首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
Ribosomes are the molecular machines that translate mRNAs into proteins. The synthesis of ribosomes is therefore a fundamental cellular process and consists in the ordered assembly of 79 ribosomal proteins (r-proteins) and four ribosomal RNAs (rRNAs) into a small 40S and a large 60S ribosomal subunit that form the translating 80S ribosomes. Most of our knowledge concerning this dynamic multi-step process comes from studies with the yeast Saccharomyces cerevisiae, which have shown that assembly and maturation of pre-ribosomal particles, as they travel from the nucleolus to the cytoplasm, relies on a multitude (>200) of biogenesis factors. Amongst these are many energy-consuming enzymes, including 19 ATP-dependent RNA helicases and three AAA-ATPases. We have previously shown that the AAA-ATPase Rix7 promotes the release of the essential biogenesis factor Nsa1 from late nucleolar pre-60S particles. Here we show that mutant alleles of genes encoding the DEAD-box RNA helicase Mak5, the C/D-box snoRNP component Nop1 and the rRNA-binding protein Nop4 bypass the requirement for Nsa1. Interestingly, dominant-negative alleles of RIX7 retain their phenotype in the absence of Nsa1, suggesting that Rix7 may have additional nuclear substrates besides Nsa1. Mak5 is associated with the Nsa1 pre-60S particle and synthetic lethal screens with mak5 alleles identified the r-protein Rpl14 and the 60S biogenesis factors Ebp2, Nop16 and Rpf1, which are genetically linked amongst each other. We propose that these ’Mak5 cluster’ factors orchestrate the structural arrangement of a eukaryote-specific 60S subunit surface composed of Rpl6, Rpl14 and Rpl16 and rRNA expansion segments ES7L and ES39L. Finally, over-expression of Rix7 negatively affects growth of mak5 and ebp2 mutant cells both in the absence and presence of Nsa1, suggesting that Rix7, at least when excessively abundant, may act on structurally defective pre-60S subunits and may subject these to degradation.  相似文献   

3.
Mrt4 is a nucleolar component of the ribosome assembly machinery that shares notable similarity and competes for binding to the 25S rRNA GAR domain with the ribosomal protein P0. Here, we show that loss of function of either P0 or Mrt4 results in a deficit in 60S subunits, which is apparently due to impaired rRNA processing of 27S precursors. Mrt4, which shuttles between the nucleus and the cytoplasm, defines medium pre-60S particles. In contrast, P0 is absent from medium but present in late/cytoplasmic pre-60S complexes. The absence of Mrt4 notably increased the amount of P0 in nuclear Nop7–TAP complexes and causes P0 assembly to medium pre-60S particles. Upon P0 depletion, Mrt4 is relocated to the cytoplasm within aberrant 60S subunits. We conclude that Mrt4 controls the position and timing of P0 assembly. In turn, P0 is required for the release of Mrt4 and exchanges with this factor at the cytoplasm. Our results also suggest other P0 assembly alternatives.  相似文献   

4.
We report that Ypl146cp/Nop53p is associated with pre-60S ribosomal complexes and localized to the nucleolus and nucleoplasm. In cells depleted of Nop53p synthesis of the rRNA components of the 60S ribosomal subunit is severely inhibited, with strikingly strong accumulation of the 7S pre-rRNA and a 5' extended form of the 25S rRNA. In cells depleted of Nop53p pre-60S subunits accumulate in the nucleus. However, a heterokaryon assay demonstrated that Nop53p is not transferred between nuclei, indicating that it is not released into the cytoplasm. We conclude that Nop53p is a late-acting factor in the nuclear maturation of 60S ribosomal subunits, which is required for normal acquisition of export competence. The strong accumulation of preribosomes in the Nop53p-depleted strain further suggests that it may participate in targeting aberrant preribosomes to surveillance and degradation pathways.  相似文献   

5.
6.
7.
8.
Ribosome synthesis involves the coordinated folding and processing of pre-rRNAs with assembly of ribosomal proteins. In eukaryotes, these events are facilitated by trans-acting factors that propel ribosome maturation from the nucleolus to the cytoplasm. However, there is a gap in understanding how ribosomal proteins configure pre-ribosomes in vivo to enable processing to occur. Here, we have examined the role of adjacent yeast r-proteins L17, L35 and L37 in folding and processing of pre-rRNAs, and binding of other proteins within assembling ribosomes. These three essential ribosomal proteins, which surround the polypeptide exit tunnel, are required for 60S subunit formation as a consequence of their role in removal of the ITS2 spacer from 27SB pre-rRNA. L17-, L35- and L37-depleted cells exhibit turnover of aberrant pre-60S assembly intermediates. Although the structure of ITS2 does not appear to be grossly affected in their absence, these three ribosomal proteins are necessary for efficient recruitment of factors required for 27SB pre-rRNA processing, namely, Nsa2 and Nog2, which associate with pre-60S ribosomal particles containing 27SB pre-rRNAs. Altogether, these data support that L17, L35 and L37 are specifically required for a recruiting step immediately preceding removal of ITS2.  相似文献   

9.
Rea1, the largest predicted protein in the yeast genome, is a member of the AAA(+) family of ATPases and is associated with pre-60 S ribosomes. Here we report that Rea1 is required for maturation and nuclear export of the pre-60 S subunit. Rea1 exhibits a predominantly nucleoplasmic localization and is present in a late pre-60 S particle together with members of the Rix1 complex. To study the role of Rea1 in ribosome biogenesis, we generated a repressible GAL::REA1 strain and temperature-sensitive rea1 alleles. In vivo depletion of Rea1 results in the significant reduction of mature 60 S subunits concomitant with defects in pre-rRNA processing and late pre-60 S ribosome stability following ITS2 cleavage and prior to the generation of mature 5.8 S rRNA. Strains depleted of the components of the Rix1 complex (Rix1, Ipi1, and Ipi3) showed similar defects. Using an in vivo 60 S subunit export assay, a strong accumulation of the large subunit reporter Rpl25-GFP (green fluorescent protein) in the nucleus and at the nuclear periphery was seen in rea1 mutants at restrictive conditions.  相似文献   

10.
Recent studies reveal that maturation of the 40S ribosomal subunit precursors in mammals includes an additional step during processing of the internal transcribed spacer 1 (ITS1), when compared with yeast Saccharomyces cerevisiae, even though the protein content of the pre-40S particle appears to be the same. Here, we examine by depletion with siRNA treatment the function of human orthologs of two essential yeast pre-ribosomal factors, hEnp1/bystin and hTsr1. Like their yeast orthologs, bystin is required for efficient cleavage of the ITS1 and further processing of this domain within the pre-40S particles, whereas hTsr1 is necessary for the final maturation steps. However, bystin depletion leads to accumulation of an unusual 18S rRNA precursor, revealing a new step in ITS1 processing that potentially involves an exonuclease. In addition, pre-40S particles lacking hTsr1 are partially retained in the nucleus, whereas depletion of Tsr1p in yeast results in strong cytoplasmic accumulation of pre-40S particles. These data indicate that ITS1 processing in human cells may be more complex than currently envisioned and that coordination between maturation and nuclear export of pre-40S particles has evolved differently in yeast and mammalian cells.  相似文献   

11.
The assembly of eukaryotic ribosomes is a hierarchical process involving about 200 biogenesis factors and a series of remodeling steps. The 5S RNP consisting of the 5S rRNA, RpL5 and RpL11 is recruited at an early stage, but has to rearrange during maturation of the pre-60S ribosomal subunit. Rpf2 and Rrs1 have been implicated in 5S RNP biogenesis, but their precise role was unclear. Here, we present the crystal structure of the Rpf2–Rrs1 complex from Aspergillus nidulans at 1.5 Å resolution and describe it as Brix domain of Rpf2 completed by Rrs1 to form two anticodon-binding domains with functionally important tails. Fitting the X-ray structure into the cryo-EM density of a previously described pre-60S particle correlates with biochemical data. The heterodimer forms specific contacts with the 5S rRNA, RpL5 and the biogenesis factor Rsa4. The flexible protein tails of Rpf2–Rrs1 localize to the central protuberance. Two helices in the Rrs1 C-terminal tail occupy a strategic position to block the rotation of 25S rRNA and the 5S RNP. Our data provide a structural model for 5S RNP recruitment to the pre-60S particle and explain why removal of Rpf2–Rrs1 is necessary for rearrangements to drive 60S maturation.  相似文献   

12.
The Pescadillo protein was identified via a developmental defect and implicated in cell cycle progression. Here we report that human Pescadillo and its yeast homolog (Yph1p or Nop7p) are localized to the nucleolus. Depletion of Nop7p leads to nuclear accumulation of pre-60S particles, indicating a defect in subunit export, and it interacts genetically with a tagged form of the ribosomal protein Rpl25p, consistent with a role in subunit assembly. Two pre-rRNA processing pathways generate alternative forms of the 5.8S rRNA, designated 5.8S(L) and 5.8Ss. In cells depleted for Nop7p, the 27SA3 pre-rRNA accumulated, whereas later processing intermediates and the mature 5.8Ss rRNA were depleted. Less depletion was seen for the 5.8S(L) pathway. TAP-tagged Nop7p coprecipitated precursors to both 5.8S(L) and 5.8Ss but not the mature rRNAs. We conclude that Nop7p is required for efficient exonucleolytic processing of the 27SA3 pre-rRNA and has additional functions in 60S subunit assembly and transport. Nop7p is a component of at least three different pre-60S particles, and we propose that it carries out distinct functions in each of these complexes.  相似文献   

13.
The complicated process of eukaryotic ribosome biogenesis involves about 200 assembly factors that transiently associate with the nascent pre-ribosome in a spatiotemporally ordered way. During the early steps of 60S subunit formation, several proteins, collectively called A3 cluster factors, participate in the removal of the internal transcribed spacer 1 (ITS1) from 27SA3 pre-rRNA. Among these factors is the conserved hetero-trimeric Nop7–Erb1–Ytm1 complex (or human Pes1–Bop1–Wdr12), which is removed from the evolving pre-60S particle by the AAA ATPase Rea1 to allow progression in the pathway. Here, we clarify how Ytm1 and Erb1 interact, which has implications for the release mechanism of both factors from the pre-ribosome. Biochemical studies show that Ytm1 and Erb1 bind each other via their ß-propeller domains. The crystal structure of the Erb1–Ytm1 heterodimer determined at 2.67Å resolution reveals an extended interaction surface between the propellers in a rarely observed binding mode. Structure-based mutations in the interface that impair the Erb1–Ytm1 interaction do not support growth, with specific defects in 60S subunit synthesis. Under these mutant conditions, it becomes clear that an intact Erb1–Ytm1 complex is required for 60S maturation and that loss of this stable interaction prevents ribosome production.  相似文献   

14.
Ke Wu  Pei Wu    John P. Aris 《Nucleic acids research》2001,29(14):2938-2949
A genetic screen for mutations synthetically lethal with temperature sensitive alleles of nop2 led to the identification of the nucleolar proteins Nop12p and Nop13p in Saccharomyces cerevisiae. NOP12 was identified by complementation of a synthetic lethal growth phenotype in strain YKW35, which contains a single nonsense mutation at codon 359 in an allele termed nop12-1. Database mining revealed that Nop12p was similar to a related protein, Nop13p. Nop12p and Nop13p are not essential for growth and each contains a single canonical RNA recognition motif (RRM). Both share sequence similarity with Nsr1p, a previously identified, non-essential, RRM-containing nucleolar protein. Likely orthologs of Nop12p were identified in Drosophila and Schizosaccharomyces pombe. Deletion of NOP12 resulted in a cold sensitive (cs) growth phenotype at 15°C and slow growth at 20 and 25°C. Growth of a nop12Δ strain at 15 and 20°C resulted in impaired synthesis of 25S rRNA, but not 18S rRNA. A nop13 null strain did not produce an observable growth phenotype under the laboratory conditions examined. Epitope-tagged Nop12p, which complements the cs growth phenotype and restores normal 25S rRNA levels, was localized to the nucleolus by immunofluorescence microscopy. Epitope-tagged Nop13p was distributed primarily in the nucleolus, with a lesser portion localizing to the nucleoplasm. Thus, Nop12p is a novel nucleolar protein required for pre-25S rRNA processing and normal rates of cell growth at low temperatures.  相似文献   

15.
Many analyses have examined subnucleolar structures in eukaryotic cells, but the relationship between morphological structures, pre-rRNA processing, and ribosomal particle assembly has remained unclear. Using a visual assay for export of the 60S ribosomal subunit, we isolated a ts-lethal mutation, rix9-1, which causes nucleolar accumulation of an Rpl25p-eGFP reporter construct. The mutation results in a single amino acid substitution (F176S) in Rlp7p, an essential nucleolar protein related to ribosomal protein Rpl7p. The rix9-1 (rlp7-1) mutation blocks the late pre-RNA cleavage at site C2 in ITS2, which separates the precursors to the 5.8S and 25S rRNAs. Consistent with this, synthesis of the mature 5.8S and 25S rRNAs was blocked in the rlp7-1 strain at nonpermissive temperature, whereas 18S rRNA synthesis continued. Moreover, pre-rRNA containing ITS2 accumulates in the nucleolus of rix9-1 cells as revealed by in situ hybridization. Finally, tagged Rlp7p was shown to associate with a pre-60S particle, and fluorescence microscopy and immuno-EM localized Rlp7p to a subregion of the nucleolus, which could be the granular component (GC). All together, these data suggest that pre-rRNA cleavage at site C2 specifically requires Rlp7p and occurs within pre-60S particles located in the GC region of the nucleolus.  相似文献   

16.
In eukaryotes, pre-rRNA processing depends on a large number of nonribosomal trans-acting factors that form large and intriguingly organized complexes. A novel nucleolar protein, Nop53p, was isolated by using Nop17p as bait in the yeast two-hybrid system. Nop53p also interacts with a second nucleolar protein, Nip7p. A carbon source-conditional strain with the NOP53 coding sequence under the control of the GAL1 promoter did not grow in glucose-containing medium, showing the phenotype of an essential gene. Under nonpermissive conditions, the conditional mutant strain showed rRNA biosynthesis defects, leading to an accumulation of the 27S and 7S pre-rRNAs and depletion of the mature 25S and 5.8S mature rRNAs. Nop53p did not interact with any of the exosome subunits in the yeast two-hybrid system, but its depletion affects the exosome function. In pull-down assays, protein A-tagged Nop53p coprecipitated the 27S and 7S pre-rRNAs, and His-Nop53p also bound directly 5.8S rRNA in vitro, which is consistent with a role for Nop53p in pre-rRNA processing.  相似文献   

17.
NIP7 encodes a conserved Saccharomyces cerevisiae nucleolar protein that is required for 60S subunit biogenesis (N. I. T. Zanchin, P. Roberts, A. DeSilva, F. Sherman, and D. S. Goldfarb, Mol. Cell. Biol. 17:5001–5015, 1997). Rrp43p and a second essential protein, Nop8p, were identified in a two-hybrid screen as Nip7p-interacting proteins. Biochemical evidence for an interaction was provided by the copurification on immunoglobulin G-Sepharose of Nip7p with protein A-tagged Rrp43p and Nop8p. Cells depleted of Nop8p contained reduced levels of free 60S ribosomes and polysomes and accumulated half-mer polysomes. Nop8p-depleted cells also accumulated 35S pre-rRNA and an aberrant 23S pre-rRNA. Nop8p-depleted cells failed to accumulate either 25S or 27S rRNA, although they did synthesize significant levels of 18S rRNA. These results indicate that 27S or 25S rRNA is degraded in Nop8p-depleted cells after the section containing 18S rRNA is removed. Nip7p-depleted cells exhibited the same defects as Nop8p-depleted cells, except that they accumulated 27S precursors. Rrp43p is a component of the exosome, a complex of 3′-to-5′ exonucleases whose subunits have been implicated in 5.8S rRNA processing and mRNA turnover. Whereas both green fluorescent protein (GFP)-Nop8p and GFP-Nip7p localized to nucleoli, GFP-Rrp43p localized throughout the nucleus and to a lesser extent in the cytoplasm. Distinct pools of Rrp43p may interact both with the exosome and with Nip7p, possibly both in the nucleus and in the cytoplasm, to catalyze analogous reactions in the multistep process of 60S ribosome biogenesis and mRNA turnover.  相似文献   

18.
To investigate the function of the nucleolar protein Nop2p in Saccharomyces cerevisiae, we constructed a strain in which NOP2 is under the control of a repressible promoter. Repression of NOP2 expression lengthens the doubling time of this strain about fivefold and reduces steady-state levels of 60S ribosomal subunits, 80S ribosomes, and polysomes. Levels of 40S subunits increase as the free pool of 60S subunits is reduced. Nop2p depletion impairs processing of the 35S pre-rRNA and inhibits processing of 27S pre-rRNA, which results in lower steady-state levels of 25S rRNA and 5.8S rRNA. Processing of 20S pre-rRNA to 18S rRNA is not significantly affected. Processing at sites A2, A3, B1L, and B1S and the generation of 5' termini of different pre-rRNA intermediates appear to be normal after Nop2p depletion. Sequence comparisons suggest that Nop2p may function as a methyltransferase. 2'-O-ribose methylation of the conserved site UmGm psi UC2922 is known to take place during processing of 27S pre-rRNA. Although Nop2p depletion lengthens the half-life of 27S pre-RNA, methylation of UmGm psi UC2922 in 27S pre-rRNA is low during Nop2p depletion. However, methylation of UmGm psi UC2922 in mature 25S rRNA appears normal. These findings provide evidence for a close interconnection between methylation at this conserved site and the processing step that yields the 25S rRNA.  相似文献   

19.
To identify new gene products that participate in ribosome biogenesis, we carried out a screen for mutations that result in lethality in combination with mutations in DRS1, a Saccharomyces cerevisiae nucleolar DEAD-box protein required for synthesis of 60S ribosomal subunits. We identified the gene NOP7that encodes an essential protein. The temperature-sensitive nop7-1 mutation or metabolic depletion of Nop7p results in a deficiency of 60S ribosomal subunits and accumulation of halfmer polyribosomes. Analysis of pre-rRNA processing indicates that nop7 mutants exhibit a delay in processing of 27S pre-rRNA to mature 25S rRNA and decreased accumulation of 25S rRNA. Thus Nop7p, like Drs1p, is required for essential steps leading to synthesis of 60S ribosomal subunits. In addition, inactivation or depletion of Nop7p also affects processing at the A0, A1, and A2 sites, which may result from the association of Nop7p with 35S pre-rRNA in 90S pre-rRNPs. Nop7p is localized primarily in the nucleolus, where most steps in ribosome assembly occur. Nop7p is homologous to the zebrafish pescadillo protein necessary for embryonic development. The Nop7 protein contains the BRCT motif, a protein-protein interaction domain through which, for example, the human BRCA1 protein interacts with RNA helicase A.  相似文献   

20.
The Saccharomyces cerevisiae Nog1 GTPase is critical for assembly of the large ribosomal subunit. Mutations in conserved residues in the GTP-binding pocket cause defects in cell growth and 60S ribosome assembly but mutant proteins retain their ability to associate with the pre-60S. Association of Nog1 with the pre-60S is independent of guanine nucleotide added to cell extracts. Thus, it appears that nucleotide occupancy does not substantially affect Nog1 association with pre-60S particles. Somewhat surprisingly, neither of the conserved threonines in the G2 motif of the GTPase domain is essential for Nog1 function. Neither the steady-state rRNA levels nor the protein composition (as determined by isobaric labeling and identification by mass spectrometry of peptides) of the pre-60S particles in the nog1P176V mutant are grossly perturbed, although levels of four proteins (Nog1, Nop2, Nop15, and Tif6) are modestly reduced in pre-60S particles isolated from the mutant. Deletion analysis revealed that the C-terminal 168 amino acids are not required for function; however, the N-terminal 126 amino acids are required. Optimal association with pre-60S particles requires sequences between amino acids 347–456. Several conserved charge-to-alanine substitutions outside the GTPase domain display modest growth phenotypes indicating that these residues are not critical for function. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号