首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenobarbital-stimulated microsomal membranes of rabbit liver, containing the cytochrome P450- cytochrome P450 reductase hydroxylating enzyme system in high concentration, have been studied with a version of the spin label technique which uses nitroxide radicals as enzyme substrates. The reduction kinetics of a phosphate ester of tetramethylpiperidine nitroxide (TEMPO-phosphate) and of stearic acid nitroxide by the cytochrome P450 reductase has been studied as a function of the temperature. The Arrhenius plot of the reduction rate constants reveals a striking difference in the behaviour of the water-soluble TEMPO-phosphate label and the lipid-soluble fatty acid label: The activation energy of the fatty acid reduction decreases abruptly at about 32°C from a value of 30.8 kcal/mole to a value of 8.7 kcal/mole, whereas no such break is observed in the Arrhenius plot of the TEMPO-phosphate reduction which yields a value of the activation energy of ΔW = 13.8 kcal/mole in the whole temperature range investigated. Our results clearly indicate the existence of a mosaic-like structure of the membrane with the whole enzyme system being enclosed by a rather rigid phospholipid halo which is in a quasicrystalline structure below 32 °C and undergoes a crystalline-liquid crystalline phase transition at 32 °C, while the bulk lipid of the membrane is in a rather fluid state as reflected by the measured high diffusion coefficient of Ddiff = 11.0·10?8cm2/s at 30 °C and low activation energy of diffusion of ΔW = 3.85 kcal/mole of a fatty acid spin label incorporated in the membrane.  相似文献   

2.
The effect of pretreatment with phenobarbitone, rifampicin, β-naphthoflavone, antipyrine and spironolactone on the irreversible binding of ethynyloestradiol to guinea pig liver microsomes has been examined and the corresponding changes in microsomal P-450 content and cytochrome c reductase activity measured. Rifampicin produced the greatest increase (220%) in irreversible binding while phenobarbitone produced the greatest increase in both microsomal P-450 content (172%) and cytochrome c reductase activity (210%). There was no correlation of irreversible binding with either microsomal P-450 content or with cytochrome c reductase activity.  相似文献   

3.
Both the cytochrome b5 level and NADH cytochrome b5 reductase activity in rat liver microsomes were increased 2-fold by repeated i.p. administration of 1.5 mmol/kg propylthiouracil (PTU) for 2 weeks, but neither the cytochrome P-450 level nor NADPH cytochrome P-450 reductase activity were affected by the treatment. Liver microsomes from PTU-treated rats showed a significant decrease in aminopyrine N-demethylation, but not in benzphetamine N-demethylation, aniline hydroxylation or 7-ethoxycoumarin O-deethylation. A single administration of the compound had no effect on any components of the system. In vitro, drug hydroxylation activities were not affected by PTU up to 1.0 mM. From the above evidence, repeated administration of PTU selectively induced cytochrome b5 and NADH cytochrome b5 reductase in rat liver microsomes.  相似文献   

4.
Cytochrome P-450 from rat lung microsomes has been solubilized and purified 8-fold by using affinity chromatography on an ω-amino-n-octyl derivative of Sepharose 4B. The purified fraction was free of cytochrome b5 and NADPH-cytochrome c reductase and showed spectral characteristics similar to those of lung microsomal cytochrome P-450. When combined with NADPH-cytochrome c reductase partially purified from liver microsomes, the cytochrome P-450 fraction supported the hydroxylation of benzo (α)pyrene and the activity was proportional to the content of the hemoprotein. No absolute requirement for phosphatidylcholine was found.  相似文献   

5.
In the presence of hepatic microsomes, vinyl chloride produces a ‘type I’ difference spectrum and stimulates carbon monoxide inhibitable NADPH consumption. A comparison of the binding and Michaelis parameters for the interaction of vinyl chloride with uninduced, phenobarbital and 3-methylcholanthrene induced microsomes indicates that the binding and metabolism of vinyl chloride is catalyzed by more than one type P-450 cytochrome, but predominantly by cytochrome P-450. Metabolites of vinyl chloride from this enzyme system decrease the levels of cytochrome P-450 and microsomal heme, but not cytochrome b5 or NADPH-cytochrome c reductase in vitro.  相似文献   

6.
When incorporated into phospholipid vesicles containing NADPH-cytochrome P-450 reductase and P-450LM2, cytochrome b5 enhanced the rate of NADPH-supported hydroxylation of 7-ethoxycoumarin or p-nitroanisole about 5-fold. Cytochrome b5 did not affect the rate of NADPH-oxidation, nor the rate of NADPH-supported formation of the ferrous CO-complex of cytochrome P-450. However, the cytochrome b5-mediated increase in product formation was found to be correlated with concomitant decreases in the production of H2O2 or O2? in the system, thus strongly indicating cytochrome b5 being a more efficient donor of the second electron to cytochrome P-450 than is NADPH-cytochrome P-450 reductase.  相似文献   

7.
A procedure is described for the isolation of cytochrome P-450 fraction from hamster liver microsomes. It involves removal of NADPH-cytochrome c reductase activity by treatment with bacterial protease before solubilization with Triton X-100 and precipitation with ammonium sulfate. Reconstitution studies indicate that 2-acetylaminofluorene N-and ring-hydroxylation require both cytochrome P-450 fraction and the reductase fraction. N-hydroxylation activity of cytochrome P-450 fraction from 3-methylcholanthrene pretreated hamsters is different and severalfold greater than that of cytochrome P-450 fraction from controls. These results demonstrate for the first time an activation of a chemical carcinogen by a reconstituted cytochrome P-450 enzyme system.  相似文献   

8.
Microsomes isolated from whole rat brain were found to contain cytochreme P-450 (0.025 to 0.051 nmoles/mg) and NADPH cytochrome c reductase activity (26.0 to 55.0 nmoles/mg/min). The oxidation of estradiol to a reactive metabolite that became covalently bound to rat brain microsomal protein was inhibited 63% by an atmosphere of CO:O2 (9:1), indicating the involvement of a cytochrome P-450 oxygenase. In contrast, this atmosphere had no effect on the binding of either the catechol estrogen, 2-hydroxyestradiol, or several catecholamines to rat brain microsomes. An antibody prepared against NADPH cytochrome c reductase was found to decrease significantly both the formation of 2-hydroxyestradiol from estradiol by rat brain microsomes and the covalent binding of the catechol estrogen and catecholamines to rat brain microsomal protein.  相似文献   

9.
In order to define the site of bioactivation of CCl4, CHCl3 and CBrCl3 in the NADPH cytochrome c reductase-cytochrome P-450 coupled systems of liver microsomes, the 14C-labeled hepatotoxins were incubated invitro with isolated rat liver microsomes and a NADPH-generating system. The covalent binding of radiolabel to microsomal protein was used as a measure of the conversion of the hepatotoxins to reactive intermediates. Omission of NADPH, incubation under CO:O2 (8:2) and addition of a cytochrome c reductase specific antisera mardedly reduced the covalent binding of all three compounds. When cytochrome P-450 was reduced to less than 25% of normal by pretreatment of rats with allylisopropylacetamide (AIA), but cytochrome c reductase activity was unchanged, the covalent binding of CCl4, CHCl3, and CBrCl3 was decreased by 63, 83, 70%, respectively. Incubation under an atmosphere of N2 enhanced the binding of CCl4, inhibited the binding of CHCl3 and did not influence the binding of CBrCl3. It is concluded that cytochrome P-450 is the site of bioactivation of these three compounds rather than NADPH cytochrome c reductase and that CCl4 bioactivation proceeds by cytochrome P-450 dependent reductive pathways, while CHCl3 activation proceeds by cytochrome P-450 dependent oxidative pathways.  相似文献   

10.
Cytochrome P-450 was isolated in highly purified form from liver microsomes of adult male rabbits treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Preparations average 17.8 ± 0.8 nmoles cytochrome P-450 per mg protein and have an estimated molecular weight of 54,500. The visible absorption spectrum of the purified cytochrome displays absorption spectral maxima characteristic of high spin forms of cytochrome P-450. When reconstituted with highly purified NADPH-cytochrome P-450 reductase, this cytochrome catalyzes the hydroxylation of acetanilide and the O-deethylation of 7-ethoxyresorufin, two activities induced by TCDD.  相似文献   

11.
H Taniguchi  Y Imai  R Sato 《Biochemistry》1987,26(22):7084-7090
NADPH-cytochrome P-450 reductase and cytochrome P-450, both purified from liver microsomes of phenobarbital-treated rabbits, were incorporated into dimyristoylphosphatidylcholine vesicles. The reduction of cytochrome P-450 by NADPH in the reconstituted vesicles proceeded in a biphasic fashion, and 70-80% of the absorbance change was associated with the fast phase. The Arrhenius plot of the apparent first-order rate constant of the fast-phase reduction showed a marked discontinuity around the phase transition temperature of the synthetic phospholipid; an almost 10-fold change in rate constant was associated with this discontinuity. It was, therefore, suggested that the reduction of cytochrome P-450 by reductase in this system was a diffusion-limited reaction controlled by the viscosity of the phospholipid membrane. The Arrhenius plot of overall drug monooxygenase activity catalyzed by the reconstituted vesicles showed a break but in a different way from that observed for the reduction of cytochrome P-450. This break was accompanied only by a change of the slope of the plot but not by a change in reaction rate. This difference in the two Arrhenius plots was attributed to that in the rate-limiting step of the two reactions. NADPH-cytochrome c reductase activity of the reconstituted vesicles, an activity catalyzed by the reductase alone, and cumene hydroperoxide dependent N-methylaniline demethylation activity catalyzed by cytochrome P-450 alone did not show any break in the Arrhenius plots.  相似文献   

12.
J T Stevens  F E Greene 《Life sciences》1973,13(12):1677-1691
Invitro inhibition of ethylmorphine metabolism in rat hepatic microsomes by parathion, malathion, malaoxon and paraoxon was not well correlated with their effects on NADPH oxidation, cytochrome C reduction or the reduction of cytochrome P-450. A parallel relationship was observed between inhibition of ethylmorphine metabolism by parathion, malathion and malaoxon and the binding affinity of these agents to microsomal cytochrome P-450 obtained from rats pretreated with an anticholinesterase agent, Bis-[?-nitrophenol] phosphate.  相似文献   

13.
Binding of increasing amounts of detergent-purified cytochrome b5 to rabbit liver microsomes produces a progressive inhibition of NADPH-cytochrome P-450 reductase activity which is accompanied by a similar inhibition of NADPH-supported benzphetamine demethylation. In contrast, NADH-cytochrome P-450 reductase activity in the enriched microsomes is markedly enhanced and this stimulation is accompanied by a similar increase in NADH-peroxidase activity, suggesting that cytochrome b5 in these two reactions functions as an intermediate electron carrier to cytochrome P-450.  相似文献   

14.
Rat cytochrome P-4501A1-dependent monooxygenase activities were examined in detail using recombinant yeast microsomes containing rat cytochrome P-4501A1 and yeast NADPH-P-450 reductase. On 7-ethoxycoumarin, which is one of the most popular substrates of P-4501A1, the relationship between the initial velocity (v) and the substrate concentration ([S]) exhibited non-linear Michaelis-Menten kinetics. Hanes-Woolf plots ([S]/v vs. [S]) clearly showed a biphasic kinetic behavior. Aminopyrine N-demethylation also showed a biphasic kinetics. The regression analyses on the basis of the two-substrate binding model proposed by Korzekwa et al. (Biochemistry 37 (1998) 4137-4147) strongly suggest the presence of the two substrate-binding sites in P-4501A1 molecules for those substrates. An Arrhenius plot with high 7-ethoxycoumarin concentration showed a breakpoint at around 28 degrees C probably due to the change of the rate-limiting step of P-4501A1-dependent 7-ethoxycoumarin O-deethylation. However, the addition of 30% glycerol to the reaction mixture prevented observation of the breakpoint. The methanol used as a solvent of 7-ethoxycoumarin was found to be a non-competitive inhibitor. Based on the inhibition kinetics, the real V(max) value in the absence of methanol was calculated. These results strongly suggest that the recombinant yeast microsomal membrane containing a single P-450 isoform and yeast NADPH-P-450 reductase is quite useful for kinetic studies on P-450-dependent monooxygenation including an exact evaluation of inhibitory effects of organic solvents.  相似文献   

15.
An antibody prepared against purified rat liver NADPH-cytochrome c reductase inhibited both the pulmonary and hepatic microsomal covalent binding of 4-ipomeanol as well as the respective NADPH-cytochrome c reductase activities, findings which are consistent with previous studies which indicated the participation of cytochrome P450 in the metabolic activation of the toxin. An antibody prepared against purified rat liver cytochrome b5, which strongly inhibited both the rat hepatic and pulmonary NADH-dependent cytochrome c reductases, and was inactive against the respective NADPH-dependent cytochrome c reductases, had little effect on metabolic activation of 4-ipomeanol by hepatic microsomes, but strongly inhibited both the NADH-supported and the NADPH-supported pulmonary microsomal metabolism and covalent binding of the compound. These results suggest that metabolic activation of 4-ipomeanol involves a two-electron transfer in which transfer of the second electron via cytochrome b5 is rate-limiting in lung microsomes.  相似文献   

16.
Hepatic and duodenal microsomes were prepared from partridge by conventional procedures. The duodenal homogenates were stable, avoiding the use of protease inhibitors in the preparation of microsomes. Both microsomal fractions were able to dealkylate 7-ethoxycoumarin, showing the characteristics of a cytochrome P-450 dependent reaction. Parameters of the reaction (cofactor requirements, optimal pH, Km) were established. Typical type I difference spectrum was obtained upon addition of 7-ethoxycoumarin to hepatic and duodenal microsomes; with liver, Km and Ks values were similar. The concentration of cytochrome P-450 was very high and similar in both organs, but the specific activity of duodenal 7-ethoxycoumarin dealkylase was about 10% and NADPH-cytochrome c reductase 50% that of liver.  相似文献   

17.
The application of hexachlorobenzene (HCB), pentachlorophenol (PCP) and 2,4,5-trichlorophenol (TCP) to female rats led to an induction of both the microsomal and the nuclear cytochrome P-450 system in the liver. The increase of th mixed-function hydroxylase activities examined (7-ethoxycoumarin deethylase, 7-ethoxyresorufin deethylase, NADPH-dependent cytochrome c reductase, aminopyrine demethylase, benzpyrene hydroxylase) did not correlate strictly with the cytochrome P-450 content. Depending on the inducers and the substrates used, the content and the activity of the cytochrome P-450 were essentially smaller in the nuclei than in the microsomes. It was striking that in the nuclei those activities (benzpyrene hydroxylase, 7-ethoxyresorufin deethylase, 7-ethoxycoumarin deethylase) were preferably induced which can be attributed to the methyl-cholanthrene-induced form of the cytochrome P-450 (cytochrome P-448). These results suggest, also in the light of findings of other authors, the induction of different species of cytochrome P-450 in the nuclei and microsomes.  相似文献   

18.
The effects of danazol on steroidogenesis invitro in the 16–20 week old human fetal adrenal were examined by studying: 1) danazol binding to adrenal microsomal and mitochondrial cytochrome P-450, and 2) enzyme kinetics of danazol inhibition of the adrenal microsomal 21-hydroxylase and the mitochondrial llβ-hydroxylase. The addition of danazol to preparations of adrenal microsomes or mitochondria elicited a type I cytochrome P-450 binding spectrum. Danazol bound to microsomal cytochrome P-450 with a high affinity apparent spectral dissociation constant (Kg) of 1 μM and with a lower affinity K's of 10 μM. Danazol bound to mitochondrial cytochrome P-450 with a Kg of 5 μM. In addition, danazol competitively inhibited the microsomal 21-hydroxylase (apparent enzymatic inhibition constant KI = 0.8 μM) and the mitochondrial 11β-hydroxylase (KI = 3 μM). These findings demonstrate that low concentrations of danazol directly inhibit steroidogenesis in the human fetal adrenal invitro.  相似文献   

19.
NADPH reduces both liver microsomal cytochrome P-450 and cytochrome b5. In the presence of CO, ferrous cytochrome P-450 can slowly transfer electrons to amaranth, an azo dye. This reaction is followed by the reoxidation of cytochrome b5 which proceeds at essentially the same rate as does cytochrome P-450 oxidation. It is suggested that cytochrome b5 directly reduces cytochrome P-450 in rat liver microsomes.  相似文献   

20.
We describe the resolution and partial purification of two minor forms of cytochrome P-450 from liver microsomes of rabbits treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Both forms have different electrophoretic mobilities when compared to the major form of cytochrome P-450 isolated from this source. The two cytochromes show different activities with several substrates. One form is very active in the hydroxylation of benzo(a)pyrene when reconstituted with highly purified NADPH-cytochrome P-450 reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号