首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Curatti L  Giarrocco L  Salerno GL 《Planta》2006,223(5):891-900
In higher plants and cyanobacteria, sucrose (Suc) metabolism is carried out by a similar set of enzymes. The function and regulation of Suc metabolism in cyanobacteria has begun to be elucidated. In strains of Anabaena sp., filamentous nitrogen-fixing cyanobacteria, Suc synthase (SuS, EC 2.4.1.13) controls Suc cell level through the cleavage of the disaccharide. The present work shows that there are two sus genes in Anabaena (Nostoc) sp. that are co-regulated regarding the nitrogen source; however, only susA accounts for the extractable SuS activity and for the control of the Suc level. Primer extension analysis has uncovered the sequence of the Anabaena susA and susB ammonium-activated putative promoters, which share a high sequence similarity with that of rbcLS encoding ribulose bisphosphate carboxylase/oxygenase (EC 4.1.1.39) and other ammonium up-regulated genes. Moreover, susA and rbcLS expression is developmentally co-localized to the vegetative cells of the nitrogen-fixing cyanobacterial filaments. Our results strongly suggest the existence of a regulatory network that would coordinate the expression of key genes for Suc and nitrogen metabolism, carbon fixation, and development in Anabaena sp.  相似文献   

2.
3.
4.
The presence of repeated DNA, viz. short tandemly repeated repetitive (STRR) and highly iterated palindrome (HIP) sequences was used as a typing technique for assessing genetic variability and phylogenetic relatedness of heterocystous cyanobacteria. Primers analogous to the STRR and HIP sequences were used to generate specific fingerprints for the twelve heterocystous cyanobacterial strains and a dendrogram was constructed. STRRmod and HIPTG primers revealed 100% polymorphism and yielded almost identical patterns. Anabaena sp. PCC 7120 clustered with Nostoc muscorum with both primers. Primer STRRmod supported the heterogeneity between Nostoc and Anabaena but HIPTG placed these two genera distinctly apart. STRRmod and HIPTG revealed that the members of the two orders were intermixed and thus suggesting a monophyletic origin of heterocystous cyanobacteria.  相似文献   

5.
A marine filamentous cyanobacterium capable of rapid growth under N2-fixing conditions has been isolated from the Texas Gulf Coast. This organism appears to be an Anabaena sp. and has been given the strain designation CA. Cultures grown on mineral salts medium bubbled with 1% CO2-enriched air at 42°C show a growth rate of 5.6±0.1 generations per day with molecular nitrogen as the sole nitrogen source. This growth rate is higher than any other reported in the literature to date for heterocystous cyanobacteria growing on N2. Under similar growth conditions, 7.5 mM NH4Cl yields a growth rate of 6.6±0.1 generations per day while 7.5 mM KNO3 allows for a growth rate of 5.8±0.4 generations-day. Nitrogen-fixation rates, as measured by acetylene reduction, show maximum activity values in the range of 50–100 nmoles ethylene produced/minxmg protein. These values compare favorably with those obtained from heterotrophic bacteria and are much higher than values reported for other cyanobacteria. Growth experiments indicate that the organism requires relatively high levels of sodium and grows maximally at 42°C. Because of its high growth rate on N2, this newly isolated organism appears ideal for studying nitrogen metabolism and heterocyst development among the cyanobacteria.  相似文献   

6.
7.
There was no discernible effect after incubating recombinant Anabaena Rubisco and carboxyarabinitol 1-phosphate with the product of the Anabaena rca gene. Since the unactivated cyanobacterial Rubisco is not readily inhibited by ribulose 1,5-bisphosphate and fallover is not observed, a genetic basis for the function of the Rubisco activase-like gene (rca) was sought. The monocistronic rca gene was inactivated in vivo and resulting mutant strains of A. variabilis were found to be incapable of synthesizing immunologically detected RCA protein. The requirement for the product of the rca gene in the light was further examined by measuring Rubisco activity in permeabilized whole cells of wild-type and rca mutant strains at different light intensities. In a 1% CO2-air atmosphere, inactivation of rca reduced the ability of A. variabilis to elevate Rubisco activity under high light (73 mol quanta m–2 s–1), but had little effect under low light (8 mol m–2 s–1). For air-grown cultures, differences in the rates exhibited by the wild-type and rca mutant to fully activate Rubisco during a whole-cell assay were enhanced by increases in light intensity. The significance of the rca mutation was underlined by effects on growth as, unlike the wild-type, growth rates did not increase after cells transferred from low to high light intensities. Higher exogenous CO2 concentrations (1%) were required to sustain a normal growth rate for the A. variabilis rca mutant. When grown in air levels of CO2, the rca mutant not only needed longer times to double in cell density but also exhibited greatly diminished Rubisco activity compared with the wild-type strain. Despite the unusual properties of cyanobacterial Rubisco, these results suggest a physiological role for the product of the rca gene in maximizing the activity of Rubisco in heterocystous cyanobacteria.  相似文献   

8.
Incubation in the dark of photoautotrophically grown N2-fixing heterocystous cyanobacteria leads to a loss of nitrogenase activity. Original levels of nitrogenase activity are rapidly regained upon re-illumination of the filaments, in a process dependent on de novo protein synthesis. Ammonia, acting indirectly through some of its metabolic derivatives, inhibits the light-promoted development of nitrogenase activity in filaments of Anabaena sp. ATCC 33047 and several other cyanobacteria containing mature heterocysts. The ammonia-mediated control system is also operative in N2-fixing filaments in the absence of any added source of combined nitrogen, with the ammonia resulting from N2-fixation already partially inhibiting full expression of nitrogenase. High nitrogenase levels, about two-fold higher than those in normal N2-fixing Anabaena sp. ATCC 33047, are found in cell suspensions which have been treated with the glutamine synthetase inhibitor l-methionine-d,l-sulfoximine or subjected to nitrogen starvation. Filaments treated in either way are insensitive to the ammonia-promoted inhibition of nitrogenase development, although this insensitivity is only transitory for the nitrogen-starved filaments, which become ammonia-sensitive once they regain their normal nitrogen status.Abbreviations Chl chlorophyll - EDTA ethylenediaminetetraacetic acid - MSX l-methionine-d,l-sulfoximine  相似文献   

9.
10.
A full-length cDNA of Rubisco activase (IBrcaI) was cloned from sweet potato (Ipomoea batatas (L.) Lam) using Rapid-Amplification of cDNA Ends (RACE). IBrcaI contains a 1,347 bp open reading frame encoding a protein of 439 amino acids. The sequence alignment of multiple Rubisco activase genes from sweet potato and other plants showed high homology at two previously described ATP-binding sites. Western blot analysis indicated that there are two Rubisco activase proteins in sweet potato. Expression of IBrcaI was only detected in leaves. In the 14 h light and 10 h dark photoperiods, maximal and minimal IBrcaI mRNA expression levels were detected at 8:00 in the morning and at midnight, respectively.  相似文献   

11.
Characterization of HetR protein turnover in Anabaena sp. PCC 7120   总被引:2,自引:0,他引:2  
The hetR gene plays an important role in heterocyst development and pattern formation in heterocystous cyanobacteria. The hetR gene from Anabaena sp. PCC 7120 was overexpressed in Escherichia coli. Antibodies raised against the recombinant HetR protein (rHetR) were used to characterize metabolism of the HetR of Anabaena sp. PCC 7120 in vivo. HetR was present at a low level when Anabaena sp. PCC 7120 was grown in the presence of combined nitrogen. Shifting from nitrogen repletion conditions to nitrogen depletion conditions led to a two fold increase of HetR in total cell extracts, and most of HetR was located in heterocysts. The amount of HetR in total cellular extracts increased rapidly after shifting to nitrogen depletion conditions and reached a maximum level 3 h after the shift. Isoelectrofocusing electrophoresis revealed that the native HetR had a more acidic isoelectric point than did rHetR. After combined nitrogen was added to the nitrogen-depleted cultures, the degradation of HetR depended on culture conditions: before heterocysts were fully developed, HetR was rapidly degraded; after heterocysts were fully developed, HetR was degraded much more slowly. The distribution of HetR in other species of cyanobacteria was also studied. Received: 24 June 1997 / Accepted: 5 December 1997  相似文献   

12.
Ecosystems of rice paddies are good sources of new strains of heterocyst-forming cyanobacteria that can be used in biotechnological systems for production of photohydrogen. The morphological and physiological properties of two novel epiphytic strains of cyanobacteria, Anabaena sp. 182 and Anabaena sp. 281, were studied. DNA typing of these strains based on PCR amplification of hydrogenase-encoding genes and DNA analysis using RAPD and Rep primers was carried out. The properties of the genome of strain Anabaena sp. 281 differed considerably from those of two reference strains (Anabaena variabilis ATCC 29413 and Nostoc sp. PCC 7120) with sequenced genomes, whereas strain Anabaena sp. 182 was found to be a close relative of A. variabilis ATCC 29413. Due to a number of physiological and biochemical advantages, Anabaena sp. 182 may be considered a new promising model for molecular and genetic engineering studies aimed at the development of H2 producers.  相似文献   

13.
Single-stranded (ss) DNA-binding (Ssb) proteins are vital for all DNA metabolic processes and are characterized by an N-terminal OB-fold followed by P/G-rich spacer region and a C-terminal tail. In the genome of the heterocystous, nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC 7120, two genes alr0088 and alr7579 are annotated as ssb, but the corresponding proteins have only the N-terminal OB-fold and no P/G-rich region or acidic tail, thereby rendering them unable to interact with genome maintenance proteins. Both the proteins were expressed under normal growth conditions in Anabaena PCC7120 and regulated differentially under abiotic stresses which induce DNA damage, indicating that these are functional genes. Constitutive overexpression of Alr0088 in Anabaena enhanced the tolerance to DNA-damaging stresses which caused formation of DNA adducts such as UV and MitomycinC, but significantly decreased the tolerance to γ-irradiation, which causes single- and double-stranded DNA breaks. On the other hand, overexpression of Alr7579 had no significant effect on normal growth or stress tolerance of Anabaena. Thus, of the two truncated Ssb-like proteins, Alr0088 may be involved in protection of ssDNA from damage, but due to the absence of acidic tail, it may not aid in repair of damaged DNA. These two proteins are present across cyanobacterial genera and unique to them. These initial studies pave the way to the understanding of DNA repair in cyanobacteria, which is not very well documented.  相似文献   

14.
15.
In prokaryotes, cell division is normally achieved by binary fission, and the key player FtsZ is considered essential for the complete process. In cyanobacteria, much remains unknown about several aspects of cell division, including the identity and mechanism of the various components involved in the division process. Here, we report results obtained from a search of the players implicated in cell division, directly associating to FtsZ in the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Histidine tag pull-downs were used to address this question. However, the main observation was that FtsZ is a target of proteolysis. Experiments using various cell-free extracts, an unrelated protein, and protein blot analyses further supported the idea that FtsZ is proteolytically cleaved in a specific manner. In addition, we show evidence that both FtsZ termini seem to be equally prone to proteolysis. Taken together, our data suggest the presence of an unknown player in cyanobacterial cell division, opening up the possibility to investigate novel mechanisms to control cell division in Anabaena PCC 7120.  相似文献   

16.
Detection and characterization of cyanobacterial nifH genes.   总被引:5,自引:2,他引:3       下载免费PDF全文
The DNA sequence of a 359-bp fragment of nifH was determined for the heterocystous strains Anabaena sp. strain CA (ATCC 33047), Nostoc muscorum UTEX 1933, a Nostoc sp., Gloeothece sp. strain ATCC 27152, Lyngbya lagerheimii UTEX 1930, and Plectonema boryanum IU 594. Results confirmed that the DNA sequence of the 359-bp segment is sufficiently variable to distinguish cyanobacterial nifH genes from other eubacterial and arachaeobacterial nifH genes, as well as to distinguish heterocystous from nonheterocystous nifH genes. Nonheterocystous cyanobacterial nifH sequences were greater than 70 and 82% identical on the DNA and amino acid levels, respectively, whereas corresponding values for heterocystous cyanobacterial nifH sequences were 84 and 91%. The amplified nifH fragments can be used as DNA probes to differentiate between species, although there was substantial cross-reactivity between the nifH amplification products of some strains. However, an oligonucleotide designed from a sequence conserved within the heterocystous cyanobacteria hybridized primarily with the amplification product from heterocystous strains. The use of oligonucleotides designed from amplified nifH sequences shows great promise for characterizing assemblages of diazotrophs.  相似文献   

17.
The LexA protein of the nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC7120 exhibits a RecA-independent and alkaline pH-dependent autoproteolytic cleavage. The autoproteolytic cleavage of Anabaena LexA occurs at pH 8.5 and above, stimulated by the addition of Ca2+ and in the temperature range of 30–57 °C. Mutational analysis of Anabaena LexA protein indicated that the cleavage occurred at the peptide bond between Ala-84 and Gly-85, and optimal cleavage required the presence of Ser-118 and Lys-159, as also observed for LexA protein of Escherichia coli. Cleavage of Anabaena LexA was affected upon deletion of three amino acids, 86GLI. These three amino acids are unique to all cyanobacterial LexA proteins predicted to be cleavable. The absence of RecA-dependent cleavage at physiological pH, which has not been reported for other bacterial LexA proteins, is possibly due to the absence of RecA interacting sites on Anabaena LexA protein, corresponding to the residues identified in E. coli LexA, and low cellular levels of RecA in Anabaena. Exposure to SOS-response inducing stresses, such as UV-B and mitomycin C neither affected the expression of LexA in Anabaena nor induced cleavage of LexA in either Anabaena 7120 or E. coli overexpressing Anabaena LexA protein. Though the LexA may be acting as a repressor by binding to the LexA box in the vicinity of the promoter region of specific gene, their derepression may not be via proteolytic cleavage during SOS-inducing stresses, unless the stress induces increase in cytoplasmic pH. This could account for the regulation of several carbon metabolism genes rather than DNA-repair genes under the regulation of LexA in cyanobacteria especially during high light induced oxidative stress.  相似文献   

18.
Cloning and high foreign expression of the human granulocyte-macrophage colony stimulating factor (hGM-CSF) gene were achieved in Anabaena sp. strain PCC 7120 cells. To promote high expression of hGM-CSF in cyanobacterial cells, PCR primers were designed to modify the N-terminal cDNA sequence of mature hGM-CSF, including a GC rich region and some discriminating against codons according to the degeneracy codon rules, selecting for prokaryotic usage codons. The PCR product encoding the modified hGM-CSF was inserted downstream of the promoter, PpsbA of the shuttle vector pRL439, then ligated with pDC-08 to generate the shuttle expression plasmid, pDC-GM1. The resulting shuttle expression plasmid was transferred into the filamentous, heterocyst-forming cyanobacterium, Anabaena sp. strain PCC 7120 using the tri-parental conjugation transfer method. The results of PCR amplification of wild type and transgenic cells indicated that the hGM-CSF gene was successfully cloned into Anabaena sp. strain PCC 7120 cells. Western blot analysis showed that the protein expression of modified hGM-CSF in transgenic cells harboring pDC-GM1 was 136% higher than that of non-modified hGM-CSF in transgenic cells harboring pDC-GM0. Additionally, there were similar rate of growth and content of Chl a as compared to controls, suggesting that foreign hGM-CSF did not impair the photosynthetic activity of host cells. Taken together, the results indicate that modification of the N-terminal nucleotide sequence of mature hGM-CSF results in high expression in the transgenic cells.  相似文献   

19.
Summary Labeled probes carrying the Anabaena PCC 7120 nitrogenase (nifK and nifD) and nitrogenase reductase (nifH) genes were hybridized to Southern blots of DNA from diverse N2-fixing cyanobacteria in order to test a previous observation of different nif gene organization in nonheterocystous and heterocystous strains. The nif probes showed no significant hybridization to DNA from a unicellular cyanobacterium incapable of N2 fixation. All nonheterocystous cyanobacteria examined (unicellular and filamentous) had a contiguous nifKDH gene cluster whereas all of the heterocystous strains showed separation of nifK from contiguous nifDH genes. These findings suggest that nonheterocystous and heterocystous cyanobacteria have characteristic and fundamentally different nif gene arrangements. The noncontiguous nif gene pattern, as shown with two Het- mutants, is independent of phenotypic expression of heterocyst differentiation and aerobic N2-fixation. Thus nif arrangement could be a useful taxonomic marker to distinguish between phenotypically Het- heterocystous cyanobacteria and phylogenetically unrelated nonheterocystous strains.  相似文献   

20.
Single-stranded DNA binding (SSB) proteins are essential for all DNA-dependent cellular processes. Typical SSB proteins have an N-terminal Oligonucleotide-Binding (OB) fold, a Proline/Glycine rich region, followed by a C-terminal acidic tail. In the genome of the heterocystous nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC7120, alr0088 and alr7579 are annotated as coding for SSB, but are truncated and have only the OB-fold. In silico analysis of whole genome of Anabaena sp. strain PCC7120 revealed the presence of another ORF ‘all4779’, annotated as a hypothetical protein, but having an N-terminal OB-fold, a P/G-rich region and a C-terminal acidic tail. Biochemical characterisation of all three purified recombinant proteins revealed that they exist either as monomer or dimer and bind ssDNA, but differently. The All4779 bound ssDNA in two binding modes i.e. (All4779)35 and (All4779)66 depending on salt concentration and with a binding affinity similar to that of Escherichia coli SSB. On the other hand, Alr0088 bound in a single binding mode of 50-mer and Alr7579 only to large stretches of ssDNA, suggesting that All4779, in all likelihood, is the major typical bacterial SSB in Anabaena. Overexpression of All4779 in Anabaena sp. strain PCC7120 led to enhancement of tolerance to DNA-damaging stresses, such as γ-rays, UV-irradiation, desiccation and mitomycinC exposure. The tolerance appears to be a consequence of reduced DNA damage or efficient DNA repair due to increased availability of All4779. The ORF all4779 is proposed to be re-annotated as Anabaena ssb gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号