首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Specific activity and Ca2+-affinity of (Ca2++Mg2+)ATPase of calmodulin-depleted ghosts progressively increase during preincubation with 0.1–2 mM Ca2+. Concomitantly, the increment in ATPase activity caused by calmodulin and the binding of calmodulin to ghosts decrease. The effects of calcium ions are abolished by the addition of calmodulin. ATP protects the enzyme from a Ca2+-dependent decrease of the maximum activity but does not seem to influence the Ca2+-dependent transformation of the low Ca2+-affinity enzyme into a high Ca2+-affinity form.  相似文献   

2.
Low physiological levels of Ca2+, in the presence of Mg2+ allow the reduction of extramitochondrial NADP+ via intramitochondrial malic enzyme. The rate of reduction is dependent on the concentration of Ca2+ and Mg2+. The Ca2+ levels producing the appearance of malic enzyme activity also cause an ultrastructural transformation from the aggregated to the orthodox form. The phenomenon requires electron transport and is blocked by agents which interfere with active Ca2+ accumulation.  相似文献   

3.
Extraction with EDTA of lyophilized and lysozyme treated preparations of the blue-green algae Anacystis nidulans resulted in loss of the capacity for photoevolution of O2. Reactivation was achieved by the addition of both cations: Mn2+ and Ca2+ (or to a smaller extent by Mn2+ and Sr2+). The dual requirement for Mn2+ and Ca2+ could be demonstrated when the O2 evolution under short saturating light flashes and the variable chlorophyll fluorescence associated with the reduction of the primary acceptor of Photosystem II was examined. The fluorescence experiments in addition showed that incorporation of the cations was a light dependent step, since the fluorescence rise only started after a lag period.  相似文献   

4.
Mn2+ uptake in the chick chorioallantoic membrane, an embryonic epithelial tissue which transports Ca2+ in vivo was studied using electron paramagnetic resonance (EPR). Mn2+ was used as a paramagnetic analog for Ca2+, since there is evidence that Mn2+ is accumulated by the Ca2+ transport mechanism.After 1.5 h of uptake the EPR spectrum of the Mn2+ in the membrane indicated that 89 % of the Mn2+ was in a spin-exchange form, indicating close packing of Mn2+. The Mn2+ spacing was estimated from the line width to be about 4.7 Å. The remaining Mn2+ was very likely Mn2+ hexahydrate.At pH 7.4 the spin-exchange spectrum tended to broaden when uptake was inhibited, while at pH 5.0 the spin-exchange spectrum was completely abolished in the presence of inhibitors.The EPR spectrum of Mn2+ in the chorioallantoic membrane had a broader line width than that of Mn2+ in isolated mitochondria, suggesting that in this tissue mitochondria are not directly involved in divalent cation transport. These EPR studies support the concept that divalent cations are sequestered in high concentrations from the rest of the cell contents during transcellular active transport.  相似文献   

5.
Ca2+ and Mn2+ promote the binding of the basic isoperoxidase to a crude membrane preparation in extracts from Pharbitis cotyledons. The Ca2+- or Mn2+-induced binding is resistant to high ionic strength and can be saturated by increasing the divalent ion or the isoperoxidase concentrations. Treatments in vitro with glucosaminidase or in vivo with tunicamycin show that the carbohydrate part of the isoperoxidase is necessary for the binding. The amino sugar galactosamine inhibits the binding at rather high concentrations. Pharbitis basic isoperoxidase can be bound to zucchini squash microsomes in the presence of Ca2+ and conversely.  相似文献   

6.
—Some basic kinetic properties of adenylate cyclase in cell free preparations of mouse neuroblastoma were investigated. Production of cAMP from ATP by the enzyme requires the presence of either Mg2+ or Mn2+ in addition to ATP. In the presence of Mg2+, the Km for ATP is 120 ± 15 μM and the interaction of ATP and adenylate cyclase appears to be non-cooperative (Hill coefficient of 1). Magnesium ion concentrations in excess of the ATP concentration cause stimulation although similar excess concentrations of Mn2+ cause inhibition. Prostaglandin E1 and 2-chloroadenosine activate the enzyme. The Km of the cyclase for 2-chloroadenosine is 6 μm . Activation by 2-chloroadenosine leads to an increase in Vmax but does not effect the Km for ATP. At a fixed ATP concentration, the extent of activation caused by prostaglandin E1 and 2-chloroadenosine is inversely related to the Mg2+ concentration. Calcium ion causes inhibition of adenylate cyclase from 0.1 to 4mM with a Ki of 5 ± 10?4m . Ca2+ interaction with the enzyme in the absence or presence of either 2-chloroadenosine or prostaglandin E1 appears cooperative (i.e. Hill coefficients of ?2). Ca2+ inhibition is non-competitive with respect to either ATP or 2-chloroadenosine but is progressively diminished by increasing Mn2+ concentrations. Divalent cation effects and activation by 2-chloroadenosine and prostaglandin E1 of the neuroblastoma adenylate cyclase are compared with ion effects and hormone activation of the enzyme obtained from non-neuronal tissue.  相似文献   

7.
8.
Calmodulin-depleted isotonic erythrocyte ghosts contain 200 ng residual calmodulin/mg protein which is not removed by extensive washings at pCa2+ > 7. Specific activity and Ca2+-affinity of the (Ca2+ + Mg2+)ATPase increase at increasing calmodulin, with K0.5 Ca of 0.38 μM at calmodulin concentrations corresponding to that in erythrocytes. High Ca2+ concentrations inhibit the enzyme. Specific activity and Ca2+-affinity of the enzyme decrease at increasing Mg2+ concentrations. The Ca2+ ? Mg2+ antagonism is likewise observed at inhibitory Ca2+ concentrations.  相似文献   

9.
Cd2+, Mn2+, and Al3+ inhibited synaptosomal amine uptake in a concentration-dependent and time-dependent manner. In the absence of Ca2+, the rank order of inhibition of noradrenaline uptake was: Cd2+ (IC50 = 250 μM) > Al3+ (IC50 = 430 μM) > Mn2+ (IC50 = 1.50 mM), the IC50 being the concentration of metal ions that gave rise to 50% inhibition of uptake. In the presence of 1 mM Ca2+, the rank order of inhibition of uptake was: Al3+ (IC50 = 330 μM) > Cd2+ (IC50 = 540 μM) > (IC50 = 1.5 mM). The rank order of inhibition of serotonin uptake without Ca2+ was: Al3+ (IC50 = 370 μM) > Cd2+ (IC50 = 610 μM) > Mn2+ (IC50 = 3.4 mM) and the rank order in the presence of 1 mM Ca2+ was: Al3+ (IC50 = 290 μM) > Cd2+ (IC50 = 1.5 mM) > Mn2+ (IC50 = 4.0 mM). Ca2+, at 1 mM, definitely antagonized the inhibitory actions of Cd2+ on noradrenaline and serotonin uptake. Al3+ stimulated noradrenaline uptake at concentrations around 20–250 μM but inhibited this uptake at concentrations exceeding 300 μM in a dose-related fashion. Ca2+, at 1 mM, enhanced both the stimulatory and inhibitory effects of Al3+. Ca2+ also enhanced the inhibitory actions of Al3+ on seotonin uptake. These results, in conjunction with those we have previously published, suggest that Cd2+, Mn2+, and Al3+ exert differential and selective effects on the structure and function of synaptosomal membranes.  相似文献   

10.
Bovine brain calmodulin-dependent protein phosphatase comprises a catalytic subunit A (Mr 60,000) and a regulatory subunit B (Mr 19,000). The native enzyme was active with Ca2+ or Mn2+. Upon resolution into its subunits in 6 M urea and 15 mM EDTA, subunit A was active with Mn2+; Co2+ and Ni2+ partially substituted for Mn2+, but Ca2+, Mg2+ and Zn2+ were ineffective. The stimulating effect of Mn2+ was not easily reversed by EGTA. Like the native phosphatase, subunit A was markedly stimulated by calmodulin or by controlled trypsinization. Unlike the native enzyme, however, trypsinized subunit A still required Mn2+ for activity. These findings provide evidence that the catalytic subunit of phosphatase may be a metallo (possibly Mn2+) enzyme.  相似文献   

11.
N.-E.L. Saris  P. Bernardi 《BBA》1983,725(1):19-24
The effect of Sr2+ on the set point for external Ca2+ was studied in rat heart and liver mitochondria with the aid of a Ca2+-sensitive electrode. In respiring mitochondria the set point is determined by the rates of Ca2+ influx on the Ca2+ uniporter and efflux by various mechanisms. We studied the Ca2+-Na+ exchange pathway in heart mitochondria and the Δψ-modulated efflux pathway in liver mitochondria. Prior accumulation of Sr2+ was found to shift the set points towards lower external Ca2+ both in heart mitochondria under conditions of Ca2+-Na+ exchange and in liver mitochondria under conditions that should promote opening of the Δψ-modulated pathway. The effect on the set point was found to be due to inhibition of Ca2+ efflux by Sr2+ taken up by the mitochondria, while Sr2+ efflux was too slow to be measurable.  相似文献   

12.
A comparison was made between the activation of membrane-bound adenylate cyclase from rat fat cell membranes and the enzyme solubilized with digitonin. The isoprenaline stimulation of the particulate enzyme was enhanced by GTP, both in the presence of Mg2+ and Mn2+, but no effect of the metal ion nor of GTP was found on the Ka of isoprenaline. The Ka of sodium fluoride for enzyme stimulation was shifted to 3-fold higher concentrations when Mg2+ was replaced by Mn2+, whereas V decreased. GTP did not influence the Ka of sodium fluoride but reduced V, irrespective of the metal ion. After digitonin solubilization the enzyme was no longer responsive to isoprenaline or GTP; however, V of the sodium fluoride activation was higher in the presence of Mn2+ than in the presence of Mg2+, and the Ka was found at 15-fold higher concentrations. Both the solubilized and the particulate adenylate cyclase were inhibited by adenosine; this inhibition was also seen with the fluoride stimulated enzyme. We conclude that solubilization with digitonin did not result in an enzyme preparation which preferentially turns over MnATP2+, although the fat cell adenylate cyclase possesses a metal ion regulatory site with a higher affinity for Mn2+ than for Mg2+. The data suggest that the guanyl nucleotide regulatory site and the sodium fluoride-sensitive site are located on different subunits while there is an interaction between the metal ion regulatory site and the fluoride-sensitive site.  相似文献   

13.
Ca2+ efflux from sarcoplasmic reticulum vesicles was studied by measurements of net Ca2+ uptake, 45Ca2+ flux and hydrolysis of energy-rich phosphate. The maximal Ca2+ uptake capacity (150–200 nmol/mg protein at pH 6.7, 10 mM MgCl2 and μ=0.26) was independent of the nature and concentration of the energy-donating substrate (ATP or carbamyl phosphate) and of temperature (15–35°C), suggesting coupling between influx and efflux of Ca2+. In the presence of high concentrations of ATP, this efflux of Ca2+ was much higher than the passive Ca2+ permeation, measured after ATP or Ca2+ depletion of the reaction medium. Ca2+ efflux was imperceptible at vesicle filling levels below 35–40 nmol Ca2+/mg protein, and uncorrelated to the inhibition of the Ca2+-ATPase by high intravesicular Ca2+ concentrations. Analysis of the data indicated that Ca2+ efflux under our conditions probably is associated with one of the Ca2+-ATPase partial reactions occurring after dephosphorylation, rather than with a reversal of the Ca2+ translocation step in the phosphorylated state of the enzyme. Furthermore, passive Ca2+ permeation may be concurrently reduced during the enzymatically active state. It is proposed that both Ca2+ efflux and passive Ca2+ permeation (Ca2+ outflow) proceed via the same channels which are closed (occluded) during part of the Ca2+-ATPase reaction cycle.  相似文献   

14.
Ca2+ inhibited the Mg2+-dependent and K+-stimulated p-nitrophenylphosphatase activity of a highly purified preparation of dog kidney (Na+ + K+)-ATPase. In the absence of K+, however, a Mg2+-dependent and Ca2+-stimulated phosphatase was observed, the maximal velocity of which, at pH 7.2, was about 20% of that of the K+-stimulated phosphatase. The Ca2+-stimulated phosphatase, like the K+-stimulated activity, was inhibited by either ouabain or Na+ or ATP. Ouabain sensitivity was decreased with increase in Ca2+, but the K0.5 values of the inhibitory effects of Na+ and ATP were independent of Ca2+ concentration. Optimal pH was 7.0 for Ca2+-stimulated activity, and 7.8–8.2 for the K+-stimulated activity. The ratio of the two activities was the same in several enzyme preparations in different states of purity. The data indicate that (a) Ca2+-stimulated phosphatase is catalyzed by (Na+ + K+)-ATPase; (b) there is a site of Ca2+ action different from the site at which Ca2+ inhibits in competition with Mg2+; and (c) Ca2+ stimulation can not be explained easily by the action of Ca2+ at either the Na+ site or the K+ site.  相似文献   

15.
ATP and the divalent cations Mg2+ and Ca2+ regulated K+ stimulation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum vesicles. Millimolar concentrations of total ATP increased the K+-stimulated ATPase activity of the Ca2+ pump by two mechanisms. First, ATP chelated free Mg2+ and, at low ionized Mg2+ concentrations, K+ was shown to be a potent activator of ATP hydrolysis. In the absence of K+ ionized Mg2+ activated the enzyme half-maximally at approximately 1 mM, whereas in the presence of K+ the concentration of ionized Mg2+ required for half-maximal activation was reduced at least 20-fold. Second MgATP apparently interacted directly with the enzyme at a low affinity nucleotide site to facilitate K+-stimulation. With a saturating concentration of ionized Mg2+, stimulation by K+ was 2-fold, but only when the MgATP concentration was greater than 2 mM. Hill plots showed that K+ increased the concentration of MgATP required for half-maximal enzymic activation approx. 3-fold.Activation of K+-stimulated ATPase activity by Ca2+ was maximal at anionized Ca2+ concentration of approx. 1 μM. At very high concentrations of either Ca2+ or Mg2+, basal Ca2+-dependent ATPase activity persisted, but the enzymic response to K+ was completely inhibited. The results provide further evidence that the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum has distinct sites for monovalent cations, which in turn interact allosterically with other regulatory sites on the enzyme.  相似文献   

16.
Initial uptake of Mn2+ and Sr2+ in the yeast Saccharomyces cerevisiae was studied in order to investigate the selectivity of the divalent cation uptake system and the possible involvement of the plasma-membrane ATPase in this uptake. The initial uptake rates of the two ions were not significantly different. This ruled out a direct role of the plasma-membrane ATPase, since this ATPase is specific for Mn2+ compared to Sr2+. After 1 h uptake, Mn2+ had accumulated 10-times more than Sr2+. Influx of Mn2+ and Sr2+ remained unchanged during that time, however. The differences in accumulation level found for Mn2+ and Sr2+ could be ascribed to a greater efflux of Sr2+ as compared with Mn2+. Probably this greater efflux of Sr2+ was only apparent, since differential extraction of the yeast cells revealed that Mn2+ is more compartmentalised than Sr2+, giving rise to a lower relative cytoplasmic Mn2+ concentration.  相似文献   

17.
The (Ca2+ + Mg2+)-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3) from human erythrocytes occurred in two different states, A-state and B-state, depending on the membrane preparation.The A-state showed low maximum activity (V) and the Ca2+ activation was characterized by a Hill coefficient, nH, of about 1 and a Michaelis constant, KCa, about 30 μM.The B-state showed high V, a nH above 1, which indicates positive cooper-activity of Ca2+ activation, and a KCa of about 1 μM.With varying ATP concentrations, both the A-state and the B-state showed negative cooperativity and slightly different values of Km.The B-state was shifted to the A-state when the membranes were exposed to low Ca2+ concentrations. The shift reached 50% at approx. 0.5 μM Ca2+. At the low Ca2+ concentrations an activator was released from the membranes.The A-state was shifted to the B-state when the membranes were exposed to Ca2+ in the presence of the activator. The shift reached 50% at about 30 μM Ca2+. The recovery of high V was time dependent and lasted several minutes. Increasing concentrations of Ca2+ and activator accelerated the recovery.It is suggested that the A-state and the B-state correspond to enzyme free of activator and enzyme associated with activator, respectively. Furthermore, the two states may represent a resting and an active state, respectively, of the calcium pump.  相似文献   

18.
N-Ethylmaleimide was employed as a surface label for sarcolemmal proteins after demonstrating that it does not penetrate to the intracellular space at concentrations below 1·10?4 M. The sarcolemmal markers, ouabain-sensitive (Na+ + K+)-ATPase and Na+/Ca2+-exchange activities, were inhibited in N-ethylmaleimide perfused hearts. Intracellular activities such as creatine phosphokinase, glutamate-oxaloacetate transaminase and the internal phosphatase site of the Na+ pump (K+-p-nitrophosphatase) were not affected. Almost 20% of the (Ca2+ + Mg2+)-ATPase and Ca2+ pump were inhibited indicating the localization of a portion of this activity in the sarcolemma. Sarcolemma purified by a recent method (Morcos, N.C. and Drummond, G.I. (1980) Biochim. Biophys. Acta 598, 27–39) from N-ethylmaleimide-perfused hearts showed loss of approx. 85% of its (Ca2+ + Mg2+-ATPase and Ca2+ pump compared to control hearts. (Ca2+ + Mg2+)-ATPase and Ca2+ pump activities showed two classes of sensitivity to vanadate ion inhibition. The high vanadate affinity class (K12 for inhibition approx. 1.5 μM) may be localized in the sarcolemma and represented approx. 20% of the total inhibitable activity in agreement with estimates from N-ethylmaleimide studies. Sucrose density fractionation indicated that only a small portion of Mg2+-ATPase and Ca2+-ATPase may be associated with the sarcolemma. The major portion of these activities seems to be associated with high density particles.  相似文献   

19.
Deciliation of Paramecium tetraurelia by a Ca2+ shock procedure releases a discrete set of proteins which represent about 1% of the total cell protein. Marker enzymes for cytoplasm (hexokinase), endoplasmic reticulum (glucose-6-phosphatase), peroxisomes (catalase), and lysosomes (acid phosphatase) were not released by this treatment. Among the proteins selectively released is a Ca2+-dependent ATPase. This enzyme has a broad substrate specificity which includes GTP, ATP, and UTP, and it can be activated by Ca2+, Sr2+, or Ba2+, but not by Mg2+ or by monovalent cations. The crude enzyme has a specific activity of 2–3 μmol/min per mg; the optimal pH for activity is 7.5. ATPase, GTPase, and UTPase all reside in the same protein, which is inhibited by ruthenium red, is irreversibly denatured at 50°C, and which has a sedimentation coefficient of 8–10 S. This enzyme is compared with other surface-derived ATPases of ciliated protozoans, and its possible roles are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号