首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biocontrol of Escherichia coli O157 with O157-specific bacteriophages.   总被引:2,自引:0,他引:2  
Escherichia coli O157 antigen-specific bacteriophages were isolated and tested to determine their ability to lyse laboratory cultures of Escherichia coli O157:H7. A total of 53 bovine or ovine fecal samples were enriched for phage, and 5 of these samples were found to contain lytic phages that grow on E. coli O157:H7. Three bacteriophages, designated KH1, KH4, and KH5, were evaluated. At 37 or 4 degrees C, a mixture of these three O157-specific phages lysed all of the E. coli O157 cultures tested and none of the non-O157 E. coli or non-E. coli cultures tested. These results required culture aeration and a high multiplicity of infection. Without aeration, complete lysis of the bacterial cells occurred only after 5 days of incubation and only at 4 degrees C. Phage infection and plaque formation were influenced by the nature of the host cell O157 lipopolysaccharide (LPS). Strains that did not express the O157 antigen or expressed a truncated LPS were not susceptible to plaque formation or lysis by phage. In addition, strains that expressed abundant mid-range-molecular-weight LPS did not support plaque formation but were lysed in liquid culture. Virulent O157 antigen-specific phages could play a role in biocontrol of E. coli O157:H7 in animals and fresh foods without compromising the viability of other normal flora or food quality.  相似文献   

2.
Shiga toxin-converting bacteriophages are involved in the pathogenicity of some enteric bacteria, such as Escherichia coli O157:H7. Recent studies have demonstrated a relatively high presence of Shiga toxin 2 phages in sewage from Spain, but no data on sewage from other areas were available. In order to evaluate the presence of such phages in sewage from diverse geographical origins, 33 sewage samples, including samples from eight different European countries as well as from New Zealand and South Africa were analysed. Using an experimental approach based on the detection of Stx 2 gene by a phage enrichment culture followed by PCR, bacteriophages infecting E. coli O157:H7 carrying the Shiga toxin 2 gene were detected in 15 of the samples studied. Results presented here show that the presence of phages carrying the Stx 2 gene is common in sewage from developed countries.  相似文献   

3.
Bacteriophages are associated with reduced fecal shedding of Shiga-toxin-producing Escherichia coli O157:H7 (STEC O157:H7) in cattle. Four phages exhibiting activity against 12 of 14 STEC O157:H7 strains, representing 11 common phage types, were isolated. Phages did not lyse non-O157 E. coli, with 11 of the 12 STEC strains exhibiting extreme susceptibility (average multiplicity of infection (MOI) = 0.0003-0.0007). All phages had icosahedral heads with tapered, noncontractile tails, a morphology indicative of T1-like Siphoviridae. Genome size of all phages was ~44 kb, but EcoR? or HindIII digestion profiles differed among phages. Based on restriction enzyme digestion profiles, phages AHP24, AHS24, and AHP42 were more related (66.7%-82.4%) to each other than to AKS96, while AHP24 and AHS24, isolated from the same feedlot pen, exhibited the highest identity (88.9%-92.3%). Phages AHP24 and AHS24 exhibited the broadest host range and strongest lytic activity against STEC O157:H7, making them strong candidates for biocontrol of this bacterium in cattle.  相似文献   

4.
Escherichia coli O157 antigen-specific bacteriophages were isolated and tested to determine their ability to lyse laboratory cultures of Escherichia coli O157:H7. A total of 53 bovine or ovine fecal samples were enriched for phage, and 5 of these samples were found to contain lytic phages that grow on E. coli O157:H7. Three bacteriophages, designated KH1, KH4, and KH5, were evaluated. At 37 or 4°C, a mixture of these three O157-specific phages lysed all of the E. coli O157 cultures tested and none of the non-O157 E. coli or non-E. coli cultures tested. These results required culture aeration and a high multiplicity of infection. Without aeration, complete lysis of the bacterial cells occurred only after 5 days of incubation and only at 4°C. Phage infection and plaque formation were influenced by the nature of the host cell O157 lipopolysaccharide (LPS). Strains that did not express the O157 antigen or expressed a truncated LPS were not susceptible to plaque formation or lysis by phage. In addition, strains that expressed abundant mid-range-molecular-weight LPS did not support plaque formation but were lysed in liquid culture. Virulent O157 antigen-specific phages could play a role in biocontrol of E. coli O157:H7 in animals and fresh foods without compromising the viability of other normal flora or food quality.  相似文献   

5.
Identification of the sources and methods of transmission of Escherichia coli O157:H7 in feedlot cattle may facilitate the development of on-farm control measures for this important food-borne pathogen. The prevalence of E. coli O157:H7 in fecal samples of commercial feedlot cattle in 20 feedlot pens between April and September 2000 was determined throughout the finishing feeding period prior to slaughter. Using immunomagnetic separation, E. coli O157:H7 was isolated from 636 of 4,790 (13%) fecal samples in this study, with highest prevalence earliest in the feeding period. No differences were observed in the fecal or water trough sediment prevalence values of E. coli O157:H7 in 10 pens supplied with chlorinated drinking water supplies compared with nonchlorinated water pens. Pulsed-field gel electrophoresis of XbaI-digested bacterial DNA of the 230 isolates obtained from eight of the pens revealed 56 unique restriction endonuclease digestion patterns (REDPs), although nearly 60% of the isolates belonged to a group of four closely related genetic subtypes that were present in each of the pens and throughout the sampling period. The other REDPs were typically transiently detected, often in single pens and on single sample dates, and in many cases were also closely related to the four predominant REDPs. The persistence and predominance of a few REDPs observed over the entire feeding period on this livestock operation highlight the importance of the farm environment, and not necessarily the incoming cattle, as a potential source or reservoir of E. coli O157:H7 on farms.  相似文献   

6.
Escherichia coli O157:H7 is considered among the most important recently emerged food-borne bacteria causing severe hemorrhagic diarrhea. Antibiotic treatment is not recommended as a prospective curative agent against this pathogen. Therefore, potency assessment of the local lytic phage isolates infecting E. coli O157:H7 as an alternate remedy to antibiotics was the principal concern of this study. Phage isolates against E. coli O157:H7 were checked by polymerase chain reaction for the presence of the virulence genes stx1 and stx2, and the safe phages were further screened in vitro for their capacity as biocontrol agents. Two bacteriophage strains, namely PAH6 and P2BH2, that had expressed potential antibacterial activity (P?< 0.05) in vitro were selected for in vivo testing in ligated rabbit ileal loop models. Both phage isolates were capable of decreasing fluid accumulation in rabbit ileal loops along with reducing bacterial growth (r = 0.992). Combined application of the phages was found most satisfactory, reducing seven?log cycles of bacterial growth. Consistent results in both in vivo and in vitro experiments demonstrate the applicability of bacteriophages as a rapid response tool against E.?coli O157:H7. To our knowledge, this is the first successful application of the rabbit ileal loop test for therapeutic evaluation of bacteriophages.  相似文献   

7.
Shiga toxin-converting bacteriophages are involved in the pathogenicity of some enteric bacteria, such as Escherichia coli O157:H7, but data on the occurrence and distribution of such phages as free particles in nature were not available. An experimental approach has been developed to detect the presence of the Shiga toxin 2 (Stx 2)-encoding bacteriophages in sewage. The Stx 2 gene was amplified by PCR from phages concentrated from 10-ml samples of sewage. Moreover, the phages carrying the Stx 2 gene were detected in supernatants from bacteriophage enrichment cultures by using an Stx 2-negative E. coli O157:H7 strain infected with phages purified from volumes of sewage as small as 0.02 ml. Additionally, the A subunit of Stx 2 was detected in the supernatants of the bacteriophage enrichment cultures, which also showed cytotoxic activity for Vero cells. By enrichment of phages concentrated from different volumes of sewage and applying the most-probable-number technique, it was estimated that the number of phages infectious for E. coli O157:H7 and carrying the Stx 2 gene was in the range of 1 to 10 per ml of sewage from two different origins. These values were approximately 1% of all phages infecting E. coli O157:H7.  相似文献   

8.
Prevalence, antibiotic susceptibility, and genetic diversity were determined for Escherichia coli O157:H7 isolated over 11 months from four beef cattle feedlots in southwest Kansas. From the fecal pat (17,050) and environmental (7,134) samples collected, 57 isolates of E. coli O157:H7 were identified by use of bacterial culture and latex agglutination (C/LA). PCR showed that 26 isolates were eaeA gene positive. Escherichia coli O157:H7 was identified in at least one of the four feedlots in 14 of the 16 collections by C/LA and in 9 of 16 collections by PCR, but consecutive positive collections at a single feedlot were rare. Overall prevalence in fecal pat samples was low (0.26% by C/LA, and 0.08% by PCR). No detectable differences in prevalence or antibiotic resistance were found between isolates collected from home pens and those from hospital pens, where antibiotic use is high. Resistant isolates were found for six of the eight antibiotics that could be used to treat E. coli infections in food animals, but few isolates were multidrug resistant. The high diversity of isolates as measured by random amplification of polymorphic DNA and other characteristics indicates that the majority of isolates were unique and did not persist at a feedlot, but probably originated from incoming cattle. The most surprising finding was the low frequency of virulence markers among E. coli isolates identified initially by C/LA as E. coli O157:H7. These results demonstrate that better ways of screening and confirming E. coli O157:H7 isolates are required for accurate determination of prevalence.  相似文献   

9.
The purpose of this study was to describe the prevalence and longitudinal distribution of Escherichia coli O157 in feedlot cattle and the feedlot environment. Pen floors, water tanks, other cattle in the feedlot, feed, and bird feces were sampled for 2 weeks prior to entry of the study cattle. Twelve pens of study cattle were sampled twice weekly. At each sample time cattle feces, water from tanks in each pen, bunk feed, feed components, bird feces, and houseflies were collected. Bunk feed samples were collected before and after cattle had access to the feed. Overall, 28% of cattle fecal samples, 3.9% of bird fecal samples, 25% of water samples, 3.4% of housefly samples, 1.25% of bunk feed before calf access, and 3.25% of bunk feed samples after cattle had access to the feed were positive for E. coli O157. Genetic analysis of E. coli O157 isolates was done using pulsed-field gel electrophoresis (PFGE). PFGE types identified in sampling of the feedlot prior to calf entry were different than the majority of types identified following calf entry. A single strain type predominated in the samples collected after entry of the cattle. It was first identified 5 days after entry of the first pen of cattle and was subsequently identified in all pens. Data support that the incoming cattle introduced a new strain that became the predominant strain in the feedlot.  相似文献   

10.
Escherichia coli O157:H7 is an endemic pathogen causing a variety of human diseases including mild diarrhea, hemorrhagic colitis, hemolytic-uremic syndrome, and thrombotic thrombocytopenic purpura. This study concerns the exploitation of bacteriophages as biocontrol agents to eliminate the pathogen E. coli O157:H7. Two distinct lytic phages (e11/2 and e4/1c) isolated against a human strain of E. coli O157:H7, a previously isolated lytic phage (pp01), and a cocktail of all three phages were evaluated for their ability to lyse the bacterium in vivo and in vitro. Phage e11/2, pp01, and the cocktail of all three virulent phages resulted in a 5-log-unit reduction of pathogen numbers in 1 h at 37 degrees C. However, bacteriophage-insensitive mutants (BIMs) emerged following the challenge. All tested BIMs had a growth rate which approximated that of the parental O157 strain, although many of these BIMs had a smaller, more coccoid cellular morphology. The frequency of BIM formation (10(-6) CFU) was similar for e11/2, pp01, and the phage cocktail, while BIMs insensitive to e4/1c occurred at the higher frequency (10(-4) CFU). In addition, BIMs commonly reverted to phage sensitivity within 50 generations. In an initial meat trial experiment, the phage cocktail completely eliminated E. coli O157:H7 from the beef meat surface in seven of nine cases. Given that the frequency of BIM formation is low (10(-6) CFU) for two of the phages, allied to the propensity of these mutants to revert to phage sensitivity, we expect that BIM formation should not hinder the use of these phages as biocontrol agents, particularly since low levels of the pathogen are typically encountered in the environment.  相似文献   

11.
AIMS: This study was conducted to evaluate the effect of supplementing barley- or corn-based diets with canola oil on faecal shedding of Escherichia coli O157:H7 by experimentally inoculated feedlot cattle. METHODS AND RESULTS: Four groups of yearling steers fed on barley- or corn-based feedlot diets containing 0% (BA; CO) or 6% canola oil (BA-O; CO-O) were inoculated with 10(10) CFU of a mixture of four nalidixic acid-resistant strains of E. coli O157:H7. The inoculated strains were tracked in oral (mouth swab) and environmental (water, water bowl interface, feed, faecal pat) samples by enrichment and immunomagnetic separation (IMS) for 12 weeks, and in rectally collected faecal samples for 23 weeks (enumeration by dilution plating for 12 weeks; detection by IMS for a further 11 weeks). Levels of E. coli O157:H7 shed in faecal samples over the course of the enumeration period were similar (P = 0.14) among treatments. Disappearance of the inoculated strains from faeces was more rapid (P = 0.009) with barley than with corn, but shedding levels at the end of the enumeration period were similar (P = 0.21) across grain types. Canola oil supplementation did not affect (P = 0.71) the rate of disappearance of E. coli O157:H7 from faeces. The numbers of steers culture positive for E. coli O157:H7 during the enumeration period were similar (P = 0.57) among treatments. During the 11-week detection period, however, more (P < 0.001) steers were E. coli O157:H7-positive in the BA group (15/64) than in BA-O (two of 64), CO (two of 56), or CO-O (one of 56). The organism was present in two of 48 water samples (both CO-O), one of 48 water bowl swabs (BA-O), four of 48 feed samples (two of 12 BA; two of 12 CO-O), 30 of 48 pen floor faecal pat samples, and 296 of 540 mouth swabs (81/144 BA, 80/144 BA-O, 74/126 CO and 61/126 CO-O). CONCLUSION: Supplementing corn or barley-based diets with canola oil did not affect shedding of E. coli O157:H7 by feedlot cattle. SIGNIFICANCE AND IMPACT OF THE STUDY: High-shedding individuals (i.e. 'super shedders') may be responsible for disseminating E. coli O157:H7 among penmates. Faeces on pen floors appears to be a more significant source of infection than are feed or drinking water.  相似文献   

12.
The relationship between endemic bacteriophages infecting E. coli O157:H7 (referred to as “phage”) and levels of shedding of E. coli O157:H7 by cattle was investigated in two commercial feedlots in southern Alberta, Canada. Between May and November 2007, 10 pens of cattle were monitored by collection of pooled fecal pats, water with sediment from troughs, manure slurry from the pen floor, and rectal fecal samples from individual animals (20 per pen) at two separate times. Bacteriophages infecting E. coli O157:H7 were detected more frequently (P < 0.001) after 18 to 20 h enrichment than by initial screening and were recovered in 239 of 855 samples (26.5% of 411 pooled fecal pats, 23.8% of 320 fecal grab samples, 21.8% of 87 water trough samples, and 94.6% of 37 pen floor slurry samples). Overall, prevalence of phage was highest (P < 0.001) in slurry. Recovery of phage from pooled fecal pats was highest (P < 0.05) in May. Overall recovery did not differ (P > 0.10) between fecal grab samples and pooled fecal pats. A higher prevalence of phage in fecal pats or water trough samples was associated (P < 0.01) with reduced prevalence of E. coli O157:H7 in rectal fecal samples. There was a weak but significant negative correlation between isolation of phage and E. coli O157:H7 in fecal grab samples (r = −0.11; P < 0.05). These data demonstrate that the prevalence of phage fluctuates in a manner similar to that described for E. coli O157:H7. Phage were more prevalent in manure slurry than other environmental sources. The likelihood of fecal shedding of E. coli O157:H7 was reduced if cattle in the pen harbored phage.Bacteriophages are the most abundant biological entities on earth. An estimated 1030 marine bacteriophages are harbored in the ocean, and they significantly influence microbial communities and function (27). As resistance is an increasing challenge in antimicrobial therapy, the antimicrobial nature of bacteriophages is being more intensively studied (13, 15). Bacteriophages naturally inhabit the mammalian gastrointestinal tract (1, 8), and Escherichia coli-infecting bacteriophages are commonly isolated from sewage, hospital wastewater, and fecal samples from humans and animals (3). Ruminants have been shown to shed up to 107 bacteriophage per gram of feces (6), and in humans multiple types of bacteriophage exhibiting activity against E. coli have been isolated from a single fecal sample (7).E. coli O157:H7 is an important zoonotic bacterium carried asymptomatically by cattle and readily isolated from manure, manure slurry, and drinking water in dairies and feedlots (11, 24, 30). Additionally, E. coli O157:H7 shedding by cattle has a seasonal pattern, peaking in the summer months (2, 25). Bacteriophage strains that infect E. coli O157:H7 have also been isolated from animal feces and have shown lytic activity against this bacterium in vivo and in vitro (5, 23, 28, 31). In recent studies, such phages were shown to be widely distributed in cattle and in feces on the pen floor within feedlots (4, 18). However, the relationships between the presence of E. coli O157:H7-infecting bacteriophage in cattle and their environment and the shedding of this bacterium by cattle are largely undefined. Consequently, the aims of the present study were (i) to determine the prevalence of endemic E. coli O157:H7-infecting bacteriophage (referred to as “phage”) in feedlots over a 7-month period and (ii) to compare the presence of phage to the occurrence of E. coli O157:H7 in cattle and their environment.  相似文献   

13.
Despite multiple control measures, Escherichia coli O157:H7 (STEC O157:H7) continues to be responsible for many food borne outbreaks in North America and elsewhere. Bacteriophage therapy may prove useful for controlling this pathogen in the host, their environment and food. Bacteriophage vB_EcoS_AKFV33 (AKFV33), a T5-like phage of Siphoviridae lysed common phage types of STEC O157:H7 and not non-O157 E. coli. Moreover, STEC O157:H7 isolated from the same feedlot pen from which the phage was obtained, were highly susceptible to AKFV33. Adsorption rate constant and burst size were estimated to be 9.31 × 10(-9) ml/min and 350 PFU/infected cell, respectively. The genome of AKVF33 was 108,853 bp (38.95% G+C), containing 160 open reading frames (ORFs), 22 tRNA genes and 32 strong promoters recognized by host RNA polymerase. Of 12 ORFs without homologues to T5-like phages, 7 predicted novel proteins while others exhibited low identity (<60%) to proteins in the National Centre for Biotechnology Information database. AKVF33 also lacked the L-shaped tail fiber protein typical of T5, but was predicted to have tail fibers comprised of 2 novel proteins with low identity (37-41%) to tail fibers of E. coli phage phiEco32 of Podoviridae, a putative side tail fiber protein of a prophage from E. coli IAI39 and a conserved domain protein of E. coli MS196-1. The receptor-binding tail protein (pb5) shared an overall identify of 29-72% to that of other T5-like phages, with no region coding for more than 6 amino acids in common. Proteomic analysis identified 4 structural proteins corresponding to the capsid, major tail, tail fiber and pore-forming tail tip (pb2). The genome of AKFV33 lacked regions coding for known virulence factors, integration-related proteins or antibiotic resistance determinants. Phage AKFV33 is a unique, highly lytic STEC O157:H7-specific T5-like phage that may have considerable potential as a pre- and post-harvest biocontrol agent.  相似文献   

14.
The objectives of this study were to identify endemic bacteriophages (phages) in the feedlot environment and determine relationships of these phages to Escherichia coli O157:H7 from cattle shedding high and low numbers of naturally occurring E. coli O157:H7. Angus crossbred steers were purchased from a southern Alberta (Canada) feedlot where cattle excreting ≥104 CFU · g−1 of E. coli O157:H7 in feces at a single time point were identified as supershedders (SS; n = 6), and cattle excreting <104 CFU · g−1 of feces were identified as low shedders (LS; n = 5). Fecal pats or fecal grabs were collected daily from individual cattle for 5 weeks. E. coli O157:H7 in feces was detected by immunomagnetic separation and enumerated by direct plating, and phages were isolated using short- and overnight-enrichment methods. The total prevalence of E. coli O157:H7 isolated from feces was 14.4% and did not differ between LS and SS (P = 0.972). The total prevalence of phages was higher in the LS group (20.9%) than in the SS group (8.3%; P = 0.01). Based on genome size estimated by pulsed-field gel electrophoresis and morphology determined by transmission electron microscopy, T4- and O1-like phages of Myoviridae and T1-like phage of Siphoviridae were isolated. Compared to T1- and O1-like phages, T4-like phages exhibited a broad host range and strong lytic capability when targeting E. coli O157:H7. Moreover, the T4-like phages were more frequently isolated from feces of LS than SS, suggesting that endemic phages may impact the shedding dynamics of E. coli O157:H7 in cattle.  相似文献   

15.
Four phages isolated from cattle and poultry feces were analyzed for their ability to lyse Salmonella serotypes and Escherichia coli O157:H7. The phage one-step growth curves, morphology, and genetic characteristics were determined. All phages showed a lytic effect on various Salmonella serotypes and E. coli O157:H7, which lysed at least 70% of the 234 strains tested. The phages had latent periods ranging from 10 to 15 min and generation times of 30 to 45 min, while burst size fluctuated between 154 and 426 PFU/cell. Phages morphology showed isometric and elongated heads and rigid contractile tails, consistent with morphology of the Myoviridae family. Phages' DNA dendrograms showed a distinctive RFLP when digested by HindIII and EcoRV, and SDS-PAGE profile showed distinctive proteins expression as well. In vitro phage challenge showed a total reduction of E. coli O157:H7, Salmonella Typhimurium and Saintpaul counts at 2 h, whereas for Salmonella Montevideo a reduction and retardation growth, at a multiplicity of infection (MOI) of 100, was observed; however, under a MOI of 10 000, no viable cells were detected after 4 h. The wide host ranges of these phages suggested they could be used for simultaneous biocontrol of some Salmonella serotypes and E. coli O157:H7.  相似文献   

16.
A previously characterized O157-specific lytic bacteriophage KH1 and a newly isolated phage designated SH1 were tested, alone or in combination, for reducing intestinal Escherichia coli O157:H7 in animals. Oral treatment with phage KH1 did not reduce the intestinal E. coli O157:H7 in sheep. Phage SH1 formed clear and relatively larger plaques on lawns of all 12 E. coli O157:H7 isolates tested and had a broader host range than phage KH1, lysing O55:H6 and 18 of 120 non-O157 E. coli isolates tested. In vitro, mucin or bovine mucus did not inhibit bacterial lysis by phage SH1 or KH1. A phage treatment protocol was optimized using a mouse model of E. coli O157:H7 intestinal carriage. Oral treatment with SH1 or a mixture of SH1 and KH1 at phage/bacterium ratios > or = 10(2) terminated the presence of fecal E. coli O157:H7 within 2 to 6 days after phage treatment. Untreated control mice remained culture positive for >10 days. To optimize bacterial carriage and phage delivery in cattle, E. coli O157:H7 was applied rectally to Holstein steers 7 days before the administration of 10(10) PFU SH1 and KH1. Phages were applied directly to the rectoanal junction mucosa at phage/bacterium ratios calculated to be > or = 10(2). In addition, phages were maintained at 10(6) PFU/ml in the drinking water of the phage treatment group. This phage therapy reduced the average number of E. coli O157:H7 CFU among phage-treated steers compared to control steers (P < 0.05); however, it did not eliminate the bacteria from the majority of steers.  相似文献   

17.
Identification of the sources and methods of transmission of Escherichia coli O157:H7 in feedlot cattle may facilitate the development of on-farm control measures for this important food-borne pathogen. The prevalence of E. coli O157:H7 in fecal samples of commercial feedlot cattle in 20 feedlot pens between April and September 2000 was determined throughout the finishing feeding period prior to slaughter. Using immunomagnetic separation, E. coli O157:H7 was isolated from 636 of 4,790 (13%) fecal samples in this study, with highest prevalence earliest in the feeding period. No differences were observed in the fecal or water trough sediment prevalence values of E. coli O157:H7 in 10 pens supplied with chlorinated drinking water supplies compared with nonchlorinated water pens. Pulsed-field gel electrophoresis of XbaI-digested bacterial DNA of the 230 isolates obtained from eight of the pens revealed 56 unique restriction endonuclease digestion patterns (REDPs), although nearly 60% of the isolates belonged to a group of four closely related genetic subtypes that were present in each of the pens and throughout the sampling period. The other REDPs were typically transiently detected, often in single pens and on single sample dates, and in many cases were also closely related to the four predominant REDPs. The persistence and predominance of a few REDPs observed over the entire feeding period on this livestock operation highlight the importance of the farm environment, and not necessarily the incoming cattle, as a potential source or reservoir of E. coli O157:H7 on farms.  相似文献   

18.
The effects of the β-agonist ractopamine, recently approved for use in feedlot cattle to improve carcass quality and performance, on fecal shedding Escherichia coli O157:H7 and Salmonella in feedlot cattle was examined. In the first study, 20 feedlot steers and heifers were randomly assigned to receive ractopamine or no ractopamine (control) by way of oral bolus for 28 days. Fecal samples were collected daily, and shedding of E. coli O157:H7 determined. When examined during the entire 28-day experimental period, ractopamine decreased (P = 0.0006) the percentage of cattle shedding E. coli O157:H7 (58% vs. 42% for control and ractopamine treatments, respectively). A second study was conducted in a commercial feedlot facility in the southwestern United States. Eighteen pens of cross-bred beef heifers (approximately 100 head/pen and 9 pens/treatment) were randomly assigned to receive either 0 (control) or 200 mg ractopamine/head·d–1. Fresh fecal samples (30/pen) were collected off the pen floor before ractopamine supplementation and again after approximately 28 days of ractopamine supplementation (within a few days of slaughter); the samples were cultured for E. coli O157:H7 and Salmonella. The percentage of animals shedding E. coli O157:H7 was decreased when data were pooled across replicates (P = 0.05) in ractopamine-treated cattle compared with controls. The percentage of animals shedding Salmonella tended to be higher (P = 0.08) with the ractopamine treatment when data were pooled across replicates. Although further research is required to confirm these results, the potential food safety implications of this research are intriguing. Mention of trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the United States Drug Administration and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

19.
A previously isolated T-even-type PP01 bacteriophage was used to detect its host cell, Escherichia coli O157:H7. The phage small outer capsid (SOC) protein was used as a platform to present a marker protein, green fluorescent protein (GFP), on the phage capsid. The DNA fragment around soc was amplified by PCR and sequenced. The gene alignment of soc and its upstream region was g56-soc.2-soc.1-soc, which is the same as that for T2 phage. GFP was introduced into the C- and N-terminal regions of SOC to produce recombinant phages PP01-GFP/SOC and PP01-SOC/GFP, respectively. Fusion of GFP to SOC did not change the host range of PP01. On the contrary, the binding affinity of the recombinant phages to the host cell increased. However, the stability of the recombinant phages in alkaline solution decreased. Adsorption of the GFP-labeled PP01 phages to the E. coli cell surface enabled visualization of cells under a fluorescence microscope. GFP-labeled PP01 phage was not only adsorbed on culturable E. coli cells but also on viable but nonculturable or pasteurized cells. The coexistence of insensitive E. coli K-12 (W3110) cells did not influence the specificity and affinity of GFP-labeled PP01 adsorption on E. coli O157:H7. After a 10-min incubation with GFP-labeled PP01 phage at a multiplicity of infection of 1,000 at 4 degrees C, E. coli O157:H7 cells could be visualized by fluorescence microscopy. The GFP-labeled PP01 phage could be a rapid and sensitive tool for E. coli O157:H7 detection.  相似文献   

20.
Feedlot cattle were observed for fecal excretion of and rectoanal junction (RAJ) colonization with Escherichia coli O157:H7 to identify potential “supershedders.” RAJ colonization and fecal excretion prevalences were correlated, and E. coli O157:H7 prevalences and counts were significantly greater for RAJ samples. Based on a comparison of RAJ and fecal ratios of E. coli O157:H7/E. coli counts, the RAJ appears to be preferentially colonized by the O157:H7 serotype. Five supershedders were identified based on persistent colonization with high concentrations of E. coli O157:H7. Cattle copenned with supershedders had significantly greater mean pen E. coli O157:H7 RAJ and fecal prevalences than noncopenned cattle. Cumulative fecal E. coli O157:H7 excretion was also significantly higher for pens housing a supershedder. E. coli O157:H7/E. coli count ratios were higher for supershedders than for other cattle, indicating greater proportional colonization. Pulsed-field gel electrophoresis analysis demonstrated that isolates from supershedders and copenned cattle were highly related. Cattle that remained negative for E. coli O157:H7 throughout sampling were five times more likely to have been in a pen that did not house a supershedder. The data from this study support an association between levels of fecal excretion of E. coli O157:H7 and RAJ colonization in pens of feedlot cattle and suggest that the presence of supershedders influences group-level excretion parameters. An improved understanding of individual and population transmission dynamics of E. coli O157:H7 can be used to develop preslaughter- and slaughter-level interventions that reduce contamination of the food chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号