首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wu C  Chen P  Yu H  Liu Q  Zong X  Cai H  Wang P 《Biosensors & bioelectronics》2009,24(5):1498-1502
This paper presents a novel biomimetic olfactory biosensor for the study of olfactory transduction mechanisms on the basis of light addressable potentiometric sensor (LAPS), in which rat olfactory sensory neurons (OSNs) are used as sensing elements. Rat OSNs are cultured on the surface of LAPS chip. To validate the origin of the electrical signals recorded by LAPS, the inhibitory effect of MDL12330A to the olfactory signals of OSNs is tested, which is the specific inhibitor of adenylyl cyclase. The enhancive effect of LY294002 to the responses of OSNs is also investigated, which is the specific inhibitor of phosphatidylinositol 3-kinase (PI3K). The results show that this hybrid biosensor can record the responses of OSNs to odours efficiently in a non-invasive way for a long term, and the responses can be inhibited by MDL12330A and enhanced by LY294002. All these results demonstrate that this hybrid biosensor can be used to monitor electrophysiology of OSNs in a non-invasive way and suggest it could be a promising tool for the study of olfactory transduction mechanisms.  相似文献   

2.
Vesicular exocytosis plays an important role in many physiological processes. The dense-core vesicles release of chromaf?n cells is a suitable model for the presynaptic process in neurosecretory cells. In this study, light-addressable potentiometric sensor (LAPS) was introduced as a label-free recording method for vesicle release by the local extracellular acidification. The chromaf?n cells are directly cultured on the sensor surface. After cells and LAPS hybrid system is established, the events of vesicular exocytosis are recorded. Protons stored in the vesicles and co-released with transmitters, induced a brief acidic shifts in the cell-sensor cleft. Under the stimulation of the KCl and acetylcholine (Ach), the signals presented the different amplitude and exocytosis rate, and reflected the specific features of the exocytosis. The result indicates that neurosecretory cell-based biosensor will provide a useful platform for neurosecretion mechanism research by monitoring the exocytotic activities with extracellular acidification sensing.  相似文献   

3.
Xu G  Ye X  Qin L  Xu Y  Li Y  Li R  Wang P 《Biosensors & bioelectronics》2005,20(9):1757-1763
Cell-based biosensors incorporate cells as sensing elements that convert changes in immediate environment to signals for processing. This paper reports an investigation on light-addressable potentiometric sensor (LAPS) to be used as a possible cell-base biosensor that will enable us to monitor extracellular action potential of single living cell under stimulant. In order to modify chip surface and immobilize cells, we coat a layer of poly-L-ornithine and laminin on surface of LAPS chip on which rat cortical cells are grown well. When 10 microg/ml acetylcholine solution is administrated, the light pointer is focused on a single neuronal cell and the extracellular action potential of the targeted cell is recorded with cell-based biosensor based on LAPS. The results demonstrate that this kind of biosensor has potential to monitor electrophysiology of living cell non-invasive for a long term, and to evaluate drugs primarily.  相似文献   

4.
Liu Q  Cai H  Xu Y  Li Y  Li R  Wang P 《Biosensors & bioelectronics》2006,22(2):318-322
Human olfactory system can distinguish thousands of odors. In order to realize the biomimetic design of electronic nose on the principle of mammalian olfactory system, this article reports an olfactory cell-based biosensor as a real bionic technique for odorants detection. Effective cultures of olfactory receptor neurons and olfactory bulb cells have been achieved on the semiconductor chip. Using light-addressable potentiometric sensor (LAPS) as sensing chip to monitor extracellular potential of the neurons, the response under stimulations of the odorants or neurotransmitters, such as acetic acid and glutamic acid, was tested. The results demonstrate that this kind of hybrid system of LAPS and olfactory neurons, which is sensitive to odorous changes, has great potential and is promising to be used as a novel neurochip of bioelectronic nose for detecting odors.  相似文献   

5.
A rapid biosensor assay procedure that utilizes biotin streptavidin mediated filtration capture onto nitrocellulose membrane, in conjunction with a silicon-based light-addressable potentiometric sensor (LAPS) was developed for detection and identification of biological and chemical threat agents. Sandwich immunoassays, nucleic acid hybridization assays and enzyme inhibition assays are described. For immunoassays, the lower limits of detection (LOD) per 100-microl sample were approximately 5 pg/ml for protein (Staphylococcal enterotoxin B), 2 ng/ml for virus (Newcastle disease virus), and 20 ng/ml for vegetative bacteria (Brucella melitensis). In a dual gene probe assay format, the LOD was 0.30 fmol (1.8 x 10(8) copies per 60-microl) of single stranded target DNA. Enzyme inhibition assays on the LAPS using acetylcholinesterase were able to detect soman and sarin in aqueous samples at 2 and 8 pg (100 and 600 pM), respectively. The assays were easy to perform and required a total time equal to the reaction period plus about 15 min for filtering, washing and sensing. The assay format is suitable for detection of a wide range of infectious and toxic substances. New assays can be developed and optimized readily, often within 1 or 2 days.  相似文献   

6.
The paper discussed a novel design of multifunctional cell-based biosensors for simultaneously detecting cell acidification and extracellular potential. Employing living cells such as cardiac myocytes as a source for the light addressable potentiometric sensor (LAPS) array, this cell-based biosensor was able to monitor both the acidification and extracellular potential in parallel. For LAPS array fabrication, part of the silicon base was heavily doped with boron to form separate testing areas. Detecting system was built involving lock-in amplifier and digital demodulation with FFT methods. This LAPS array showed a good sensitivity of 53.9 mV/pH to H(+) with good linearity. Each testing area for extracellular potential detection was decreased to 200 microm x 200 microm in size to obtain a better sensitivity. Experiment results showed that this LAPS array could monitor the acidification of cells as well as the extracellular potential with good sensitivity. This novel integrated biosensor will be useful for multi-parameter extracellular monitoring and can possibly be a platform for drug screening.  相似文献   

7.
Metabolic activity of cultured cells can be monitored by measuring changes in the pH of the surrounding medium caused by metabolic products such as protons, carbon dioxide or lactic acid. Although many systems designed for this purpose have been reported, almost all of them are based on bulk measurements, where the average metabolic activity of all cells in contact with the device is recorded. Here, we report on a novel biosensor, based on a modified light-addressable potentiometric sensor (LAPS) device, which enables the metabolic activity of cultured cells to be measured with spatial resolution. This is demonstrated here by detecting the differential sensitivity to a cholinergic receptor agonist of two different co-cultured cellular populations. By making simultaneous measurements of the metabolic activity of different cell types seeded on different segments of one sensor, this device not only provides a rapid means of assessing cellular specificity of pharmaceutical compounds but also has the potential of being used to non-invasively monitor humoral as well as synaptic communication between different cell populations in co-culture. The temporal and spatial resolution of the device were investigated and are discussed.  相似文献   

8.
Liu Q  Ye W  Hu N  Cai H  Yu H  Wang P 《Biosensors & bioelectronics》2010,26(4):1672-1678
Olfactory systems of human beings and animals have the abilities to sense and distinguish varieties of odors. In this study, a bioelectronic nose was constructed by fixing biological tissues onto the surface of light-addressable potentiometric sensor (LAPS) to mimic human olfaction and realize odor differentiation. The odorant induced potentials on tissue-semiconductor interface was analyzed by sensory transduction theory and sheet conductor model. The extracellular potentials of the receptor cells in the olfactory epithelium were detected by LAPS. Being stimulated by different odorants, such as acetic acid and butanedione, olfactory epithelium activities were analyzed on basis of local field potentials and presented different firing modes. The signals fired in different odorants could be distinguished into different clusters by principal component analysis (PCA). Therefore, with cellular populations well preserved, the epithelium tissue and LAPS hybrid system will be a promising neuron chip of olfactory biosensors for odor detecting.  相似文献   

9.
This article reports an investigation on light-addressable potentiometric sensor (LAPS) to be used as a possible biological cell-semiconductor hybrid that will enable us to make an interface between the physical and biological system. To increase the surface potential sensitivity, we used a LAPS structure with single insulator (SiO2) coated with poly-L-ornithine and laminin (PLOL) on Si. Efficient culturing of PC-12 and nerve cells of Lymnaea stagnalis on PLOL-coated Si3N4 and SiO2 was achieved. The thickness of the PLOL layer was found to be about 4 nm by the atomic force microscope (AFM) measurement. Using the advantage of this thin layer of PLOL, we compared the performance of a novel structure to the previously reported "PLOL-coated Si3N4/SiO2/Si" structure. Due to high insulating capacitance, the photocurrent response of the novel LAPS was found to be very steep. As a result, higher sensitivity was achieved. This steepness did not degrade during 10 days when the sensor surface was kept in contact with the cell culture medium and environment. The thickness of PLOL layer, its ability to improve the biological cell adhesion, enhanced sensitivity, and experiment with simulated neural action potential (AP) applied to the novel LAPS show a good promise for LAPS to be a biological cell-semiconductor hybrid.  相似文献   

10.
The nicotinic acetylcholine receptor, purified from Torpedo electric organ, was coupled to a light addressable potentiometric sensor (LAPS) to form a LAPS-receptor biosensor. Receptor-ligand complexes containing biotin and urease were captured on a biotinylated nitrocellulose membrane via a streptavidin bridge and detected with a silicon-based sensor. Competition between biotinylated alpha-bungarotoxin and nonbiotinylated ligands formed the basis of this assay. This biosensor detected both agonists (acetylcholine, carbamylcholine, succinylcholine, suberyldicholine, and nicotine) and competitive antagonists (d-tubocurarine, alpha-bungarotoxin, and alpha-Naja toxin) of the receptor with affinities comparable to those obtained using radioactive ligand binding assays. Consistent with agonist-induced desensitization of the receptor, the LAPS-receptor biosensor reported a time-dependent increase in affinity for the agonist carbamylcholine as expected, but not for the antagonists.  相似文献   

11.
Taste receptor cells are the taste sensation elements for sour, salty, sweet, bitter and umami sensations. It was demonstrated that there are cell-to-cell communications between type II (sour) and type III (sweet, bitter and umami) taste cells. Serotonin (5-HT) is released from type III cells, which is the only type of taste cells that has synaptic process with sensory afferent fibers. Then, taste information is transmitted via fibers to the brain. During this process, 5-HT plays important roles in taste information transmission. In order to explore a sensor to detect 5-HT released from taste cell or taste cell networks, we develop a 5-HT sensitive sensor based on LAPS chip. This sensor performs with a detection limit of 3.3 × 10(-13)M and a sensitivity of 19.1 mV per concentration decade. Upon the stimuli of sour and mix (bitter, sweet and umami) tastants, 5-HT released from taste cells could be detected flexibly, benefit from the addressability of LAPS chip. The experimental results show that the local concentration of 5-HT is around several nM, which is consistent with those from other methods. In addition, immunofluorescent imaging technique is utilized to confirm the functional existence of both type II and III cells in a cluster of isolated taste cells. Different types of taste cells are labeled with corresponding specific antibody. This 5-HT sensitive LAPS chip provides a potential and promising way to detect 5-HT and to investigate the taste coding and information communication mechanisms.  相似文献   

12.
In many cases of bioanalytical measurement, calculation of large amounts of data, analysis of complex signal waveforms or signal speed can overwhelm the performance of microcontrollers, analog electronic circuits or even PCs. One method to obtain results in real time is to apply a digital signal processor (DSP) for the analysis or processing of measurement data. In this paper we show how DSP-supported multiplying and accumulating (MAC) operations, such as time/frequency transformation, pattern recognition by correlation, convolution or filter algorithms, can optimize the processing of bioanalytical data. Discrete integral calculations are applied to the acquisition of impedance values as part of multi-parametric sensor chips, to pH monitoring using light-addressable potentiometric sensors (LAPS) and to the analysis of rapidly changing signal shapes, such as action potentials of cultured neuronal networks, as examples of DSP capability.  相似文献   

13.
A modified procedure for magnetic capture of antibody-conjugated bacteria for light addressable potentiometric sensor (LAPS) detection using the Threshold System was developed. Streptavidin coated magnetic beads, partially labeled with biotinylated anti Escherichia coli O157 antibodies, were used to capture Escherichia coli O157:H7. Captured bacteria were further labeled with fluorescein-conjugated anti -E. coli O157:H7 antibodies and urease-labeled. anti-fluorescein antibody. Magnetically concentrated bacteria-containing complexes were then immobilized through streptavidin-biotin interactions on 0.45 μ biotinylated nitro-cellulose membranes assembled as sample sticks for the Threshold instrument. The rate of pH change associated with the production of NH3 by the urease in urea-containing solution was measured by a LAPS incorporated in the Threshold instrument. This approach allowed us to detect 103 to 104 CPU of cultured E. coli O157:H7 in PBS solutions. Furthermore, detectable LAPS signals of the sample sticks remained relatively constant for at least 24 h at 4C. The developed approach was applied to detect the E. coli in beef hamburger spiked with the bacteria. After a 5 to 6-h enrichment at 37C, as low as 1 CFU/g of E. coli O157:H7 in beef hamburger could be detected.  相似文献   

14.
Detection of heavy metal toxicity using cardiac cell-based biosensor   总被引:2,自引:0,他引:2  
Liu Q  Cai H  Xu Y  Xiao L  Yang M  Wang P 《Biosensors & bioelectronics》2007,22(12):3224-3229
Biosensors incorporating mammalian cells have a distinct advantage of responding in a manner which offers insight into the physiological effect of an analyte. To investigate the potential applications of cell-based biosensors on heavy metal toxicity detection, a novel biosensor for monitoring electrophysiological activity was developed by light-addressable potentiometric sensor (LAPS). Extracellular field potentials of spontaneously beating cardiomyocytes could be recorded by LAPS in the range of 20 μV to nearly 40 μV with frequency of 0.5–3 Hz. After exposed to different heavy metal ions (Hg2+, Pb2+, Cd2+, Fe3+, Cu2+, Zn2+; in concentration of 10 μM), cardiomyocytes demonstrated characteristic changes in terms of beating frequency, amplitude and duration under the different toxic effects of ions in less than 15 min. This study suggests that, with the physiological monitoring, it is possible to use the cardiac cell-based biosensor to study acute and eventually chronic toxicities induced by heavy metal ions in a long-term and no-invasive way.  相似文献   

15.
A potentiometric biosensor has been designed on the basis of glass pH-electrode with a sensing device of the microcellular polyelectrolytic coating containing urease. The polymeric walls of the coating are readily permeable for low-molecular weight compounds, including urea, but are impermeable for macromolecules. The main characteristics of the biosensor in various experimental solutions containing urea, low-molecular-weight salt, and buffer have been obtained. The sensor has been shown to be stable for at least three weeks. The standard curves of the sensor are linear in the range of urea concentrations from 0.2 to 20 mM.  相似文献   

16.
Summary A new class of bioselective membrane electrodes, in which leaf discs are combined with potentiometric gas sensors, is proposed and described. The principle is illustrated for a L-cysteine sensor, where cucumber leaves are employed as biocatalysts in conjunction with an NH3 gas sensing electrode. This novel arrangement offers possible advantages of simplicity and low cost owing to the structural integrity and good biocatalytic activity of plant leaves.  相似文献   

17.
Cytosensor Microphysiometer: technology and recent applications   总被引:3,自引:0,他引:3  
The Cytosensor Microphysiometer system detects functional responses from living cells in minutes and offers novel information on cell signalling that is often unobtainable with other assay methods. The principle of the system is based on the measurement of small changes in extracellular acidification, using a light addressable potentiometric sensor (LAPS). Energy metabolism in living cells is tightly coupled to cellular ATP usage, so that any event which perturbs cellular ATP levels--such as receptor activation and initiation of signal transduction--will result in a change in acid excretion. As the extrusion of protons is a very general parameter involved in the activation of nearly all kinds of membrane-bound receptors, receptors can be investigated without prior knowledge of the corresponding signalling pathway. However, by blocking certain signalling pathways inside the cell by means of signal transduction probes, specificity can be brought into the system and the corresponding receptor pathways can easily be elucidated. The aim is to give an overview about Cytosensor Microphysiometer technology and to demonstrate, with the help of some recent applications, the capability of the system to measure acidification rates from a wide variety of cell- and receptor-types coupled to different signal transduction pathways. This feature makes the cytosensor system an ideal tool for acting as a single assay system and circumventing the need for multiple assays.  相似文献   

18.
Comparison of a potentiometric and a micromechanical triglyceride biosensor   总被引:1,自引:0,他引:1  
Sensitive biosensors for detection of triglyceride concentration are important. In this paper we report on two types of silicon based triglyceride sensors: an electrolyte-insulator-semiconductor capacitor (EISCAP) which is a potentiometric device and a polysilicon microcantilever. The detection principle for both sensors is based on the enzymatic hydrolysis of triglyceride though the sensing mechanisms are different: electronic for the EISCAP and mechanical for the microcantilever. The characteristics and performances of the two sensors are critically compared. The EISCAP sensor necessitates the presence of a buffer for stable measurements which limits the sensitivity of the sensor at low concentrations of the bioanalyte to 1mM. The cantilever sensor works without a buffer which improves the lower level of sensitivity to 10 microm. Both sensors are found to give reproducible and reliable results.  相似文献   

19.
Surface molecular imprinting, as compared to molecular imprinted bulk polymers, has the advantages of higher re-occupation percentage of the reception sites, fast response, integration of sensing element and transducer, etc. In this study, a potentiometric protein sensor was developed based on the surface molecular imprinting technique. Using the self-assembled monolayers of alkanethiol with hydroxyl terminal groups as the matrix material, and target protein molecules as the template, the sensing layer was created on the surface of the gold-coated silicon chip-an electrochemical transducer. Potentiometric measurement demonstrated that the sensor could selectively detect myoglobin or hemoglobin molecules, either with or without the presence of other protein molecules in the same solution.  相似文献   

20.
Optical sensors of ultrasound are a promising alternative to piezoelectric techniques, as has been recently demonstrated in the field of optoacoustic imaging. In medical applications, one of the major limitations of optical sensing technology is its susceptibility to environmental conditions, e.g. changes in pressure and temperature, which may saturate the detection. Additionally, the clinical environment often imposes stringent limits on the size and robustness of the sensor. In this work, the combination of pulse interferometry and fiber-based optical sensing is demonstrated for ultrasound detection. Pulse interferometry enables robust performance of the readout system in the presence of rapid variations in the environmental conditions, whereas the use of all-fiber technology leads to a mechanically flexible sensing element compatible with highly demanding medical applications such as intravascular imaging. In order to achieve a short sensor length, a pi-phase-shifted fiber Bragg grating is used, which acts as a resonator trapping light over an effective length of 350 µm. To enable high bandwidth, the sensor is used for sideway detection of ultrasound, which is highly beneficial in circumferential imaging geometries such as intravascular imaging. An optoacoustic imaging setup is used to determine the response of the sensor for acoustic point sources at different positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号