首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The present study investigated the immunomodulatory activity of Ergosan, an algal extract containing alginic acid, and Macrogard, a yeast extract containing beta-glucans, on innate and specific immunity in sea bass (Dicentrarchus labrax). Four cycles of experimental feeding using normal fish feed formulation (control group) supplemented with Ergosan (0.5%) or Macrogard (0.1%) were performed at 60-day intervals (15 days of treatment+45 days of suspension). Serum complement, lysozyme, total proteins and heat shock protein (HSP) concentrations were measured at 15, 30 and 45 days from the end of the first 15-day feeding cycle (short term) and 45 days after the end of each feeding cycle over a 35-week period (long term). The percentage of B- and T-lymphocytes in peripheral blood leucocytes and gut were measured over long-term trial. Significant elevation (P < 0.05) in serum complement activity occurred in sea bass fed with alginic acid and glucans, at 15 days from the end of first cycle of treatment. Significant elevation (P < 0.05) in serum lysozyme, gill and liver HSP concentration were observed in the same experimental groups at 30 days from the end of treatment, whereas a significant increase (P < 0.05) of complement activity was only observed in fish that received an Ergosan diet. At 45 days from the end of treatment, complement, lysozyme and HSP concentration did not differ among groups. Over the long-term period, no significant differences were observed in innate and specific immune parameters, survival, growth performances and conversion index in treated and control fish. A dramatic decrease of both innate and acquired immune parameters was observed during the winter season in all groups, followed by a partial recovery when water temperature increased. Reduction in complement and lysozyme activities was significatively correlated (p < 0.01) to water temperature variation. The results suggested the potential of alginic acid and beta-glucans to activate some innate immune responses in sea bass, and particularly under conditions of immunodepression related to environmental stress.  相似文献   

2.
As a result of study of the vibriolytic activity of the serum during the immunity formation in the vaccinated animals in comparison with the specific antibodies titres and nonspecific immunity factors (complement and lysozyme) there was revealed a dependence of the reaction on the vaccine dose and the immunization method; there was also found a relationship between the vibriolytic activity and the serological indices in the sera of volunteers. On the basis of study a conclusion was drawn that the vibriolytic activity of the serum could serve as an index of antibacterial immunity in cholera.  相似文献   

3.
Transfer of immune factors via the egg may represent a maternal adaptation enhancing offspring survival. Lysozyme is a major component of maternal antibacterial immunity which is transferred to the eggs in birds. In a population of barn swallows (Hirundo rustica), lysozyme activity declined during the prelaying and laying periods in females but not in males. Egg hatching failure decreased with maternal lysozyme activity. The first eggs in a clutch contained more lysozyme and produced nestlings with larger lysozyme activity when 5 days old than last‐laid ones. In a cross‐fostering experiment where brood size was manipulated, nestling origin but not post‐manipulation brood size affected lysozyme activity. Hence, maternal lysozyme varies during the breeding season and may differentially enhance antibacterial immune defence of the eggs and nestlings in relation to laying order. These findings suggest that offspring innate immunity is influenced by early maternal effects.  相似文献   

4.
5.
Innate immunity is based in pre-existing elements of the immune system that directly interact with all types of microbes leading to their destruction or growth inhibition. Several elements of this early defense mechanism act in concert to control initial pathogen growth and have profound effect on the adaptative immune response that further develops. Although most studies in paracoccidioidomycosis have been dedicated to understand cellular and humoral immune responses, innate immunity remains poorly defined. Hence, the main purpose of this review is to present and discuss some mechanisms of innate immunity developed by resistant and susceptible mice to Paracoccidioides brasiliensis infection, trying to understand how this initial host-pathogen interface interferes with the protective or deleterious adaptative immune response that will dictate disease outcome. An analysis of some mechanisms and mediators of innate immunity such as the activation of complement proteins, the microbicidal activity of natural killer cells and phagocytes, the production of inflammatory eicosanoids, cytokines, and chemokines among others, is presented trying to show the important role played by innate immunity in the host response to P. brasiliensis infection.  相似文献   

6.
It has previously been demonstrated that peripheral blood leucocytes of the nurse shark (Ginglymostoma cirrhatum) are capable of in vitro chemotaxis. In the present study we have identified the chemotactic cells as the shark granulocyte and monocyte-macrophage. Chemotaxis assays were set up in blind well chambers. Cells migrating into the filter in a chemotaxis assay were identified morphologically by transmission electron microscopy. Migration, in response to LPS-activated rat serum, was accompanied by change in cell shape and reorganization of the cytoskeleton. Ultrastructural changes included formation of lamellipodia with cell polarization, submembranous accumulation of microfilaments at points of plasma membrane contact with filter surfaces, densification of the membrane at these points of engagement, appearance of bundles of intermediate filaments extending into the protruded lamellipodia, and presence of oriented microtubules in the cytoplasma (cellular cortex). The phagocytic and chemotactic properties of the shark granulocyte and monocyte-macrophage points to their being structural and functional equivalents of the mammalian neutrophil and macrophage.  相似文献   

7.
The piscine immune system is normally quite efficient in protecting the host (innate and acquired immunity) from parasitic infections. Innate immunity may occur at two distinct levels — between host species and within a host species. If the resistance is at the host species (or a higher taxonomic group) level, then it is inter-host innate immunity. For example, Oncorhynchus mykiss can be infected with the pathogenic hemoflagellate, Cryptobia salmositica isolated from Oncorhynchus spp. but cannot be infected with Cryptobia catostomi from Catostomus commersoni. At the next level, there are individuals within a susceptible host species that are resistant to infection — this is intra-host innate immunity; e.g. some Salvelinus fontinalis are resistant to C. salmositica infection while others are not. This resistance to infection is not dependent on age or size of the fish; it is inherited and is controlled by a dominant gene. Protection at both levels of innate immunity is via the activation of the alternative pathway of complement activation to lyse the parasite. Also, S. fontinalis can be infected with the pathogenic C. salmositica have very high parasitaemias but they do not suffer from the disease as O. mykiss. This resistance to disease is related to high levels and rapid production of α2-macroglobulin which is one of two natural antiproteases. The α2-macroglobulin in the blood neutralises the metallo-protease secreted by the pathogenic C. salmositica. Acquire immunity was shown in fish that survived infections of pathogenic flagellates. Fish that have recovered from Amyloodinium ocellatum, C. salmositica, Cryptobia bullocki, and Trypanosoma danilewskyi are protected. This protection requires prior exposure to the pathogen and/or its antigens. Humoral (e.g. complement fixing antibodies to lyse the parasite) and cell-mediated (e.g. T-cell cytotoxicity, phagocytosis) are part of the protective mechanism in acquired immunity. Also, an attenuated live C. salmositica vaccine has been developed and it protects juvenile and adult salmonids from cryptobiosis for at least 2 years.  相似文献   

8.
Innate immunity of fish (overview)   总被引:11,自引:0,他引:11  
The innate immune system is the only defence weapon of invertebrates and a fundamental defence mechanism of fish. The innate system also plays an instructive role in the acquired immune response and homeostasis and is therefore equally important in higher vertebrates. The innate system's recognition of non-self and danger signals is served by a limited number of germ-line encoded pattern recognition receptors/proteins, which recognise pathogen associated molecular patterns like bacterial and fungal glycoproteins and lipopolysaccharides and intracellular components released through injury or infection. The innate immune system is divided into physical barriers, cellular and humoral components. Humoral parameters include growth inhibitors, various lytic enzymes and components of the complement pathways, agglutinins and precipitins (opsonins, primarily lectins), natural antibodies, cytokines, chemokines and antibacterial peptides. Several external and internal factors can influence the activity of innate immune parameters. Temperature changes, handling and crowding stress can have suppressive effects on innate parameters, whereas several food additives and immunostimulants can enhance different innate factors. There is limited data available about the ontogenic development of the innate immunological system in fish. Active phagocytes, complement components and enzyme activity, like lysozyme and cathepsins, are present early in the development, before or soon after hatching.  相似文献   

9.
Cyclosporin A suppressed humoral immune response of Galleria mellonella larvae. Insects were immunized with LPS Pseudomonas aeruginosa and then injected with cyclosporin A. Immunosuppressive effects were expressed both, in larvae treated with cyclosporin A at the initial phase of immune response and at the effector phase of antibacterial immunity. Cyclosporin A moderately decreased lysozyme activity and significantly decreased antibacterial activity peptides against Escherichia coli. Immunosuppressive effects of cyclosporin A were observed after immunoblotting with antibodies anti-G. mellonella lysozyme. Tricine SDS/PAGE shown that synthesis of antibacterial peptides of larvae treated with cyclosporin A was considerably inhibited. Insects of impaired immune response by cyclosporin A action lost protective immunity to insect bacterial pathogen P. aeruginosa.  相似文献   

10.
cDNA cloning of the lysozyme of the white shrimp Penaeus vannamei   总被引:7,自引:0,他引:7  
Lysozyme, an antibacterial protein, has been implicated in innate immunity in invertebrates, but its activity in shrimp remained to be determined. We cloned the white shrimp lysozyme cDNA using a PCR strategy and detected its activity in haemocytes using a lytic-zone assay against Micrococcus luteus. The cloning was based on a reported EST (dbEST BE18831). The deduced amino acid sequence resulted in 150 amino with 46% identity to hen egg white lysozyme. RT-PCR was used to detect lysozyme mRNA in haemocytes. Analysis of the amino acid sequence of the shrimp lysozyme showed that it belongs to the C-type family of lysozymes. Furthermore, the lysozyme amino acid sequence contained extra residues at its C-terminus, which are characteristic of marine invertebrates. This information will be useful in future studies on the molecular mechanisms of immunity in marine invertebrates.  相似文献   

11.
Serum is an environment in which bacterial cells should not exist. The serum complement system provides innate defense against microbial infections. It consists of at least 35 proteins, mostly in pre-activated enzymatic forms. The activation of complement is achieved through three major pathways: the classical, alternative, and lectin. Lysozyme, widely present in body fluids, catalyzes the hydrolysis of β 1,4 linkage between N-acetyloglucosamine and N-acetylmuramic acid in the bacterial cell wall and cooperates with the complement system in the bactericidal action of serum. In this study, ten strains of serotype O48 Salmonella, mainly associated with warm-blooded vertebrates and clinically important causing diarrhea in infants and children, were tested. The results demonstrated that the most efficient killing of Salmonella O48 occurred when all the components of normal bovine serum (NBS) and normal human serum (NHS) cooperated. To prove the role of lysozyme in the bactericidal activity of bovine and human serum, the method of serum adsorption onto bentonite (montmorillonite, MMT) was used. In order to investigate structural transitions accompanying the adsorption of serum components, we applied X-ray diffraction methods. The results of this investigation suggested that apart from lysozyme, other proteins (as, e.g., C3 protein or IgG immunoglobulin) were adsorbed on MMT particles. It was also shown that Ca2+ cations can be adsorbed on bentonite. This may explain the different sensitivities of the serovars belonging to the same O48 Salmonella serotype to NBS and NHS devoid of lysozyme.  相似文献   

12.
Dendritic cells are one of the most important cell types connecting innate and adaptive immunity, but very little is known about their evolutionary origins. To begin to study dendritic cells from lower vertebrates, we isolated and characterized CD83 from the nurse shark (Ginglymostoma cirratum (Gici)) and rainbow trout (Oncorhynchus mykiss (Onmy)). The open reading frames for Gici-CD83 (194 aa) and Onmy-CD83 (218 aa) display approximately 28-32% identity to mammalian CD83 with the presence of two conserved N-linked glycosylation sites. Identical with mammalian CD83 genes, Gici-CD83 is composed of five exons including conservation of phase for the splice sites. Mammalian CD83 genes contain a split Ig superfamily V domain that represents a unique sequence feature for CD83 genes, a feature conserved in both Gici- and Onmy-CD83. Gici-CD83 and Onmy-CD83 are not linked to the MHC, an attribute shared with mouse but not human CD83. Gici-CD83 is expressed rather ubiquitously with highest levels in the epigonal tissue, a primary site for lymphopoiesis in the nurse shark, whereas Onmy-CD83 mRNA expression largely paralleled that of MHC class II but at lower levels. Finally, Onmy-CD83 gene expression is up-regulated in virus-infected trout, and the promoter is responsive to trout IFN regulatory factor-1. These results suggest that the role of CD83, an adhesion molecule for cell-mediated immunity, has been conserved over 450 million years of vertebrate evolution.  相似文献   

13.
Iain Scott 《Mitochondrion》2010,10(4):316-320
Innate immunity is a crucial defense system against viral and bacterial pathogens, providing a rapid response to mitigate the effects of microbial attack. While more readily associated with respiration and metabolism, recent research has surprisingly identified a number of mitochondrial factors in the mammalian innate immune system. This review summarizes the novel mitochondrial proteins, such as MAVS and NLRX1, involved in this process and attempts to reconcile this new mitochondrial function with our previous knowledge of the organelle.  相似文献   

14.
Although fish immunology has progressed in the last few years, the contribution of the normal endogenous microbiota to the overall health status has been so far underestimated. In this context, the establishment of a normal or protective microbiota constitutes a key component to maintain good health, through competitive exclusion mechanisms, and has implications for the development and maturation of the immune system. The normal microbiota influences the innate immune system, which is of vital importance for the disease resistance of fish and is divided into physical barriers, humoral and cellular components. Innate humoral parameters include antimicrobial peptides, lysozyme, complement components, transferrin, pentraxins, lectins, antiproteases and natural antibodies, whereas nonspecific cytotoxic cells and phagocytes (monocytes/macrophages and neutrophils) constitute innate cellular immune effectors. Cytokines are an integral component of the adaptive and innate immune response, particularly IL-1 beta, interferon, tumor necrosis factor-alpha, transforming growth factor-beta and several chemokines regulate innate immunity. This review covers the innate immune mechanisms of protection against pathogens, in relation with the installation and composition of the normal endogenous microbiota in fish and its role on health. Knowledge of such interaction may offer novel and useful means designing adequate therapeutic strategies for disease prevention and treatment.  相似文献   

15.
The mammalian uterus faces unique immunological challenges. It must nurture and protect the semiallogenic fetus from attack by the maternal immune system while guarding against infection by pathogens that compromise fetal and maternal health. Complement has recently been implicated in the etiology of pregnancy loss, but its regulation by steroid hormones and its role in host defense in the uterus are not clearly defined. Here we use biochemical, functional, and physiological assays to elucidate the regulation of complement proteins in the rat uterus. We demonstrate that estrogens (17 beta-estradiol) and glucocorticoids (dexamethasone) have major, but opposing, effects on the amount and latent activity of complement effectors in the uterus. Treatment with 17 beta-estradiol induced vasodilation and an increase in vascular permeability, which resulted in extravasation of plasma and complement into the uterus, rather than de novo complement biosynthesis. In vitro assays revealed that 17 beta-estradiol induced a potent bactericidal activity in uterine luminal fluid and that the antibacterial component was complement. These proinflammatory and immunomodulatory effects were evident within 4 h of treatment and were blocked by coadministration of dexamethasone. We also found that estrogen effects on the vasculature were mediated in part by activation of the contact system and bradykinin B1 receptors. These results indicate that complement plays a central role in innate immunity in the female reproductive tract and suggest that estrogens or glucocorticoids might be used therapeutically to enhance or inhibit complement-dependent processes in the uterus.  相似文献   

16.
In human high-density lipoprotein (HDL) represents the major cholesterol carrying lipoprotein class in cord blood, while cholesterol is mainly carried by low-density lipoprotein in maternal serum. Additionally, to carrying cholesterol, HDL also associates with a range of proteins as cargo. We tested the hypothesis that fetal HDL carries proteins qualitatively and quantitatively different from maternal HDL. These differences then contribute to distinct HDL functionality in both circulations. Shotgun proteomics and biochemical analyses were used to assess composition/function of fetal and maternal HDL isolated from uncomplicated human pregnancies at term of gestation. The pattern of analyzed proteins that were statistically elevated in fetal HDL (apoE, proteins involved in coagulation, transport processes) suggests a particle characteristic for the light HDL2 sub-fraction. In contrast, proteins that were enriched in maternal HDL (apoL, apoF, PON1, apoD, apoCs) have been described almost exclusively in the dense HDL3 fraction and relevant to its anti-oxidative function and role in innate immunity. Strikingly, PON1 mass and activity were 5-fold lower (p < 0.01) in the fetus, which was accompanied by attenuation of anti-oxidant capacity of fetal HDL. Despite almost equal quantity of CETP in maternal and fetal HDL, its enzymatic activity was 55% lower (p < 0.001) in the fetal circulation, whereas LCAT activity was not altered. These findings indicate that maternally derived HDL differs from fetal HDL with respect to its proteome, size and function. Absence of apoA-1, apoL and PON1 on fetal HDL is associated with decreased anti-oxidative properties together with deficiency in innate immunity collectively indicating distinct HDLs in fetuses.  相似文献   

17.
Ultrastructural and functional studies were carried out on nurse shark (Ginglymostoma cirratum) peripheral blood cells in order to identify cells of definitive morphology and specific function. Along with erythrocytes and thrombocytes, four morphologically distinct leucocytes are recognized in peripheral blood: two types of granulocytes, the ‘eosiniphil’ and the ‘granulocyte’, and two mononuclear agranulocytic cells, one resembling mammalian macrophage and monocyte, the other resembling mammalian lymphocyte. Also present in peripheral circulation are blast-like cells and mitotic cells. In vitro phagocytosis was demonstrated by the monocyte-macrophage and the granulocyte while thrombocytes, eosinophils and lymphocytes showed no phagocytic activity in the system studied. It is stressed that care must be used in drawing functional analogies between blood cells of a mammal and an elasmobranch on the basis of morphological similarity alone.  相似文献   

18.

Background

One virulence property of Borrelia burgdorferi is its resistance to innate immunity, in particular to complement-mediated killing. Serum-resistant B. burgdorferi express up to five distinct complement regulator-acquiring surface proteins (CRASP) which interact with complement regulator factor H (CFH) and factor H-like protein 1 (FHL1) or factor H-related protein 1 (CFHR1). In the present study we elucidate the role of the infection-associated CRASP-3 and CRASP-5 protein to serve as ligands for additional complement regulatory proteins as well as for complement resistance of B. burgdorferi.

Methodology/Principal Findings

To elucidate whether CRASP-5 and CRASP-3 interact with various human proteins, both borrelial proteins were immobilized on magnetic beads. Following incubation with human serum, bound proteins were eluted and separated by Glycine-SDS-PAGE. In addition to CFH and CFHR1, complement regulators CFHR2 and CFHR5 were identified as novel ligands for both borrelial proteins by employing MALDI-TOF. To further assess the contributions of CRASP-3 and CRASP-5 to complement resistance, a serum-sensitive B. garinii strain G1 which lacks all CFH-binding proteins was used as a valuable model for functional analyses. Both CRASPs expressed on the B. garinii outer surface bound CFH as well as CFHR1 and CFHR2 in ELISA. In contrast, live B. garinii bound CFHR1, CFHR2, and CFHR5 and only miniscute amounts of CFH as demonstrated by serum adsorption assays and FACS analyses. Further functional analysis revealed that upon NHS incubation, CRASP-3 or CRASP-5 expressing borreliae were killed by complement.

Conclusions/Significance

In the absence of CFH and the presence of CFHR1, CFHR2 and CFHR5, assembly and integration of the membrane attack complex was not efficiently inhibited indicating that CFH in co-operation with CFHR1, CFHR2 and CFHR5 supports complement evasion of B. burgdorferi.  相似文献   

19.
Innate immunity is the first line of host defense against invading pathogens, and it is recognized by a variety of pattern recognition molecules, including mannose-binding lectin (MBL). MBL binds to mannose and N-acetylglucosamine residues present on the glycopolymers of microorganisms. Human serum MBL functions as an opsonin and activates the lectin complement pathway. However, which glycopolymer of microorganism is recognized by MBL is still uncertain. Here, we show that wall teichoic acid of Staphylococcus aureus, a bacterial cell surface glycopolymer containing N-acetylglucosamine residue, is a functional ligand of MBL. Whereas serum MBL in adults did not bind to wall teichoic acid because of an inhibitory effect of anti-wall teichoic acid antibodies, MBL in infants who had not yet fully developed their adaptive immunity could bind to S. aureus wall teichoic acid and then induced complement C4 deposition. Our data explain the molecular reasons of why MBL-deficient infants are susceptible to S. aureus infection.  相似文献   

20.
Lysozymes are key effectors of the animal innate immunity system that kill bacteria by hydrolyzing peptidoglycan, their major cell wall constituent. Recently, specific inhibitors of the three major lysozyme families occuring in the animal kingdom (c-, g- and i-type) have been discovered in Gram-negative bacteria, and it has been proposed that these may help bacteria to evade lysozyme mediated lysis during interaction with an animal host. Escherichia coli produces two inhibitors that are specific for c-type lysozyme (Ivy, Inhibitor of vertebrate lysozyme; MliC, membrane bound lysozyme inhibitor of c-type lysozyme), and one specific for g-type lysozyme (PliG, periplasmic lysozyme inhibitor of g-type lysozyme). Here, we investigated the role of these lysozyme inhibitors in virulence of Avian Pathogenic E. coli (APEC) using a serum resistance test and a subcutaneous chicken infection model. Knock-out of mliC caused a strong reduction in serum resistance and in in vivo virulence that could be fully restored by genetic complementation, whereas ivy and pliG could be knocked out without effect on serum resistance and virulence. This is the first in vivo evidence for the involvement of lysozyme inhibitors in bacterial virulence. Remarkably, the virulence of a ivy mliC double knock-out strain was restored to almost wild-type level, and this strain also had a substantial residual periplasmic lysozyme inhibitory activity that was higher than that of the single knock-out strains. This suggests the existence of an additional periplasmic lysozyme inhibitor in this strain, and indicates a regulatory interaction in the expression of the different inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号