species.  相似文献   

3.
1,4-β-D-glucan cellobiohydrolase I (CBH I),p-nitrophenyl β-D-cellobioside,p-nitrophenol andcellobiose show distinct ultraviolet spectra,allowing the design of an assay to track the dynamic process ofp-nitrophenyl β-D-cellobioside hydrolysis by CBH I.Based on the linear relationship between p-nitrophenolformation in the hydrolysate and its first derivative absorption Curve of AUC340_400_(nm)(area under the curve),a new sensitive assay for the determination of CBH I activity was developed.The dynamic parameters ofcatalysis reaction,such as Vm and k_(cat),can all be derived from this result.The influence of β-glucosidase andendoglucanase in crude enzyme sample on the assay was discussed in detail.This approach is useful foraccurate determination of the activity of CBHs.  相似文献   

4.
In this report,the β-glucosidase from the C.thermocopriae JT3-3 strain was studied.By purifying,the enzyme specific activity was increased about 30 times,and the yield was about 2%.The molecular weight of β-glucosidase is 50000 by gel filtration chromatography,and about 46000 by SDS polyacrylamide eIectrophoresis.Next the effects of pH and temperature on enzyme activity were studied and the Km value for β-glucosidase was calculated from Lineweaver-Burk.In addition,we succeeded in the cloning and expression of β-glucosidase gene from C.thermocopriae to E.coli cells using pBR322 as a vector.  相似文献   

5.
β-Glucosidases are important in the formation of floral tea aroma and the development of resistance to pathogens and herbivores in tea plants. A novel β-glucosidase was purified 117-fold to homogeneity,with a yield of 1.26%, from tea leaves by chilled acetone and ammonium sulfate precipitation, ion exchange chromatography (CM-Sephadex C-50) and fast protein liquid chromatography (FPLC; Superdex 75, Resource S). The enzyme was a monomeric protein with specific activity of 2.57 U/mg. The molecular mass of the enzyme was estimated to be about 41 kDa and 34 kDa by SDS-PAGE and FPLC gel filtration on Superdex 200, respectively. The enzyme showed optimum activity at 50℃ and was stable at temperatures lower than 40℃. It was active between pH 4.0 and pH 7.0, with an optimum activity at pH 5.5, and was fairly stable from pH 4.5 to pH 8.0. The enzyme showed maximum activity towards pNPG, low activity towards pNP-Galacto, and no activity towards pNP-Xylo.  相似文献   

6.
Apis cerana indica foragers were used for the isolation of a full-length α- glucosidase cDNA, and for purification of the active nascent protein by low salt extraction of bee homogenates, ammonium sulphate precipitation and diethylaminoethyl-cellulose and Superdex 200 c hromatographies. The molecular mass of the purified protein was estimated by polyacrylamide gel electrophoresis resolution, and the pH, temperature, incubation, and substrate optima for enzymic activity were determined. Conformation of the purified enzyme as α-glucosidase was performed by BLAST software homology comparisons between matrix assisted laser desorption ionization time of flight mass spectroscopy analysed partial tryptic peptide digests of the purified protein with the predicted amino acid sequences deduced from the α-glucosidase cDNA sequence.  相似文献   

7.
A new procedure utilizing immunoaffinity column chromatography has been used for the purification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) from human erythrocytes. The comparison between this rapid method (one step) and the tra- ditional procedure including ammonium sulfate fractionation followed by Blue Sepharose CL-6B chromatography shows that the new method gives a highest specific activity with a highest yield in a short time. The characterization of the purified GAPDH reveals that the native enzyme is a homotetramer of -150 kDa with an absolute specificity for the oxidized form of nicotinamide adenine dinucleotide (NAD+). Western blot analysis using purified monospecific polyclonal antibodies raised against the purified GAPDH showed a single 36 kDa band corresponding to the enzyme subunit. Studies on the effect of temperature and pH on enzyme activity revealed optimal values of about 43℃ and 8.5, respectively. The kinetic parameters were also calculated: the Vmax was 4.3 U/mg and the Km values against G3P and NAD+ were 20.7 and 17.8 μM, respectively. The new protocol described represents a simple, economic, and reproducible tool for the purification of GAPDH and can be used for other proteins.  相似文献   

8.
In order to screen novel β-glucosidase producing strains from environment, one targeted novel strain PJD-1-1 producing β-glucosidase were isolated from putrefied sugarcane leaves with screening and spreading plate. 16S rDNA analysis revealed it was a novel Agrobacterium sp. When the strain was incubated at initial pH 7.0, 20 ℃ with lactose as carbon and NaNO3 as nitrogen sources, the maximum enzyme activity was 3.92 U/mg. β-glucosidase from this strain was purified using (NH4)2SO4 precipitation followed by dextran gel filtration chromatography and ion exchange chromatography. A purifying fold of 4.85 with gaining rate of 8.0% was obtained. SDA-PAGE analysis of the purified enzyme showed that it was a clear and pure band with molecular mass of ca. 40 kDa. The most optimum activity of the enzyme was at 50 ℃ and pH at 8.0. The enzyme could maintain stability under the conditions below 50 ℃. Hg2+ and Ag+ heavily inhibited the enzyme activity suggesting that the active catalytic sites of the enzymes might possess thiol radical. Ba2+, Ca2+, Pb2+, Co2+, Zn2+, Mn2+, Na+, K+, EDTA, and urea had no obvious effects on the enzyme activity. It is concluded that the novel strain Agrobacterium sp. PJD-1-1 producing β-glucosidase was successfully screened from putrefied sugar cane leaves. The produced enzyme had thermal stability, alkaline feature and metal ions tolerance made it useful in the food and broad potential applications in other fields.  相似文献   

9.
The photorespiratory enzyme L-serine:glyoxylate amino- transferase (SGAT; EC 2.6.1.45) was purified from Arabidopsis thaliana leaves. The f'mal enzyme was approximately 80 % pure as revealed by sodium dodecyl sulfatepolyacrylamide gel electrophoresis with silver staining. The identity of the enzyme was confirmed by LC/MS/MS analysis. The molecular mass estimated by gel filtration chromato- graphy on Sephadex G-150 under non-denaturing conditions, mass spectrometry (matrix-assisted laser desorption/ ionization/time of flight technique) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 82.4 kDa, 42.0 kDa, and 39.8 kDa, respectively, indicating dimer as the active form. The optimum pH value was 9.2. The enzyme activity was inhibited by aminooxyacetate and β-chloro-L-alanine both compounds reacting with the carbonyl group of pyridoxal phosphate. The enzyme's transaminating activity with L-alanine and glyoxylate as substrates was approximately 55 % of that observed with L-serine and glyoxylate. The lower Kmvalue (1.25 mM) for L-alanine, compared with that of other plant SGATs, and the kcat/Km(Ala) ratio being approxi- mately 2-fold higher than kcat/Km(Ser) suggested that, during photorespiration, Ala and Ser are used by Arabidopsis SGAT with equal efficiency as amino group donors for glyoxylate. The equilibrium constant (Keq), derived from the Haldane relation, for the transamination reaction between L-serine and glyoxylate with the formation of hydroxypyruvate and glycine was 79.1, strongly favoring glycine synthesis. However, it was accompanied by a low Km value of 2.83 mM for glycine. A comparison of some kinetic properties of the studied enzymes with the recombinant Arabidopsis SGATs previously obtained revealed substantial differences. The ratio of the velocity of the transamination reaction with L-alanine and glyoxylate as substrates versus that with L-serine and glyoxylate was 1:1.8 for the native enzyme, whereas it was 1:7 for the recombinant SGAT. Native SGAT showed a much lower Km value for L-alanine compared to the recombinant enzyme.  相似文献   

10.
Autocleavage assay and peptide-based cleavage assay were used to study the substrate specificity of 3CL protease from the severe acute respiratory syndrome coronavirus. It was found that the recognition between the enzyme and its substrates involved many positions in the substrate, at least including residues from P4 to P2'. The deletion of either P4 or P2' residue in the substrate would decrease its cleavage efficiency dramatically. In contrast to the previous suggestion that only small residues in substrate could be accommodated to the S 1' subsite, we have found that bulky residues such as Tyr and Trp were also acceptable. In addition, based on both peptide-based assay and autocleavage assay, Ile at the PI' position could not be hydrolyzed, but the mutant L27A could hydrolyze the Ile peptide fragment. It suggested that there was a stereo hindrance between the S 1' subsite and the side chain of Ile in the substrate. All 20 amino acids except Pro could be the residue at the P2' position in the substrate, but the cleavage efficiencies were clearly different. The specificity information of the enzyme is helpful for potent anti-virus inhibitor design and useful for other coronavirus studies.  相似文献   

11.
AIMS: To evaluate three previously unreported substrates for the detection of beta-glucosidase activity in clinically relevant bacteria and to compare their performance with a range of known substrates in an agar medium. METHODS AND RESULTS: The performance of 11 chromogenic beta-glucosidase substrates was compared using 109 Enterobacteriaceae strains, 40 enterococci and 20 strains of Listeria spp. Three previously unreported beta-glucosides were tested including derivatives of alizarin, 3',4'-dihydroxyflavone and 3-hydroxyflavone. These were compared with esculin and beta-glucoside derivatives of 3,4-cyclohexenoesculetin, 8-hydroxyquinoline and five indoxylics. All substrates yielded coloured precipitates upon hydrolysis in agar. Alizarin-beta-D-glucoside was the most sensitive substrate tested and detected beta-glucosidase activity in 72% of Enterobacteriaceae strains and all enterococci and Listeria spp. The two flavone derivatives showed poor sensitivity with Gram-negative bacteria but excellent sensitivity with enterococci and Listeria spp. CONCLUSIONS: Alizarin-beta-d-glucoside is a highly sensitive substrate for detection of bacterial beta-glucosidase and compares favourably with existing substrates. beta-glucosides of 3',4'-dihydroxyflavone and 3-hydroxyflavone are effective substrates for the detection of beta-glucosidase in enterococci and Listeria spp. SIGNIFICANCE AND IMPACT OF THE STUDY: The data presented allow for informed decisions to be made regarding the optimal choice of beta-glucosidase substrate for detection of pathogenic and/or indicator bacteria.  相似文献   

12.
An extracellular beta-glucosidase was purified from culture filtrates of the wood-decaying fungus Daldinia eschscholzii (Ehrenb.:Fr.) Rehm grown on 1.0% (w/v) carboxymethyl-cellulose using ammonium sulfate precipitation, ion-exchange, hydrophobic interaction and gel filtration chromatography. The enzyme is monomeric with a molecular weight of 64.2 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and has a pI of 8.55. The enzyme catalyzes the hydrolysis of p-nitrophenyl-beta-D-glucopyranoside (PNPG) as the substrate, with a K(m) of 1.52 mM, and V(max) of 3.21 U min mg(-1) protein. Glucose competitively inhibited beta-glucosidase with a K(i) value of 0.79 mM. Optimal activity with PNPG as the substrate was at pH 5.0 and 50 degrees C. The enzyme was stable at pH 5.0 at temperatures up to 50 degrees C. The purified beta-glucosidase was active against PNPG, cellobiose, sophorose, laminaribiose and gentiobiose, but did not hydrolyze lactose, sucrose, Avicel or o-nitrophenyl-beta-d-galactopyranoside. The activity of beta-glucosidase was stimulated by Ca(2+), Co(2+), Mg(2+), Mn(2+), glycerol, dimethyl sulfoxide (DMSO), dithiothreitol and EDTA, and strongly inhibited by Hg(2+). The internal amino acid sequences of D. eschscholziibeta-glucosidase have similarity to the sequences of the family 3 beta-glucosyl hydrolase.  相似文献   

13.
Wild-type Escherichia coli strains (beta-gl(-)) do not split beta-glucosides, but inducible mutants (beta-gl(+)) can be isolated which do so. This inducible system consists of a beta-glucoside permease and an aryl beta-glucoside splitting enzyme. Both can be induced by aryl and alkyl beta-glucosides. In beta-gl(-) and noninduced beta-gl(+) cells, C(14)-labeled thioethyl beta-glucoside (TEG) is taken up by a constitutive permease, apparently identical with a glucose permease (GP). This permease has a high affinity for alpha-methyl glucoside and a low affinity for aryl beta-glucosides. No accumulation of TEG occurs in a beta-gl(-) strain lacking glucose permease (GP(-)). In induced beta-gl(+) strains, there appears a second beta-glucoside permease with low affinity for alpha-methyl glucoside and high affinity for aryl beta-glucosides. Autoradiography shows that TEG is accumulated by the beta-glucoside permease and glucose permease in two different forms (one being identical with TEG, the other probably phosphorylated TEG). In GP(+) beta-gl(+) strains with high GP activity, alkyl beta-glucosides induce the enzyme and the beta-glucoside permease after a prolonged induction lag, and they competitively inhibit the induction by aryl beta-glucosides. The induction lag and competition do not exist in GP(-) beta-gl(+) strains. It is assumed that phosphorylated alkyl and thioalkyl beta-glucosides inhibit the induction, and that this inhibition is responsible for the induction lag.  相似文献   

14.
Dalcochinin-8'-O-beta-glucoside beta-glucosidase (dalcochinase) from the Thai rosewood (Dalbergia cochinchinensis Pierre) has aglycone specificity for isoflavonoids and can hydrolyze both beta-glucosides and beta-fucosides. To determine its structure and evolutionary lineage, the sequence of the enzyme was determined by peptide sequencing followed by PCR cloning. The cDNA included a reading frame coding for 547 amino acids including a 23 amino acid propeptide and a 524 amino acid mature protein. The sequences determined at peptide level were found in the cDNA sequence, indicating the sequence obtained was indeed the dalcochinase enzyme. The mature enzyme is 60% identical to the cyanogenic beta-glucosidase from white clover glycosyl hydrolase family 1, for which an X-ray crystal structure has been solved. Based on this homology, residues which may contribute to the different substrate specificities of the two enzymes were identified. Eight putative glycosylation sites were identified, and one was confirmed to be glycosylated by Edman degradation and mass spectrometry. The protein was expressed as a prepro-alpha-mating factor fusion in Pichia pastoris, and the activity of the secreted enzyme was characterized. The recombinant enzyme and the enzyme purified from seeds showed the same K(m) for pNP-glucoside and pNP-fucoside, had the same ratio of V(max) for these substrates, and similarly hydrolyzed the natural substrate, dalcochinin-8'-beta-glucoside.  相似文献   

15.
Plant beta-glucosidases display varying substrate specificities. The maize beta-glucosidase isozyme Glu1 (ZmGlu1) hydrolyzes a broad spectrum of substrates in addition to its natural substrate DIMBOA-Glc (2-O-beta-d-glucopyranosyl-4-hydroxy-7-methoxy-1,4-benzoxaxin-3-one), whereas the sorghum beta-glucosidase isozyme Dhr1 (SbDhr1) hydrolyzes exclusively its natural substrate dhurrin (p-hydroxy-(S)-mandelonitrile-beta-d-glucoside). Structural data from cocrystals of enzyme-substrate and enzyme-aglycone complexes have shown that five amino acid residues (Phe198, Phe205, Trp378, Phe466, and Ala467) are located in the aglycone-binding site of ZmGlu1 and form the basis of aglycone recognition and binding, hence substrate specificity. To study the mechanism of substrate specificity further, mutant beta-glucosidases were generated by replacing Phe198, Phe205, Asp261, Met263, Phe377, Phe466, Ala467, and Phe473 of Glu1 by Dhr1 counterparts. The effects of mutations on enzyme activity and substrate specificity were studied using both natural and artificial substrates. The simple mutant replacing Phe198 by a valine had the most drastic effect on activity, because the capacity of this enzyme to hydrolyze beta-glucosides was almost completely abolished. The analysis of this mutation was completed by a structural study of the double mutant ZmGlu1-E191D,F198V in complex with the natural substrate. The structure reveals that the single mutation F198V causes a cascade of conformational changes, which are unpredictable by standard molecular modeling techniques. Some other mutations led to drastic effects: replacing Asp261 by an asparagine decreases the catalytic efficiency of this simple mutant by 75% although replacing Tyr473 by a phenylalanine increase its efficiency by 300% and also provides a new substrate specificity by hydrolyzing dhurrin.  相似文献   

16.
beta-Glucosidase is a key enzyme in the hydrolysis of cellulose to D-glucose. beta-Glucosidase was purified from cultures of Trichoderma reesei QM 9414 grown on wheat straw as carbon source. The enzyme hydrolyzed cellobiose and aryl beta-glucosides. The double-reciprocal plots of initial velocity vs. substrate concentration showed substrate inhibition with cellobiose and salicin. However, when p-nitrophenyl beta-D-glucopyranoside was the substrate no inhibition was observed. The corresponding kinetic parameters were: K = 1.09 +/- 0.2 mM and V = 2.09 +/- 0.52 mumol.min-1.mg-1 for salicin; K = 1.22 +/- 0.3 mM and V = 1.14 +/- 0.21 mumol.min-1.mg-1 for cellobiose; K = 0.19 +/- 0.02 mM and V = 29.67 +/- 3.25 mumol.min-1.mg-1 for p-nitrophenyl beta-D-glucopyranoside. Studies of inhibition by products and by alternative product supported an Ordered Uni Bi mechanism for the reaction catalyzed by beta-glucosidase on p-nitrophenyl beta-D-glucopyranoside as substrate. Alternative substrates as salicin and cellobiose, a substrate analog such as maltose and a product analog such as fructose were competitive inhibitors in the p-nitrophenyl beta-D-glucopyranoside hydrolysis.  相似文献   

17.
Three binding sites on highly purified lysosomal beta-glucosidase from human placenta were identified by studies of the effects of interactions of various enzyme modifiers. The negatively charged lipids, taurocholate and phosphatidylserine, were shown to be noncompetitive, nonessential activators of 4-methylumbelliferyl-beta-D-glucoside hydrolysis. Similar results were observed using the natural substrate, glucosyl ceramide, and low concentrations of taurocholate (less than 1.8 mM) or phosphatidylserine (0.5 mM). However, higher concentrations resulted in a complex partial inhibition of glucosyl ceramide hydrolysis. Increasing concentrations of phosphatidylserine obviated the effects of taurocholate, suggesting that these compounds compete for a common binding site on the enzyme. Glucosyl sphingosine and its N-hexyl derivative were potent noncompetitive inhibitors of the enzyme activity using either substrate. Taurocholate (or phosphatidylserine) and glucosyl sphingosine were shown to be mutually exclusive, indicating competition for a common binding site. In contrast, octyl- and dodecyl-beta-glucosides were linear-mixed-type inhibitors of glucosyl ceramide or 4-methylumbelliferyl-beta-D-glucoside hydrolysis, indicating at least two binding sites on the enzyme. Inhibition by these alkyl beta-glucosides was observed only in the presence of taurocholate or phosphatidylserine. The competitive component [Ki (slope)] for the two alkyl beta-glucosides decreased with increasing alkyl chain length, and was unaffected by increasing taurocholate or phosphatidylserine concentration. The noncompetitive component [Ki (intercept)] was nearly identical for both alkyl beta-glucosides and was decreased by increasing taurocholate or phosphatidylserine concentration. These results indicated that the negatively charged lipids and alkyl beta-glucosides were not mutually exclusive, but interacted with different binding sites on the enzyme. Gluconolactone was shown to protect the enzyme from inhibition by the catalytic site-directed covalent inhibitor, conduritol B indicating an interaction at a common binding site. In the presence of substrate, taurocholate facilitated the inhibition of gluconolactone or conduritol B epoxide. These studies indicated that lysosomal beta-glucosidase had at least three binding sites: (i) a catalytic site which cleaves the beta-glucosidic moiety, (ii) an aglycon site which binds the acyl or alkyl moieties of substrates and some inhibitors, and (iii) a hydrophobic site which interacts with negatively charged lipids and facilitates enzyme catalysis.  相似文献   

18.
Plant beta-glucosidases play a crucial role in defense against pests. They cleave, with variable specificity, beta-glucosides to release toxic aglycone moieties. The Sorghum bicolor beta-glucosidase isoenzyme Dhr1 has a strict specificity for its natural substrate dhurrin (p-hydroxy-(S)-mandelonitrile-beta-D-glucoside), whereas its close homolog, the maize beta-glucosidase isoenzyme Glu1, which shares 72% sequence identity, hydrolyzes a broad spectrum of substrates in addition to its natural substrate 2-O-beta-D-glucopyranosyl-4-hydroxy-7-methoxy-1,4-benzoxaxin-3-one. Structural data from enzyme.substrate complexes of Dhr1 show that the mode of aglycone binding differs from that previously observed in the homologous maize enzyme. Specifically, the data suggest that Asn(259), Phe(261), and Ser(462), located in the aglycone-binding site of S. bicolor Dhr1, are crucial for aglycone recognition and binding. The tight binding of the aglycone moiety of dhurrin promotes the stabilization of the reaction intermediate in which the glycone moiety is in a deformed (1)S(3) conformation within the glycone-binding site, ready for nucleophilic attack to occur. Compared with the broad specificity maize beta-glucosidase, this different binding mode explains the narrow specificity of sorghum dhurrinase-1.  相似文献   

19.
A beta-glycosidase was purified from the seeds of Dalbergia nigescens Kurz based on its ability to hydrolyse p-nitrophenyl beta-glucoside and beta-fucoside. This enzyme did not hydrolyze various glycosidic substrates efficiently, so it was used to identify its own natural substrates. Two substrates were identified, isolated and their structures determined as: compound 1, dalpatein 7-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside and compound 2, 6,2',4',5'-tetramethoxy-7-hydroxy-7-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (dalnigrein7-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside). The beta-glycosidase removes the sugar from these glycosides as a disaccharide, despite its initial identification as a beta-glucosidase and beta-fucosidase.  相似文献   

20.
Flavobacterium johnsonae was isolated as a microorganism that produced a beta-glucosidase with hydrolytic activity of beta-glucosyl ester linkages in steviol glycosides. The enzyme was purified to homogeneity from a cell-free extract by streptomycin treatment, ammonium sulfate fractionation, and column chromatographies on S-Sepharose and phenyl-Toyopearl. The molecular mass of the purified enzyme was about 72 kDa by SDS-PAGE. An isoelectric point of pI 8.8 was estimated by isoelectric focusing. The enzyme was most active at pH 7.0, and was stable between pH 3.0 and 9.0. The optimum temperature was 45 degrees C, and the enzyme was stable below 35 degrees C. The enzyme hydrolyzed glucosyl ester linkages at site 19 of rebaudioside A, stevioside, and rubusoside, although it could not degrad beta-glucosidic linkages at site 13 of rebaudioside B or steviol bioside. The enzyme acted on aryl beta-glucosides such as p-nitrophenyl beta-glucoside, phenyl betaglucoside, and salicin, and glucobioses such as sophorose and laminaribiose. The enzyme activity on Rub was inactivated completely by Hg2+, and reduced by Fe3+, Cu2+, p-chloromercuric benzoate, and phenylmethylsulfonyl fluoride (residual activity; 67.9-84.8%). The pNPG hydrolysis was also inactivated to almost the same degrees. Kinetic behaviors in the mixed substrate reactions of rebaudioside A and steviol monoside, and of steviol monoglucosyl ester and phenyl beta-glucoside suggested the glucosidic and glucosyl ester linkages were hydrolyzed at a single active site of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号