首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Much of the research on gastric mucosal protection has concerned prostaglandins. Some of the recent studies consolidate aspects first investigated a few years ago, but whose importance is now becoming established more clearly. This short review will mention some of the more recent work demonstrating the importance of prostaglandins in preventing stasis of gastric mucosal blood flow, effects on cell senescence and exfoliation, and the protection of a severe mucosal lesion by a mucus-containing plug which facilitates healing. The leukotrienes are other substances formed in the gastric mucosa from the same precursors as the prostaglandins. Their roles are not well understood, but may include participation in gastric inflammation, and in mucosal damage by nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol. The NSAIDs may damage the gastric mucosa not only by reducing the formation of protective prostaglandins, but also by increasing the metabolism of prostaglandin precursors into leukotrienes. Another factor is thromboxane A2, a substance that is damaging to the gastric mucosa but whose synthesis is inhibited by NSAIDs. The prostaglandin analogues produced for the treatment of peptic ulcer may find a major use in the protection against damage by NSAIDs. Not only may they act as 'replacement therapy' for the inhibited prostaglandins, but they protect against damage from substances that do not inhibit prostaglandin synthesis. In doses that raise the gastric pH, the prostaglandins reduce the local absorption of NSAIDs by increasing their ionisation. In rats, paracetamol protects against damage by aspirin, but whether this occurs in man is controversial. Work not previously published demonstrates that paracetamol does not affect the inhibition of prostaglandin formation by indomethacin in human isolated gastric mucosa.  相似文献   

2.
Nonnarcotic analgesics include well-known, widely used substances such as acetylsalicylic acid (ASA) and acetaminophen. ASA is a potent inhibitor of prostaglandin synthesis, and this mechanism is responsible for many potential toxicities in the fetus and newborn. These may include bleeding, altered renal function, and constriction of the ductus arteriosus in addition to analgesia. As such, ASA is frequently avoided during gestation and the immediate neonatal period. Acetaminophen is less well recognized as an agent with activity outside the central nervous system. It does not possess antiinflammatory activity like other substances that inhibit prostaglandins but has been shown to be an analgesic with potency comparable to ASA. This is believed to be by inhibition of brain prostaglandin synthetase. We have determined by using the chronically catheterized sheep fetus that acetaminophen has potent activity on the ductus arteriosus and produces a constriction, in therapeutic analgesic quantities, comparable to ASA. Thus, acetaminophen may be a potent inhibitor of prostaglandin function in the fetus.  相似文献   

3.
The role of prostaglandins in producing cerebrovasodilation during hypercapnia was tested in goats. Cerebral blood flow (CBF) changes with increasing arterial PCO2 were measured before and after prostaglandin synthesis inhibition with indomethacin or ibuprofen. Both drugs produced significant decreases in CBF under control anesthetized conditions but had no significant effect on the cerebrovascular response to increased arterial PCO2. The effects of direct intracerebrovascular infusion of prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2 alpha) and prostacyclin were also measured. In the dose range tested (0.1-1) microgram/min) PGF2 alpha had no significantly greater than that produced by PGE2. The effectiveness of each compound in producing cerebrovascular changes is consistent with the endogenous distribution of prostaglandins within the brain. These results suggest that prostaglandins, particularly PGI2, may be important in modulating cerebrovascular tone but have no role in increasing CBF during hypercapnia.  相似文献   

4.
5.
Regional Prostaglandin Levels in Cerebral Ischaemia   总被引:1,自引:1,他引:0  
Abstract: Regional quantitative studies of brain prostaglandins (PG) in gerbils with bilateral carotid ligation have shown increases in PG2α in all areas of ischaemia but with no increases in PGE2. Pretreatment of animals with indomethacin (3 mg/kg) reduced this response, whereas dexamethasone (2.5 mg/kg) had no such effect. PGE1 and thromboxane-B2 were found not to be present in our preparation. The significance of these findings lies in the fact that both drugs, which are known to inhibit the development of ischaemic oedema, have now been shown to produce markedly different effects on prostaglandin levels. This may indicate either, that prostaglandins are not involved in is chaemic oedema formation, or, that the drugs have different mechanisms of action.  相似文献   

6.
The role of prostaglandins in bone in vivo   总被引:2,自引:0,他引:2  
Prostaglandins of the E series, primarily E2 and E1, have the greatest activity in bone. Following discovery of their potent ability to stimulate bone resorption in vitro, clinical investigations have placed prostaglandins at sites of localized bone resorption associated with inflammatory or space occupying lesions in vivo. These studies have shown that prostaglandin production at such sites may be increased by cytokines such as interleukin-1 but the mechanisms by which prostaglandins stimulate bone resorption are not yet known. Observation of periosteal bone formation in patients given, pharmacological doses of prostaglandin has led to investigation of its bone forming activity. Young, growing rats have increased metaphyseal bone formation and this is accompanied by increased periosteal and endocortical bone formation in older animals. In the mature animals there is a generalized activation of remodelling with increased formation in the remodeling cycle. This is also seen in oophorectomized rats and results in repletion of the lost bone in this model of osteoporosis. In animal models of localized disuse osteopenia, prostaglandins are found to be elevated at the site of bone loss and prostaglandin inhibitors at least partially protect against the exaggerated resorption that occurs. This is also seen in models of orthodontic tooth movement, periodontitis and osteomyelitis. Prostaglandin synthesis inhibitors have been shown to delay healing of bone and this has led to limitations on their use clinically in some situations. Exogenously administered prostaglandins have been found to enhance periosteal callus formation, but healing is not uniformly enhanced. Prostaglandins have also been associated with hypercalcemia in certain animal tumors that model human hypercalcemia of malignancy but are probably most important in this condition as mediators in the localized resorption of bone at tumor sites. These in vivo studies have shown that prostaglandins are involved with increases in both bone formation and bone resorption. In vitro studies have shown that prostaglandins stimulate osteoblasts as well as osteoclastic bone resorption but understanding these effects under in vivo conditions will require further investigation.  相似文献   

7.
Aspirin, salicyclic acid and indomethacin reversibly inhibit prostaglandin binding to human serum proteins. This effect was demonstrated in the sera of normal subjects and of rheumatoid arthritis patients treated with aspirin as well as by addition of these drugs to serum . The displacement of serum prostaglandins by salicylate is likely to affect the kinetics of prostaglandin transport and may facilitate the delivery of prostaglandins from serum to tissue receptors.  相似文献   

8.
The concept that prostaglandins may antagonize the renin-angiotensin system and increase sodium excretion must now be modified. New information that prostaglandin A1 stimulates aldosterone in man, and that sodium restriction increases both prostaglandin A and aldosterone levels, suggests the possibility that prostaglandins, as well as angiotensin II, may stimulate aldosterone secretion. This dual system could result in additive or synergistic effects on aldosterone secretion. In addition, there is the possibility that angiotensin-induced vasoconstriction might be counteracted by prostaglandin-induced vasodilation.  相似文献   

9.
The role of prostaglandins in producing cerebrovasodilation during hypercapnia was tested in goats. Cerebral blood flow (CBF) changes with increasing arterial PCO2 were measured before and after prostaglandin synthesis inhibition with indomethacin or ibuprofen. Both drugs produced significant decreases in CBF under control anesthetized conditions but had no significant effect on the cerebrovascular response to increased arterial PCO2. The effects of direct intracerebrovascular infusion of prostaglandin E2 (PGE2), prostaglandin F2α (PGF2α) and prostacyclin were also measured. In the dose range tested (0.1–1 ug/min) PGF2α had no significant effect on cerebral blood flow (CBF). Both PGE2 and PGI2 produced an increase in CBF and the increase produced by PGI2 was significantly greater than that produced by PGE2. The effectiveness of each compound in producing cerebrovascular changes is consistent with the endogenous distribution of prostaglandins within the brain. These results suggest that prostaglandins, particularly PGI1, may be important in modulating cerebrovascular tone but have no role in increasing CBF during hypercapnia.  相似文献   

10.
Freshly isolated neonatal porcine aortic tissue (smooth muscle with or without endothelium present) produced approximately 30 ng/mg wet tissue of 6-oxo-prostaglandin F1 alpha (the stable hydrolysis product from prostacyclin) and approximately 15 ng/mg of prostaglandin E2, as measured by radioimmunoassay after 24 h incubation in culture medium. Primary cultures of porcine endothelial and smooth muscle cells (isolated by enzymic digestion of aortic tissue) exhibited the same pattern of prostaglandin production, but absolute values were greater than for fresh tissue, particularly in the case of endothelium. Subcultures of endothelium produced smaller amounts of prostaglandins, although the pattern remained similar. In contrast, subcultures of smooth muscle cells produced a greater total amount of prostaglandins than did primary cultures, and the main product was prostaglandin E2. Experiments with [14C] prostaglandin H2 or [14C]arachidonic acid confirmed that aortic tissue, cultured endothelium, and primary cultures or aortic smooth muscle cells synthesized prostacyclin, and demonstrated that subcultured smooth muscle cells enzymically isomerised prostaglandin H2 to prostaglandin E2. Kinetic studies showed that prostaglandin production by cultured vascular cells was transiently increased by subculture or changing the growth medium, and that production per cell declined with increasing cell density. The change in pattern of prostaglandin production during culture was shown to be due to a rapid decline in the rate of prostacyclin production (which apparently began immediately after tissue isolation), together with a more gradual rise in prostaglandin E2 production. These results indicate that the amounts and ratios of prostaglandins produced by vascular endothelial and smooth muscle cells are greatly affected by the conditions used to isolate and culture the cells; vascular cells in vivo may similarly alter their pattern of prostaglandin production in response to local changes in their environment.  相似文献   

11.
Microsomal fractions of cells isolated from chick epiphyseal cartilage catalyzed the synthesis of prostaglandins from radiolabeled delta8,11,14-eicosatrienoic and from arachidonic acids. In addition, the microsomal supernatants contained both 15-hydroxyprostaglandin dehydrogenase and prostaglandin 15-keto delta13,14-reductase activities. Two major classes of prostaglandins (E and F) were synthesized; however, a major product which chromatographically behaves as PGA was also isolated. Synthetase activities were analyzed for pH optima and response to known stimulators and inhibitors of prostaglandin systhesis. The different activators had varying stimulatory effects on prostaglandin synthesis; the anti-inflammatory drugs were all strongly inhibitory. Synthetase activity in the growth plate was highest in the zone of hypertrophy, declining substantially in the more heavily calcified regions. Degradative enzyme activities were highest in the zone of maturation and significantly lower in the adjacent hypertrophic zone. The net effect of these opposing activities would be to elevate prostaglandin levels at the zone of hypertrophy, a finding which suggests that prostaglandins may play a role in the modulation of epiphyseal cartilage metabolism.  相似文献   

12.
Patients with rheumatic diseases, including rheumatoid arthritis and osteoarthritis, almost universally describe pain and stiffness as important contributors to reduced health-related quality of life. Of the treatment options available, NSAIDs are the most widely used agents for symptomatic treatment. NSAIDs are effective anti-inflammatory and analgesic drugs by virtue of their ability to inhibit biosynthesis of prostaglandins at the level of the cyclooxygenase enzyme. However, many of the adverse effects of NSAIDs are also related to inhibition of prostaglandin production, making their use problematic in some patient populations. For the clinician, understanding the biology of prostaglandin as it relates to gastrointestinal, renal, and cardiovascular physiology and the pharmacologic properties of specific NSAIDs is key to using these drugs safely. Of particular importance is the recognition of co-morbid conditions and concomitant drugs that may increase the risk of NSAIDs in particular patients. In patients with risk factors for NSAID toxicity, using the lowest dose of a drug with a short half-life only when it is needed is likely to be the safest treatment option. For those patients whose symptoms cannot be managed with intermittent treatment, using protective strategies is essential.  相似文献   

13.
C Berkelhammer  R A Bear 《CMAJ》1985,132(4):360-368
Magnesium plays a critical role in many cell functions. Hypomagnesemia may occur because of decreased intake or absorption, internal redistribution or increased loss of this element through either renal or nonrenal routes. Manifestations of magnesium deficiency include alterations in calcium, phosphate and potassium homeostasis along with cardiac disorders such as malignant ventricular arrhythmias refractory to conventional therapy, enhanced sensitivity to digoxin and, possibly, coronary artery vasospasm and sudden death. Other features of magnesium deficiency include a host of neuromuscular and neuropsychiatric disorders. In this review we detail mechanisms that may lead to magnesium deficiency, summarize the clinical features of the deficiency and provide a clinical approach to the diagnosis and treatment of this electrolyte disorder.  相似文献   

14.
Radioimmunoassay of prostaglandins   总被引:11,自引:0,他引:11  
The earlier radioimmunoassays were mainly intended for the measurement of prostaglandins of the E-F-A or B type in blood plasma/serum or urine. Many recent studies, however, explain the use of radioimmunoassay to measure the prostaglandin content of tissues, and many other studies are concerned with the prostaglandin production in a single cell type, or in a few cell types, rather than the whole tissue. To date, however, by far the greatest number of quantitative prostaglandin studies have been carried out on blood plasma or serum, while assay for primary prostaglandins are now fairly seldom applied to the peripheral circulation, unless it is to study the prostaglandin production in vivo. It has been proposed that prostglandins of the A type are circulating hormones in contrast to other prostglandins, and a number of laboratories have developed quantitative methods for the measurements of PGA compounds. The sensitivity and specificity of the prostaglandins radioimmunoassays have increased considerably in later years through the use of labelled ligands of better quality; on the other hand, the accuracy of many radioimmunoassays seems to be very low when they are applied to biologic materials.  相似文献   

15.
While prostaglandins of the E series are known to affect several small intestinal functions, their cellular mechanisms are poorly understood. The purposes of our study were to determine whether receptors for PGE are present in rat small intestine and to locate and characterize the receptor binding in the subcellular fractions. Small intestinal binding of prostaglandin E1 was significantly higher than that of prostaglandin E2. Highest receptor binding for prostaglandin E1 was found in the plasma membrane fraction of isolated small intestinal enterocytes. Curvilinearity of prostaglandin E1 binding in plasma membranes upon Scatchard analysis indicated two receptor binding sites in rat small intestine. Competitive binding studies demonstrated that receptor binding was highest for prostaglandins of the E series. These studies are the first to demonstrate specific prostaglandin E1 receptors in different subcellular fractions of rat small intestine. We suggest that receptor binding of prostaglandin E may be an important initial step in the mechanism of prostaglandin-E-induced responses in the small intestine.  相似文献   

16.
Microsomal fractions of cells isolated from chick epiphyseal cartilage catalyzed the synthesis of prostaglandins from radiolabeled Δ8,11,14-eicosatrienoic and from archidonic acids. In addition, the microsomal supernatants contained both 15-hydroxyprostaglandin dehydrogenase and prostaglandin 15-keto Δ13,14-reductase activities. Two major classes of prostaglandins (E and F) were synthesized; however, a major product which chromatographically behaves as PGA was also isolated. Synthetase activities were analyzed for pH optima and response to known stimulators and inhibitors of prostaglandin synthesis. The different activators had varying stimulatory effects on prostaglandin synthesis; the anti-inflammatory drugs were all strongl inhibitory. Synthetase activity in the growth plate was highest in the zone of hypertrophy, declining substantially in the more heavily calcified regions. Degradative enzyme activities were highest in the zone of maturation and significantly lower in the adjacent hypertrophic zone. The net effect of these opposing activities would be to elevate prostaglandin levels at the zone of hypertrophy, a finding which suggests that prostaglandins may play a role in the modulation of epiphyseal cartillage metabolism.  相似文献   

17.
It has been known for many years that atropine and other anti-cholinergic drugs readily inhibit the contractile responses of the detrusor portion of the mammalian urinary bladder to exogenous acetylcholine, but only partially inhibit responses to nerve or transmural stimulation (1,2). These findings suggest that the excitatory innervation to the bladder consists not only of cholinergic nerves but also of non-cholinergic nerves. The possibility that such a second excitatory transmitter could be a catecholamine, 5-hydroxytryptamine, bradykinin or histamine has not been supported by experimentation (2). Burnstock, Dumsday and Smythe (3) have presented evidence that ATP might be the second transmitter in the bladder. In the present study we are investigating the role, if any, of prostaglandins in the non-cholinergic responses of urinary bladder to transmural stimulation. For this purpose, we have studied the effects of indomethacin, an inhibitor of prostaglandin synthesis, on responses to transmural stimulation.  相似文献   

18.
The production of prostaglandins by phagocytic cells of the thymic reticulum in culture (P-TR) was studied by using high pressure liquid chromatography and radioimmunoassay. Radioimmunologic determinations showed that thromboxane B2 (TXB2), prostaglandin E2 (PGE2), and 6-keto-prostaglandin F1 alpha (6 keto-PGF1 alpha) were the major compounds released into the culture medium, whereas prostaglandin F2 alpha (PGF2 alpha) was only a minor component. Indomethacin and dexamethasone exerted a similar pattern of differential inhibition of the secretion of prostanoids. PGE2 and 6-keto PGF1 alpha productions were markedly decreased by these anti-inflammatory drugs, whereas those of TXB2 and PGF2 alpha were not or were only slightly affected. Experiments performed with an antiglucocorticoid compound (RU 38486) showed that the steroid-induced inhibition of prostanoid secretion is a classical receptor-mediated action. These results demonstrated that phagocytic cells of the thymic reticulum, which resemble the thymic interdigitating cells, produce several types of prostaglandins. Because it has been described that P-TR regulate thymocyte proliferation in vitro via the secretion of both interleukin 1 and PGE2, these results suggest that anti-inflammatory agents may be able to modulate the thymic microenvironment and, consequently, thymocyte proliferation.  相似文献   

19.
Prostaglandins and endogenous cannabinoid metabolites share the same lipid backbone with differing polar head groups at exactly the position through which a large molecule is attached to provide antigenicity and thus raise antisera. Hence, we hypothesized that antisera raised against prostaglandins linked to a large molecule such as BSA at the carboxyl functional group would also recognize endogenous cannabinoid metabolites and lead to highly misleading interpretations of data. We found major cross-reactivity of commercial antisera raised to prostaglandins with endocannabinoid metabolites. Furthermore, in a well-characterized cell line (WISH) or primary amnion tissue explants, endocannabinoid treatment led to increased production of endocannabinoid metabolites as opposed to primary prostaglandins. This was apparent only after separation of products by thin-layer chromatography, because they measured as prostaglandins by radioimmunoassay. These findings have major implications for our interpretation of data in situations in which these prostaglandin-like molecules are formed, and they stress the need for chromatographic or spectrometric confirmation of prostaglandin production detected by antibody-based methods.  相似文献   

20.
Several general principles with respect to the role of the fatty acids in the progression of kidney disease have begun to emerge from the mass of observational detail. Interventions that increase renal exposure to prostaglandins of the E series appear to be beneficial. They include administration of prostaglandin analogues and dietary supplementation with their fatty acid precursor, linoleate. The beneficial effects may be attributed to preservation of renal blood flow and glomerular filtration, reduction in blood pressure, direct effects on the lipid composition and function of cell membranes, and immune suppression. Interventions that inhibit thromboxane and leukotriene production, such as omega-3 fatty acid supplementation of the diet or administration of enzyme or receptor inhibitors, are also protective. Prevention of vasoconstriction, inhibition of platelet activation, and regulation of cell proliferation and matrix production have all been implicated in the mediation of the observed retardation of sclerosis. Fish oil may have synergistic, suppressive effects on various parameters of immune activation. Essential fatty acid deficiency, of course, inhibits both prostaglandin E and thromboxane production, cancelling out the protective and injurious components of arachidonate oxidation. Yet, studies on its beneficial effects have revealed another aspect of eicosanoid metabolism, independent of cyclooxygenase and lipoxygenase activity, that appears to regulate monocyte migration into injured tissue. Dietary interruption of this pathway has proven protective to renal structure and function. Alterations in lipid metabolism may represent a common, mediating pathway of glomerular and interstitial susceptibility to progressive sclerosis in the kidney. The process appears to be amenable to manipulation by pharmacologic or dietary modulation of fatty acid metabolism. Eicosanoid metabolites and tissue-leukocyte signaling are two mechanisms by which lipid alterations can affect renal function. There are doubtless many others awaiting elucidation. Delineation of all the mechanisms whereby fatty acid metabolism can contribute to progressive kidney injury may provide a useful model for the examination of progressive sclerosis affecting other tissues subsequent to immune, vascular, or metabolic injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号