首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
一些研究显示盗蜜对自交植物的结实和结籽没有显著影响。然而, 对于既有传粉者为其传粉实现异交又能通过自交实现生殖保障的兼性自交植物来说, 盗蜜对其生殖的影响还知之甚少。由于兼性自交植物可以自交, 盗蜜对其总体结实可能不会有显著影响, 但可能会通过影响传粉者行为而影响传粉者介导的结实。为了验证这一假说, 本研究以兼性自交的一年生角蒿(Invarvillea sinensis var. sinensis)为研究材料, 通过野外调查和控制实验, 探讨了盗蜜对传粉者介导的结实(传粉者行为)和总体结实率的影响。结果表明: 角蒿的盗蜜者和主要传粉者相同, 均为密林熊蜂(Bombus patagiatus)。熊蜂盗蜜频率平均为20.24% (范围为0-51.43%)。盗蜜对角蒿总体结实率、每果结籽数和每果种子重量没有显著影响。然而, 被盗蜜花的柱头闭合比率显著高于未被盗蜜花, 说明盗蜜影响传粉者的访花行为和传粉者介导的结实率。另外, 被盗蜜花的高度显著高于未被盗蜜花, 说明盗蜜者倾向于从较大较高的花上盗蜜。这些结果为全面认识盗蜜对植物生殖的影响提供了新的信息。  相似文献   

2.
Interactions between a plant species (Corydalis caseana), a bumble bee nectar robber (Bombus occidentalis), and a bumble bee pollinator (B. appositus) were studied. There were no significant differences between naturally robbed and unrobbed flowers in fruit set or mean seed set per fruit. Plots of C. caseana plants were subjected to treatments of robbing and no robbing using commercially available colonies of B. occidentalis. Robbers did not pollinate the flowers. Pollinator behavior was observed to determine (1) the number of bees attracted to each plot, (2) the number of inflorescences visited in a plot, (3) the number of flowers visited on each inflorescence, and (4) the distance flown between inflorescences. There were no significant differences in the number of inflorescences visited per bee or the number of flowers visited per inflorescence per bee when robbed and unrobbed treatments were compared. Of the parameters measured, only distance flown between inflorescences differed in the robbed and the unrobbed treatments. Bees flew significantly further between inflorescences in the robbed plots than in the unrobbed plots. The results indicate that the nectar robbers have no negative effect on fruit set or seed set in C. caseana and that they may cause increased pollen flow distances by changing the behavior of the pollinator.  相似文献   

3.
Nectar robbing – harvesting nectar illegitimately – can have a variety of outcomes for plant sexual reproduction and for the pollinator community. Nectar robbers can damage flowers while robbing nectar, which could affect the behavior of subsequent flower visitors and, consequently, plant reproduction. However, only nectar manipulation by nectar robbers has so far received attention. We found a short-tongued bee, Hoplonomia sp. (Halictidae), mutilating the conspicuous lower petal of the zygomorphic flowers of Leucas aspera (Lamiaceae) while robbing nectar. We hypothesized that the mutilation of the conspicuous lower petal deters legitimate pollinators on L. aspera flowers, which, in turn, might affect plant reproduction. We first assessed the proportion of naturally-robbed flowers in plant populations for three years to confirm that it was not a purely local phenomenon due to a few individual bees. We then studied diversity, community and visitation characteristics of pollinators, nectar dynamics and fruit set in unrobbed and robbed open flowers in naturally-robbed populations. The proportion of robbed flowers varied significantly across sites and years. Robbing did not affect nectar dynamics in flowers, but it did alter flower morphology, so much so that it reduced pollinator visitation and altered the pollinator community on robbed flowers. However, the maternal function of plant reproduction was not affected by nectar robbing. This study for the first time shows that a nectar robber can have an ecologically significant impact on floral morphology.  相似文献   

4.
This paper examines the hypothesis that nectar robbing can affect plant reproductive success either positively or negatively. To this end, I investigated various aspects of the pollination ecology of a population of the herb Anthyllis vulneraria subsp. vulgaris in northwest Spain over 5 yr. By observing floral visitors, I found that the most important pollinator species was the long-tongued bee Anthophora acervorum, which accounted for ~45% of recorded insect visits. However, just over 45% of visits were by the nectar-robbing bumble bees Bombus terrestris and B. jonellus. Although the incidence of robbing differed considerably over 5 yr of study, the frequency in every season was very high (66.4-76.5% of robbing) except for 1997 (0% robbing). Despite this high frequency of robbing, robbed flowers had a higher probability of setting fruit than nonrobbed flowers in all years of the study (mean: 82.0 vs. 51.0%; excluding 1997). This increased fruit set in robbed flowers is directly related to bumble bee behavior because the robbers' bodies came into contact with both the anthers and stigmas while robbing. Thus, the robbers effect pollination. These results suggest that the effect of nectar robbers on plant reproductive success is dependent both on the robbers' behavior and on flower/inflorescence structure. The importance of nectar-robbing bumble bees on the reproductive success of A. vulneraria and its yearly high frequency suggest that the relationship between robbers and this plant is part of a successful long-term mutualism.  相似文献   

5.
With many plant–pollinator interactions undergoing change as species’ distributions shift, we require a better understanding of how the addition of new interacting partners can affect plant reproduction. One such group of floral visitors, nectar robbers, can deplete plants of nectar rewards without contributing to pollination. The addition of nectar robbing to the floral visitor assemblage could therefore have costs to the plant´s reproductive output. We focus on a recent plant colonist, Digitalis purpurea, a plant that in its native range is rarely robbed, but experiences intense nectar robbing in areas it has been introduced to. Here, we test the costs to reproduction following experimental nectar robbing. To identify any changes in the behavior of the principal pollinators in response to nectar robbing, we measured visitation rates, visit duration, proportion of flowers visited, and rate of rejection of inflorescences. To find the effects of robbing on fitness, we used proxies for female and male components of reproductive output, by measuring the seeds produced per fruit and the pollen export, respectively. Nectar robbing significantly reduced the rate of visitation and lengths of visits by bumblebees. Additionally, bumblebees visited a lower proportion of flowers on an inflorescence that had robbed flowers. We found that flowers in the robbed treatment produced significantly fewer seeds per fruit on average but did not export fewer pollen grains. Our finding that robbing leads to reduced seed production could be due to fewer and shorter visits to flowers leading to less effective pollination. We discuss the potential consequences of new pollinator environments, such as exposure to nectar robbing, for plant reproduction.  相似文献   

6.
Richardson SC 《Oecologia》2004,139(2):246-254
As exploiters of plant-pollinator mutualisms, nectar-robbers remove rewards (nectar) without providing pollination services. Though one might expect nectar-robbing to be costly to plants, it may instead benefit plants by indirectly increasing pollen dispersal. I investigated the direct effects of nectar-robbing bees (Xylocopa californica) on floral rewards and behaviors of pollinators visiting desert willow (Chilopsis linearis) and indirect effects of robbing on the reproductive success of the plant. Nectar-robbers reduced nectar; while unrobbed and robbed flowers were equally likely to contain nectar, nectar volumes were smaller in robbed flowers with nectar. Apis mellifera (honeybees), ineffective pollinators in terms of pollen deposition, avoided robbed flowers. In contrast, Bombus sonorus (bumblebees), effective pollinators, did not avoid robbed flowers. While bumblebees tended to spend less time in robbed flowers, the time that they spent in flowers was not correlated with pollen deposition. Using powder mimicking pollen, I found that on some days, powder was dispersed farther or to more flowers from robbed flowers, indicating that robbing may sometimes benefit plants by increasing male reproductive success. Powder movement suggested that the effect of robbing on male reproductive success ranged from costly to beneficial. The outcome for flowers that were marked early each morning was a function of prevalence of robbing and abundances of effective pollinators, but not a function of spatial variability among trees in prevalence of robbing or the abundance of ineffective honeybees. Unlike powder dispersal, female reproductive success, measured by fruit set and the number of pollen tubes growing in styles, was not affected by robbing. Thus, robbers did not reduce plants female reproductive success either directly by damaging flowers or indirectly by reducing pollen deposition by pollinators. Overall, this study indicates that nectar-robbers were not often costly to plants, and sometimes even benefited plants.  相似文献   

7.
Summary Different subsets of mainland nectarivores visited Quassia amara (Simaroubaceae), a self-compatible, predominately bird-pollinated treelet, at three islands and the mainland in Panamá. Factors correlated with reproductive success, defined as seed to ovule ratio, included the species pollinating and robbing flowers, visitor activity, pollinator response to nectar robbing, and internal regulation of fruit production. The absence of robbers and former pollinators on an island separated from the mainland during the holocene was associated with shifts in flower size, nectar production, and 3–4fold increases in population reproductive success and pollinator efficiency (=seeds produced per visit). Exclusion of robbers at three sites resulted in seed production 4–12 times greater than control flowers, at which robbers accounted for 52–98% of all visits. Although 36% of buds and over 83% of all flowers were robbed, this had no direct influence on the recorded 36–61% respective abortion rates of buds and flowers. Opportunistic avian robbers appeared where normal robbers were absent; three avian robbers extensively used floral perforations made by Trigona bees, and all ancillary pollinators also robbed. Selection pressures from nectar robbers are discussed that may relate to plant reproductive fitness.  相似文献   

8.
Nectar robbery is usually thought to impact negatively on the reproductive success of plants, but also neutral or even positive effects have been reported. Very few studies have investigated the effects of nectar robbing on the behaviour of legitimate pollinators so far. Such behavioural changes may lead to the reduction of geitonogamy or to increased pollen movement. We simulated nectar robbing in experimental sites as well as in natural populations of Aconitum napellus ssp. lusitanicum, a rare plant pollinated by long-tongued bumblebees. In an experimental setup, we removed the nectaries of 40 % of the flowers, which is similar to rates of robbing observed in wild populations. Patches of plants with experimentally robbed flowers were compared with control patches containing plants with untreated flowers. We observed pollinator behaviour, mimicked male reproductive success (pollen dispersal) using fluorescent dye, and measured female reproductive success (seed set). The main legitimate visitors were bumblebees while honeybees were often observed robbing nectar. They did so by “base working”, i.e. sliding between tepals. Bumblebees tended to visit fewer flowers per plant and spent less time per single flower when these had been experimentally robbed. This change in behaviour consequently increased the proportion of flowers visited by bumblebees in patches with robbed flowers. Fluorescent dye mimicking pollen flow was dispersed larger distances after pollinators had visited patches with robbed flowers compared to control patches. Average seed set per plant was not affected by nectar robbing. Our results demonstrated that A. napellus does not suffer from nectar robbery but may rather benefit via improved pollen dispersal and thus, male reproductive success. Knowledge on such combined effects of behavioural changes of pollinators due to nectar robbery is important to understand the evolutionary significance of exploiters of such mutualistic relationships between plants and their pollinators.  相似文献   

9.
Hummingbird-pollinated flowers are frequently subjected to nectar robbing. In this paper, I examine the impact of nectar robbing on plant reproductive success on a hummingbird-pollinated species. After studying the basic aspects of the floral morphology and reproduction of Macleania bullata (Ericaceae) in a tropical montane wet forest in southwest Colombia, I examined the percent of flowers robbed and the effect of nectar robbery on fruit set. The flowers of this species are typical for plants pollinated by long-bill hummingbirds. They are protandrous and open for four days. Fruit production requires a pollinator visit; fruit set following pollinator exclusion was zero. Fruit set following xenogamous pollen transfer (36.8%) differed significantly from that of population controls (11.9%) and of autogamous pollen transfer (6.3%). Nectar volume, sugar concentration and sugar production were measured at daily intervals from bud opening until the fading of flowers. Daily nectar production (both volume and amount of sugar) varied considerably with flower age. Sugar production peaked on the second day, coinciding with the male phase. The frequency of nectar robbing in the studied population was very high (75% of examined flowers) and was positively correlated with reduced fruit set. I discuss the probability of a relation between reduced fruit set on robbed flowers and an energetic investment. Robbing by non-pollinating visitors can suppose the plant to re-synthesize more nectar. The high incidence of nectar robbing impugns the advantage of specialization.  相似文献   

10.
The relationship between plant and pollinator is considered as the mutualism because plant benefits from the pollinator's transport of male gametes and pollinator benefits from plant's reward.Nectar robbers are frequently described as cheaters in the plant-pollinator mutualism,because it is assumed that they obtain a reward (nectar) without providing a service (pollination).Nectar robbers are birds,insects,or other flower visitors that remove nectar from flowers through a hole pierced or bitten in the corolla.Nectar robbing represents a complex relationship between animals and plants.Whether plants benefit from the relationship is always a controversial issue in earlier studies.This paper is a review of the recent literatures on nectar robbing and attempts to acquire an expanded understanding of the ecological and evolutionary roles that robbers play.Understanding the effects of nectar robbers on the plants that they visited and other flower visitors is especially important when one considers the high rates of robbing that a plant population may experience and the high percentage of all flower visitors that nectar robbers make to some species.There are two standpoints in explaining why animals forage on flowers and steal nectar in an illegitimate behavior.One is that animals can only get food in illegitimate way because of the mismatch of the morphologies of animals'mouthparts and floral structure.The other point of view argues that nectar robbing is a relatively more efficient,thus more energy-saving way for animals to get nectar from flowers.This is probably associated with the difficulty of changing attitudes that have been held for a long time.In the case of positive effect,the bodies of nectar robbers frequently touch the sex organs of plants during their visiting to the flowers and causing pollination.The neutral effect,nectar robbers' behavior may destruct the corollas of flowers,but they neither touch the sex organs nor destroy the ovules.Their behavior does not affect the fruit sets or seed sets of the hosting plant.Besides the direct impacts on plants,nectar robbers may also have an indirect effect on the behavior of the legitimate pollinators.Under some circumstances,the change in pollinator behavior could result in improved reproductive fitness of plants through increased pollen flow and out-crossing.  相似文献   

11.
Nectar robbing may have an indirect negative effect on plant reproduction by discouraging legitimate pollinator species from visiting robbed flowers. In this study, we set up a 2 × 2 factorial design with nectar-robbing ants and hummingbird pollination to test for non-additive effects on fruit set, seed mass, and seed germination of the leafless mistletoe Tristerix aphyllus (Loranthaceae). Even though ants caused conspicuous damage at the base of the floral tubes, nectar availability was reduced by only 8 % in the presence of ants. The green-backed firecrown Sephanoides sephaniodes was insensitive to the presence of ants. Rather, the bird responded to flower number and the presence or the absence of damage, but not to the extent of damage within inflorescences. As hummingbirds were largely insensitive to variation in nectar robbing, the interaction ant × hummingbird had no effect on plant-reproductive success. Thus, the factorial experiment did not provide evidence for indirect negative effects of nectar robbing on plant reproduction. These results suggest that indirect effects of nectar robbers on pollinator behaviour may occur under a more restricted set of conditions than those previously considered. We suggest that the low amount of nectar removed by nectar-robbing ants was insufficient for hummingbirds to avoid robbed flowers, which restricted the potential for non-additive effects.  相似文献   

12.
Although nectar robbing is a common phenomenon in plant species with tubular flowers or flowers with nectar spurs, the potential effect of this illegitimate interaction on plant reproductive success has not received the deserved attention. In the present study, we analysed the functional relationship between flower morphology and nectar robbing, and examined the reproductive consequences of the interaction in a population of Duranta erecta (Verbenaceae) on the island of Cuba. The results show that nectar robbing is conducted by the carpenter bees Xylocopa cubaecola and affects up to 44% of flowers in the studied population. However, not all the flowers have the same probability of being robbed. The chance of flowers being robbed increases with flower length and flower diameter. Moreover, nectar robbing significantly decreases the chance that flowers will set fruit. Also, the impact of nectar robbing on the probability of flowers to set fruits is dependent on the plant. We suggest that nectar robbing may represent an opposite selective force that balances the selection for longer corollas often imposed by pollinators specializing in visiting tubular flowers. Such a relationship with nectar robbers would have obvious implications for the evolution of tubular or closed flowers. This preliminary finding deserves further research in light of the ecological and evolutionary consequences of nectar robbing in tubular flowers.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 392–398.  相似文献   

13.
  • Studies have indicated that florivory and nectar robbing may reduce reproductive success of host plants. However, whether and how these effects might interact when plants are simultaneously attacked by both florivores and nectar robbers still needs further investigation.
  • We used Iris bulleyana to detect the interactions among florivory, nectar robbing and pollination, and moreover, their effects on plant reproductive success. Field investigations and hand‐pollination treatments were conducted on two experimental plots from a natural population, in which Experimental plot was protected from florivores and Control plot was not manipulated.
  • The flower calyx was bitten by sawflies to consume the nectary, and three bumblebee species were pollinators. In addition, the short‐tongued pollinator, Bombus friseanus, was the only robber when there was a hole made by a sawfly. The bumblebee had significantly shortened flower handling time when robbing, as compared to legitimate visits. Pollinator visitation and seed production decreased significantly in damaged flowers. However, seed production per flower after supplementary hand‐pollination did not differ significantly between damaged and undamaged flowers. Compared to the Experimental plot, bumblebees visited fewer flowers per plant in a foraging bout in the Control plot.
  • The flowers damaged by florivory allowed Bfriseanus to shift to a nectar robber. Florivory and nectar robbing collectively decreased plant reproductive success by consuming nectar resources, which may reduce attractiveness to pollinators of the damaged flowers. However, the changes in pollinator behaviour might be beneficial to the plant by reducing the risk of geitonogamous mating.
  相似文献   

14.
在动植物的相互关系中,盗蜜行为被认为是一种不同于普通传粉者的非正常访花行为。动物之所以要采取这种特殊的觅食策略,有假说认为是由访花者的口器和植物的花部形态不匹配造成的,也有认为是盗蜜行为提高了觅食效率从而使盗蜜者受益。在盗蜜现象中,盗蜜者和宿主植物之间的关系是复杂的。盗蜜对宿主植物的影响尤其是对其繁殖适合度的影响归纳起来有正面、负面以及中性3类。与此同时,盗蜜者的种类, 性别及其掠食行为差异不仅与生境因素密切相关,而且会对宿主植物的繁殖成功产生直接或间接的影响。另外,盗蜜者的存在无疑对其它正常传粉者的访花行为也产生一定的影响,从而间接地影响宿主植物的繁殖成功, 而植物在花部形态上也出现了对盗蜜现象的适应性进化。作者认为, 盗蜜是短嘴蜂对长管型花最有效的一种掠食策略, 它不仅增加了盗蜜者对资源的利用能力, 而且由于盗蜜对宿主植物繁殖成功的不同的影响使其具有调节盗蜜者和宿主之间种群动态的作用, 两者的彼此适应是一种协同进化的结果。  相似文献   

15.
Hummingbirds foraging in alpine meadows of central Colorado, United States, face a heterogeneous distribution of nectar rewards. This study investigated how variability in nectar resources caused by nectar-robbing bumblebees affected the foraging behavior of hummingbird pollinators and, subsequently, the reproductive success of a host plant (Ipomopsis aggregata). We presented hummingbirds with experimental arrays of I. aggregata and measured hummingbird foraging behavior as a function of known levels of nectar robbing. Hummingbirds visited significantly fewer plants with heavy nectar robbing (over 80% of available flowers robbed) and visited fewer flowers on those plants. These changes in hummingbird foraging behavior resulted in decreased percent fruit set as well as decreased total seed set in heavily robbed plants. These results indicate that hummingbird avoidance of nectar-robbed plants and flowers reduces plant fitness components. In addition, our results suggest that the mutualisms between pollinators and host plants may be affected by other species, such as nectar robbers. Received: 22 April 1998 / Accepted: 12 May 1998  相似文献   

16.
【目的】调查和观测内蒙古毛乌素沙地大和切叶蜂Megachile (Xanthosaurus) japonica Alfken对其蜜源植物披针叶黄华Thermopsis lupinoides (L.)的盗蜜行为。【方法】在披针叶黄华花期内, 设置样方观测披针叶黄华的主要访花昆虫。采用目测, 拍照等方法对大和切叶蜂盗蜜行为进行观测, 记录和统计花被盗蜜后留下的盗蜜孔的数量和在花上的位置。【结果】大和切叶蜂在披针叶黄华传粉蜂中数量上占有绝对的优势。作为初级盗蜜者时, 用上颚在花基部切割出一个纵向裂口, 将口器伸入孔内吸取花蜜。作为次级盗蜜者时, 利用已有的孔洞来吸蜜。在盗蜜时没有表现出寻找已经存在的盗蜜孔来吸蜜的现象, 同时其个体在盗蜜时表现出“偏好”花基部一侧的行为。在13个样地, 已开放花朵被盗蜜率最低为95.4%, 最高达到100%, 而未开放花朵的被盗蜜率最高则达到64.7%。【结论】在毛乌素沙地大和切叶蜂既是披针叶黄华的主要传粉者, 也是其初级盗蜜者和次级盗蜜者。  相似文献   

17.
The relationship between plant and pollinator is considered as the mutualism because plant benefits from the pollinator’s transport of male gametes and pollinator benefits from plant’s reward. Nectar robbers are frequently described as cheaters in the plant-pollinator mutualism, because it is assumed that they obtain a reward (nectar) without providing a service (pollination). Nectar robbers are birds, insects, or other flower visitors that remove nectar from flowers through a hole pierced or bitten in the corolla. Nectar robbing represents a complex relationship between animals and plants. Whether plants benefit from the relationship is always a controversial issue in earlier studies. This paper is a review of the recent literatures on nectar robbing and attempts to acquire an expanded understanding of the ecological and evolutionary roles that robbers play. Understanding the effects of nectar robbers on the plants that they visited and other flower visitors is especially important when one considers the high rates of robbing that a plant population may experience and the high percentage of all flower visitors that nectar robbers make to some species. There are two standpoints in explaining why animals forage on flowers and steal nectar in an illegitimate behavior. One is that animals can only get food in illegitimate way because of the mismatch of the morphologies of animals’ mouthparts and floral structure. The other point of view argues that nectar robbing is a relatively more efficient, thus more energy-saving way for animals to get nectar from flowers. This is probably associated with the difficulty of changing attitudes that have been held for a long time. In the case of positive effect, the bodies of nectar robbers frequently touch the sex organs of plants during their visiting to the flowers and causing pollination. The neutral effect, nectar robbers’ behavior may destruct the corollas of flowers, but they neither touch the sex organs nor destroy the ovules. Their behavior does not affect the fruit sets or seed sets of the hosting plant. Besides the direct impacts on plants, nectar robbers may also have an indirect effect on the behavior of the legitimate pollinators. Under some circumstances, the change in pollinator behavior could result in improved reproductive fitness of plants through increased pollen flow and out-crossing. __________ Translated from Acta phytoecologiaca Sinica, 2006, 30(4): 695–702 [译自: 植物生态学报]  相似文献   

18.
The floral biology and pollination process of Glechoma longituba (Nakai) Kuprian, a clonal gynodioecious, perennial herb that is widely distributed in China was investigated in natural populations. During visits to the flowers of G. longituba, the carpenter bee—Xylocopa sinensis mainly displayed nectar-robbing behavior with minimal pollination. Nectar robbing behavior began at the onset of flowering and continued for about 3 weeks ending at about the middle of the flowering period. A total of 18.6% floral visits in this period were by nectar robbers, with about 90% of the flowers in the study populations being subjected to two or two nectar-robbing episodes. During controlled experiments, lower pollination efficiency was recorded for X. sinensis compared to legitimate pollinators. Pollination by the robber-like pollinator X. sinensis during the early-mid phase of the flowering season yielded seeds of 16.16%. Although nectar robbing by the carpenter bee seemed to have a slight enhancing effect on seed set in G. longituba, this effect was effectively masked by the more pronounced detrimental effect of nectar robbing. Experiments indicated that nectar robbing by the carpenter bee reduced seed production by more than 26%, largely owing to the consequent shortening of the life span of robbed flowers. Furthermore, 10.43% of the ovules and 13.04% of the nectaries in the robbed flowers were damaged, thus causing a decrease or entire loss of reproductive opportunity in the robbed flowers. In addition, a higher number of pollen grains remained on the androecia of robbed flowers indicating that nectar robbing may have a lowering effect on male fitness in G. longituba.  相似文献   

19.
The effect of nectar robbing on plant fitness is poorly understood and restricted to a few plant species. Furthermore, the available studies generally evaluate the effects of nectar robbing on female fitness, disregarding the male component. Here we measured the effects of the nectar-robbing bumblebees on male (measured as pollen analogue flow distance) and female (measured as seed production) reproductive success in the insect-dependent Polygala vayredae, a narrow endemic species from the pre-Pyrenees (Spain). Intense nectar robbing by bumblebees significantly reduced the nectar available to legitimate pollinators in the studied population, and this reduction affected both male and female fitness. Significant differences were observed in fluorescent dye dispersion between robbed and non-robbed flowers within the population. Fluorescent dyes from non-robbed flowers were dispersed to larger distances and over a larger number of flowers when compared with robbed ones. Moreover, significant differences were observed in both fruit set and seed ovule ratios between the two groups, with non-robbed flowers presenting higher reproductive outcomes. However, no effect on seed weight was detected among treatments. The data obtained suggest that in this species, nectar robbing has important indirect and negative effects on plant fecundity, through both male and female functions, due to a modification in the foraging behaviour of legitimate visitors.  相似文献   

20.
We quantified nectar‐robbing in two ornithophilus plant species by marking and monitoring robbed flowers and unrobbed flowers of each plant until fruit production. Significantly more marked unrobbed Cavendishia pubescens flowers successfully matured fruits than their robbed counterparts, while fruit set did not differ significantly between robbed and unrobbed flowers of Fuchsia venusta. In C. pubescens, birds of species known to be legitimate visitors sometimes behaved as secondary nectar robbers; conspecific birds handled flowers of F. venusta consistently. This behavioral change may contribute to the observed negative effect of nectar‐robbing on reproduction of C. pubescens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号