首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myocardial remodelling is important pathological basis of HF, mitochondrial oxidative stress is a promoter to myocardial hypertrophy, fibrosis and apoptosis. ECH is the major active component of a traditional Chinese medicine Cistanches Herba, plenty of studies indicate it possesses a strong antioxidant capacity in nerve cells and tumour, it inhibits mitochondrial oxidative stress, protects mitochondrial function, but the specific mechanism is unclear. SIRT1/FOXO3a/MnSOD is an important antioxidant axis, study finds that ECH binds covalently to SIRT1 as a ligand and up-regulates the expression of SIRT1 in brain cells. We hypothesizes that ECH may reverse myocardial remodelling and improve heart function of HF via regulating SIRT1/FOXO3a/MnSOD signalling axis and inhibit mitochondrial oxidative stress in cardiomyocytes. Here, we firstly induce cellular model of oxidative stress by ISO with AC-16 cells and pre-treat with ECH, the level of mitochondrial ROS, mtDNA oxidative injury, MMP, carbonylated protein, lipid peroxidation, intracellular ROS and apoptosis are detected, confirm the effect of ECH in mitochondrial oxidative stress and function in vitro. Then, we establish a HF rat model induced by ISO and pre-treat with ECH. Indexes of heart function, myocardial remodelling, mitochondrial oxidative stress and function, expression of SIRT1/FOXO3a/MnSOD signalling axis are measured, the data indicate that ECH improves heart function, inhibits myocardial hypertrophy, fibrosis and apoptosis, increases the expression of SIRT1/FOXO3a/MnSOD signalling axis, reduces the mitochondrial oxidative damages, protects mitochondrial function. We conclude that ECH reverses myocardial remodelling and improves cardiac function via up-regulating SIRT1/FOXO3a/MnSOD axis and inhibiting mitochondrial oxidative stress in HF rats.  相似文献   

2.
Oxidative stress plays a critical role in the progression of pathological cardiac hypertrophy and heart failure. Because crocetin represses oxidative stress in vitro and in vivo , we have suggested that crocetin would repress cardiac hypertrophy by targeting oxidative stress-dependent signalling. We tested this hypothesis using primary cultured cardiac myocytes and fibroblasts and one well-established animal model of cardiac hypertrophy. The results showed that crocetin (1–10 μM) dose-dependently blocked cardiac hypertrophy induced by angiogensin II (Ang II; 1 μM) in vitro . Our data further revealed that crocetin (50 mg/kg/day) both prevented and reversed cardiac hypertrophy induced by aortic banding (AB), as assessed by heart weight/body weight and lung weight/body weight ratios, echocardio-graphic parameters and gene expression of hypertrophic markers. The inhibitory effect of crocetin on cardiac hypertrophy is mediated by blocking the reactive oxygen species (ROS)-dependent mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase-1/2 (MEK/ERK1/2) pathway and GATA binding protein 4 (GATA-4) activation. Further investigation demonstrated that crocetin inhibited inflammation by blocking nuclear factor kappa B (NF-κB) signalling and attenuated fibrosis and collagen synthesis by abrogating MEK-ERK1/2 signalling. Overall, our results indicate that crocetin, which is a potentially safe and inexpensive therapy for clinical use, has protective potential in targeting cardiac hypertrophy and fibrosis by suppression of ROS-dependent signalling pathways.  相似文献   

3.
End-stage hypertensive heart disease is an increasing cause of cardiac mortality. Therefore, the current study focused on the cardiac remodelling from hypertrophy to fibrosis in old-aged spontaneously hypertensive rats (SHRs), and explored the therapeutic effects of Rosuvastatin and its possible mechanism(s) of action. Spontaneously hypertensive rats at age 52 weeks were randomly divided into three groups, the first two to receive Rosuvastatin at a dose of 20 mg/kg/day and 40 mg/kg/day, respectively, and the third to receive placebo, which was to be compared with Wistar-Kyoto as controls. After 2-month treatment, SBP, heart to body weight ratio (HW/BW%) and echocardiographic features were evaluated, followed by haematoxylin and eosin and Masson trichrome staining in conjunction with qPCR of foetal gene expressions. Transferase-mediated dUTP nick-end labelling assay and immunofluorescent labelling for active caspase-3 were used to detect the apoptotic cardiomyocytes. Signaling pathways involved were examined by using western blot. Old-aged SHR developed end-stage hypertensive heart disease characterized by significant enhancement of HW/BW%, LVAWd and LVPWd, and decreased LVEF and LVFS, accompanied by cardiomyocytes enlargement and fibrosis along with activation of foetal gene programme. Cardiac apoptosis increased significantly during the transition process. Rosuvastatin reduced hypertrophy significantly via AT(1) Receptor-PKCβ2/α-ERK-c-fos pathway; protected myocardium against apoptosis via Akt-FOXO1, Bcl-2 family and survivin pathways and consequently suppressed the caspase-3 activity. The present study revealed that old-aged SHRs developed cardiac remodelling from hypertrophy to fibrosis via cardiac apoptosis during the end stage of hypertensive heart disease. These pathological changes might be the consequence of activation of AT(1) Receptor-PKCβ2/α-ERK-c-fos and AKT-FOXO1/Bcl-2/survivin/Caspase3 signaling. Rosuvastatin effectively attenuated the structural changes by reversing the signaling transductions involved.  相似文献   

4.
Increased oxidative stress has been associated with the pathogenesis of chronic cardiac hypertrophy and heart failure. Since allicin suppresses oxidative stress in vitro and in vivo, we hypothesized that allicin would inhibit cardiac hypertrophy through blocking oxidative stress-dependent signaling. We examined this hypothesis using primary cultured cardiac myocytes and fibroblasts and one well-established animal model of cardiac hypertrophy. Our results showed that allicin markedly inhibited hypertrophic responses induced by Ang II or pressure overload. The increased reactive oxygen species (ROS) generation and NADPH oxidase activity were significantly suppressed by allicin. Our further investigation revealed this inhibitory effect on cardiac hypertrophy was mediated by blocking the activation of ROS-dependent ERK1/2, JNK1/2 and AKT signaling pathways. Additional experiments demonstrated allicin abrogated inflammation and fibrosis by blocking the activation of nuclear factor-κB and Smad 2/3 signaling, respectively. The combination of these effects resulted in preserved cardiac function in response to cardiac stimuli. Consequently, these findings indicated that allicin protected cardiac function and prevented the development of cardiac hypertrophy through ROS-dependent mechanism involving multiple intracellular signaling.  相似文献   

5.
To explore the effects of celecoxib on pressure overload‐induced cardiac hypertrophy (CH), cardiac dysfunction and explore the possible protective mechanisms. We surgically created abdominal aortic constrictions (AAC) in rats to induce CH. Rats with CH symptoms at 4 weeks after surgery were treated with celecoxib [2 mg/100 g body‐weight(BW)] daily for either 2 or 4 weeks. Survival rate, blood pressure and cardiac function were evaluated after celecoxib treatment. Animals were killed, and cardiac tissue was examined for morphological changes, cardiomyocyte apoptosis, fibrosis, inflammation and oxidative stress. Four weeks after AAC, rats had significantly higher systolic, diastolic and mean blood pressure, greater heart weight and enlarged cardiomyocytes, which were associated with cardiac dysfunction. Thus, the CH model was successfully established. Two weeks later, animals had impaired cardiac function and histopathological abnormalities including enlarged cardiomyocytes and cardiac fibrosis, which were exacerbated 2 weeks later. However, these pathological changes were remarkably prevented by the treatment of celecoxib, independent of preventing hypertension. Mechanistic studies revealed that celecoxib‐induced cardiac protection against CH and cardiac dysfunction was due to inhibition of apoptosis via the murine double mimute 2/P53 pathway, inhibition of inflammation via the AKT/mTOR/NF‐κB pathway and inhibition of oxidative stress via increases in nuclear factor E2‐related factor‐2‐mediated gene expression of multiple antioxidants. Celecoxib suppresses pressure overload‐induced CH by reducing apoptosis, inflammation and oxidative stress.  相似文献   

6.
Cardiac remodeling is a key determinant in the clinical course and outcome of heart failure and characterized by cardiac hypertrophy, fibrosis, cardiomyocyte apoptosis and inflammation. The anti-inflammatory, anti-apoptotic and anti-fibrotic effects of paeoniflorin have been identified in various types of tissue and cells. However, the role of paeoniflorin in cardiac remodeling remains unclear. We performed aortic banding (AB) in mice to induce a cardiac remodeling model in response to pressure overload. Paeoniflorin (20 mg/kg) was administered by daily intraperitoneal (i.p.) injection. Paeoniflorin treatment promoted the survival rate and improved cardiac function of mice at 8 weeks post surgery. AB-induced cardiac hypertrophy, as assessed by heart weight, gross heart, HE and WGA staining, cross-sectional area of cardiomyocyte and mRNA expresssion of hypertrophic makers, was attenuated by paeoniflorin. Paeoniflorin also inhibited collagen deposition, expression of TGFβ, CTGF, collagen Iα and collagen IIIα, and phosphorylation of Smad2 and Smad3 in the heart exposed to pressure overload. Cardiomyocyte apoptosis and induction of Bax and cleaved caspase3 in response to AB were suppressed by paeoniflorin. Furthermore, paeoniflorin decreased the quantity of CD68+ cells, protein levels of TNF-α and IL-1β, and phosphorylation of IκBα and NFκB-p65 in the heart after AB. In conclusion, paeoniflorin attenuated cardiac hypertrophy, fibrosis, apoptosis and inflammation, and improved left ventricular function in pressure overloaded mice. The cardioprotective effect of paeoniflorin is associated with the inhibition of TGFβ/Smads and NF-κB pathways.  相似文献   

7.
Breviscapine is a mixture of flavonoid glycosides extracted from the Chinese herbs. Previous studies have shown that breviscapine possesses comprehensive pharmacological functions. However, very little is known about whether breviscapine have protective role on cardiac hypertrophy. The aim of the present study was to determine whether breviscapine attenuates cardiac hypertrophy induced by angiotensin II (Ang II) in cultured neonatal rat cardiac myocytes in vitro and pressure‐overload‐induced cardiac hypertrophy in mice in vivo. Our data demonstrated that breviscapine (2.5–15 µM) dose‐dependently blocked cardiac hypertrophy induced by Ang II (1 µM) in vitro. The results further revealed that breviscapine (50 mg/kg/day) prevented cardiac hypertrophy induced by aortic banding as assessed by heart weight/body weight and lung weight/body weight ratios, echocardiographic parameters, and gene expression of hypertrophic markers. The inhibitory effect of breviscapine on cardiac hypertrophy is mediated by disrupting PKC‐α‐dependent ERK1/2 and PI3K/AKT signaling. Further studies showed that breviscapine inhibited inflammation by blocking NF‐κB signaling, and attenuated fibrosis and collagen synthesis through abrogating Smad2/3 signaling. Therefore, these findings indicate that breviscapine, which is a potentially safe and inexpensive therapy for clinical use, has protective potential in targeting cardiac hypertrophy and fibrosis through suppression of PKC‐α‐dependent signaling. J. Cell. Biochem. 109: 1158–1171, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Ni L  Zhou C  Duan Q  Lv J  Fu X  Xia Y  Wang DW 《PloS one》2011,6(11):e27294
BACKGROUND: Long-term β-adrenergic receptor (β-AR) blockade reduces mortality in patients with heart failure. Chronic sympathetic hyperactivity in heart failure causes sustained β-AR activation, and this can deplete Ca(2+) in endoplasmic reticulum (ER) leading to ER stress and subsequent apoptosis. We tested the effect of β-AR blockers on ER stress pathway in experimental model of heart failure. METHODS AND DISCUSSIONS: ER chaperones were markedly increased in failing hearts of patients with end-stage heart failure. In Sprague-Dawley rats, cardiac hypertrophy and heart failure was induced by abdominal aortic constriction or isoproterenol subcutaneous injection. Oral β-AR blockers treatment was performed in therapy groups. Cardiac remodeling and left ventricular function were analyzed in rats failing hearts. After 4 or 8 weeks of banding, rats developed cardiac hypertrophy and failure. Cardiac expression of ER chaperones was significantly increased. Similar to the findings above, sustained isoproterenol infusion for 2 weeks induced cardiac hypertrophy and failure with increased ER chaperones and apoptosis in hearts. β-AR blockers treatment markedly attenuated these pathological changes and reduced ER stress and apoptosis in failing hearts. On the other hand, β-AR agonist isoproterenol induced ER stress and apoptosis in cultured cardiomyocytes. β-AR blockers largely prevented ER stress and protected myocytes against apoptosis. And β-AR blockade significantly suppressed the overactivation of CaMKII in isoproterenol-stimulated cardiomyocytes and failing hearts in rats. CONCLUSIONS: Our results demonstrated that ER stress occurred in failing hearts and this could be reversed by β-AR blockade. Alleviation of ER stress may be an important mechanism underlying the therapeutic effect of β-AR blockers on heart failure.  相似文献   

9.
Cardiac hypertrophy is characterized by a shift in metabolic substrate utilization. Therefore, the regulation of ketone body uptake and metabolism may have beneficial effects on heart injuries that induce cardiac remodelling. In this study, we investigated whether icariside II (ICS II) protects against cardiac hypertrophy in mice and cardiomyocytes. To create cardiac hypertrophy animal and cell models, mice were subjected to transverse aortic constriction (TAC), and embryonic rat cardiomyocytes (H9C2) were stimulated with angiotensin II, a neurohumoral stressor. Both the in vivo and in vitro results suggest that ICS II treatment ameliorated pressure overload–induced cardiac hypertrophy and preserved heart function. In addition, apoptosis and oxidative stress were reduced in the presence of ICS II. Moreover, ICS II inhibited excess autophagy in TAC-induced hearts and angiotensin II–stimulated cardiomyocytes. Mechanistically, we found that ICS II administration regulated SIRT3 expression in cardiac remodelling. SIRT3 activation increased ketone body transportation and utilization. Collectively, our data show that ICS II attenuated cardiac hypertrophy by modulating ketone body and fatty acid metabolism, and that this was likely due to the activation of the SIRT3-AMPK pathway. ICS II treatment may provide a new therapeutic strategy for improving myocardial metabolism in cardiac hypertrophy and heart failure.  相似文献   

10.
Evidence has shown that endoplasmic reticulum stress (ERS) is associated with the pathogenesis of cardiac hypertrophy. The aim of this study was to investigate whether direct alleviation of ER stress by 4-phenylbutyric acid (PBA), a known chemical chaperone drug, could attenuate pressure-overload cardiac hypertrophy in mice. The effects of orally administered PBA (100mg/kg body weight daily for a week) were examined using mice undergoing transverse aortic constriction (TAC-mice), an animal model to produce pressure overload. TAC application for 1 week led to a 1.8-fold increase in the ratio of the heart weight over body weight (HW/BW) and up-regulation of the hypertrophy markers ANF and BNF accompanied by up-regulation of ERS markers (GRP78, p-PERK, and p-elF2α). The oral administration of PBA to the TAC-mice reduced hypertrophy (19%) and severely downregulated the fibrosis-related genes (transforming growth factor-β1, phospho-smad2, and pro-collagen isoforms). We conclude that ERS is induced as a consequence of remodeling during pathological hypertrophy and that PBA may help to relieve ERS and play a protective role against cardiac hypertrophy and possibly heart failure. We suggest PBA as a novel therapeutic agent for cardiac hypertrophy and fibrosis.  相似文献   

11.
Regulation of cardiac myocyte apoptosis by the GATA-4 transcription factor   总被引:8,自引:0,他引:8  
Suzuki YJ  Evans T 《Life sciences》2004,74(15):1829-1838
  相似文献   

12.
Hypertensive cardiac remodelling is a common cause of heart failure. However, the molecular mechanisms regulating cardiac remodelling remain unclear. Pyruvate kinase isozyme type M2 (PKM2) is a key regulator of the processes of glycolysis and oxidative phosphorylation, but the roles in cardiac remodelling remain unknown. In the present study, we found that PKM2 was enhanced in angiotensin II (Ang II)-treated cardiac fibroblasts and hypertensive mouse hearts. Suppression of PKM2 by shikonin alleviated cardiomyocyte hypertrophy and fibrosis in Ang-II-induced cardiac remodelling in vivo. Furthermore, inhibition of PKM2 markedly attenuated the function of cardiac fibroblasts including proliferation, migration and collagen synthesis in vitro. Mechanistically, suppression of PKM2 inhibited cardiac remodelling by suppressing TGF-β/Smad2/3, Jak2/Stat3 signalling pathways and oxidative stress. Together, this study suggests that PKM2 is an aggravator in Ang-II-mediated cardiac remodelling. The negative modulation of PKM2 may provide a promising therapeutic approach for hypertensive cardiac remodelling.  相似文献   

13.
Cardiac myocyte apoptosis underlies the pathophysiology of cardiomyopathy, and plays a critical role in the transition from myocardial hypertrophy to heart failure. Angiotensin II (Ang II) induces cardiac myocyte apoptosis and hypertrophy which contribute to heart failure possibly through enhanced oxidative stress; however, the mechanisms underlying the activation of both pathways and their interactions remain unclear. In the present study, we have investigated whether overexpression of the antioxidant protein heme oxygenase-1 (HO-1) protects against apoptosis and hypertrophy in cultured rat cardiac myocytes treated with Ang II. Our findings demonstrate that Ang II (100 nM, 24 h) alone upregulates HO-1 expression and induces both myocyte hypertrophy and apoptosis, assessed by measuring terminal deoxynucleotidyltransferase dUTP nick-end labelling (TUNEL) staining, caspase-3 activity and mitochondrial membrane potential. Ang II elicited apoptosis was augmented in the presence of tin protoporphyrin, an inhibitor of HO activity, while HO-1 gene transfer to myocytes attenuated Ang II-mediated apoptosis but not hypertrophy. Adenoviral overexpression of HO-1 was accompanied by a significant increase in Ang II induced phosphorylation of Akt, however, Ang II-mediated p38 mitogen activated protein kinase (MAPK) phosphorylation was attenuated. Inhibition of phosphotidylinositol-3-kinase enhanced myocyte apoptosis elicited by Ang II, however, p38MAPK inhibition had no effect, suggesting that overexpression of HO-1 protects myocytes via augmented Akt activation and not through modulation of p38MAPK activation. Our findings identify the signalling pathways by which HO-1 gene transfer protects against apoptosis and suggest that overexpression of HO-1 in cardiomyopathies may delay the transition from myocyte hypertrophy to heart failure.  相似文献   

14.
The aim of the study was to assess the relationships between oxidative stress, cardiac remodelling and fibrosis on an experimental model of heart failure with adrenergic stimulation. Large myocardial infarction (approximately 50% of the left ventricle myocardium) was obtained by ligation of the left coronary artery of normotensive male Wistar rats. Sham animals were submitted to left thoracotomy without coronary ligation. In order to perform cardiac stimulation by catecholamines, mini-osmotic pumps were implanted in animals 10 weeks after surgery to deliver noradrenalin for a 2-week period. At the end of this period, the following investigations were performed: haemodynamics, morphometry, fibrosis quantification, plasma and tissue catecholamine assay and oxidative stress status. Coronary ligation induced dilatation of left ventricle with compensatory hypertrophy of the right ventricle and of the remaining left ventricle myocardium. This remodelling process was associated in non-infarcted myocardium with increased collagen infiltration and increased oxidative stress. Ten weeks after surgery, the chronic administration of noradrenalin for 2 weeks did not increase oxidative stress. Noradrenalin, however, induced inotropic stimulation and myocardial hypertrophy, but to a lesser extent in infarcted rats compared to sham rats. Our results suggest that noradrenalin infusion to levels in excess of those seen post-infarction is associated with fibrosis and oxidative stress. Moreover, noradrenalin in infarcted animals caused additional fibrosis without further increasing oxidative stress. The mechanism of catecholamine-induced fibrosis may thus involve different processes such as ischaemia, increased mechanical stress, cytokines and neurohormones.  相似文献   

15.
During cardiac remodelling, the heart generates higher levels of reactive species; yet an intermediate 'compensatory' stage of hypertrophy is associated with a greater ability to withstand oxidative stress. The mechanisms underlying this protected myocardial phenotype are poorly understood. We examined how a cellular model of hypertrophy deals with electrophilic insults, such as would occur upon ischaemia or in the failing heart. For this, we measured energetics in control and PE (phenylephrine)-treated NRCMs (neonatal rat cardiomyocytes) under basal conditions and when stressed with HNE (4-hydroxynonenal). PE treatment caused hypertrophy as indicated by augmented atrial natriuretic peptide and increased cellular protein content. Hypertrophied myocytes demonstrated a 2.5-fold increase in ATP-linked oxygen consumption and a robust augmentation of oligomycin-stimulated glycolytic flux and lactate production. Hypertrophied myocytes displayed a protected phenotype that was resistant to HNE-induced cell death and a unique bioenergetic response characterized by a delayed and abrogated rate of oxygen consumption and a 2-fold increase in glycolysis upon HNE exposure. This augmentation of glycolytic flux was not due to increased glucose uptake, suggesting that electrophile stress results in utilization of intracellular glycogen stores to support the increased energy demand. Hypertrophied myocytes also had an increased propensity to oxidize HNE to 4-hydroxynonenoic acid and sustained less protein damage due to acute HNE insults. Inhibition of aldehyde dehydrogenase resulted in bioenergetic collapse when myocytes were challenged with HNE. The integration of electrophile metabolism with glycolytic and mitochondrial energy production appears to be important for maintaining myocyte homoeostasis under conditions of increased oxidative stress.  相似文献   

16.
Trimethylamine N-oxide (TMAO) is closely related to cardiovascular diseases, particularly heart failure (HF). Recent studies shows that 3,3-dimethyl-1-butanol (DMB) can reduce plasma TMAO levels. However, the role of DMB in overload-induced HF is not well understood. In this research study, we explored the effects and the underlying mechanisms of DMB in overload-induced HF. Aortic banding (AB) surgery was performed in C57BL6/J mice to induce HF, and a subset group of mice underwent a sham operation. After surgery, the mice were fed with a normal diet and given water supplemented with or without 1% DMB for 6 weeks. Cardiac function, plasma TMAO level, cardiac hypertrophy and fibrosis, expression of inflammatory, electrophysiological studies and signaling pathway were analyzed at the sixth week after AB surgery. DMB reduced TMAO levels in overload-induced HF mice. Adverse cardiac structural remodeling, such as cardiac hypertrophy, fibrosis and inflammation, was elevated in overload-induced HF mice. Susceptibility to ventricular arrhythmia also significantly increased in overload-induced HF mice. However, these changes were prevented by DMB treatment. DMB attenuated all of these changes by reducing plasma TMAO levels, hence negatively inhibiting the p65 NF-κB signaling pathway and TGF-β1/Smad3 signaling pathway. DMB plays an important role in attenuating the development of cardiac structural remodeling and electrical remodeling in overload-induced HF mice. This may be attributed to the p65 NF-κB signaling pathway and TGF-β1/Smad3 signaling pathway inhibition.  相似文献   

17.
CTRP9 has been reported to regulate lipid metabolism and exert cardioprotective effects, yet its role in high‐fat diet (HFD)‐induced cardiac lipotoxicity and the underlying mechanisms remain unclear. In the current study, we established HFD‐induced obesity model in wild‐type (WT) or CTRP9 knockout (CTRP9‐KO) mice and palmitate‐induced lipotoxicity model in neonatal rat cardiac myocytes (NRCMs) to investigate the effects of CTRP9 on cardiac lipotoxicity. Our results demonstrated that the HFD‐fed CTRP9‐KO mice accentuated cardiac hypertrophy, fibrosis, endoplasmic reticulum (ER) stress‐initiated apoptosis and oxidative stress compared with the HFD‐fed WT mice. In vitro, CTRP9 treatment markedly alleviated palmitate‐induced oxidative stress and ER stress‐induced apoptosis in NRCMs in a dose‐dependent manner. Phosphorylated AMPK at Thr172 was reduced, and phosphorylated mammalian target of rapamycin (mTOR) was strengthened in the heart of the HFD‐fed CTRP9‐KO mice compared with the HFD‐fed control mice. In vitro, AMPK inhibitor compound C significantly abolished the effects of CTRP9 on the inhibition of the apoptotic pathway in palmitate‐treated NRCMs. In a further mechanistic study, CTRP9 enhanced expression of phosphorylated LKB1 at Ser428 and promoted LKB1 cytoplasmic localization. Besides, silencing of LKB1 gene by lentivirus significantly prohibited activation of AMPK by CTRP9 and partially eliminated the protective effect of CTRP9 on the cardiac lipotoxicity. These results indicate that CTRP9 exerted anti‐myocardial lipotoxicity properties and inhibited cardiac hypertrophy probably through the LKB1/AMPK signalling pathway.  相似文献   

18.
Oxidative stress has been implicated in cardiac remodeling (cardiac fibrosis and hypertrophy), which impairs cardiac function and metabolism; therefore, it is anticipated antioxidative compounds will have protective properties against cardiac remodeling. Luteolin (3’,4’,5,7-tetrahydroxyflavone), a widely distributed flavonoid found in many herbal extracts including celery, green pepper, perilla leaves and seeds, and chamomile, is a known to be a potent antioxidant and was previously demonstrated to exert an antifibrotic effect in the lungs and the liver. In this study, we clearly demonstrate that oral pretreatment with the higher-luteolin diet (0.035% (wt/wt)) protected against cardiac fibrosis and hypertrophy as well as a hyperoxidative state in Ang II-infused rats. In cardiac tissue, increased gene expression levels of TGFβ1, CTGF, Nox2, Nox4, ANP, and BNP induced by Ang II were restored by oral pretreatment of this high-luteolin diet. In cultured rat cardiac fibroblasts, H2O2-induced TGFβ1 expression and the phosphorylation of JNK were suppressed by luteolin pretreatment. In conclusion, food-derived luteolin has protective actions against Ang II-induced cardiac remodeling, which could be mediated through attenuation of oxidative stress.  相似文献   

19.
Cardiac fibrosis and myocyte hypertrophy are hallmarks of the cardiac remodelling process in cardiomyopathies such as heart failure (HF). Dyslipidemia or dysregulation of lipids contribute to HF. The dysregulation of high density lipoproteins (HDL) could lead to altered levels of other lipid metabolites that are bound to it such as sphingosine-1- phosphate (S1P). Recently, it has been shown that S1P and its analogue dihydrosphingosine-1-phosphate (dhS1P) are bound to HDL in plasma. The effects of dhS1P on cardiac cells have been obscure. In this study, we show that extracellular dhS1P is able to increase collagen synthesis in neonatal rat cardiac fibroblasts (NCFs) and cause hypertrophy of neonatal cardiac myocytes (NCMs). The janus kinase/signal transducer and activator (JAK/STAT) signalling pathway was involved in the increased collagen synthesis by dhS1P, through sustained increase of tissue inhibitor of matrix metalloproteinase 1 (TIMP1). Extracellular dhS1P increased phosphorylation levels of STAT1 and STAT3 proteins, also caused an early increase in gene expression of transforming growth factor-β (TGFβ), and sustained increase in TIMP1. Inhibition of JAKs led to inhibition of TIMP1 and TGFβ gene and protein expression. We also show that dhS1P is able to cause NCM hypertrophy through S1P-receptor-1 (S1PR1) signalling which is opposite to that of its analogue, S1P. Taken together, our results show that dhS1P increases collagen synthesis in cardiac fibroblasts causing fibrosis through dhS1P-JAK/STAT-TIMP1 signalling.  相似文献   

20.
Hepatocyte growth factor (HGF) has been proposed as an endogenous cardioprotective agent against oxidative stress. The mechanism of HGF action in the heart, however, has not yet been elucidated. The present study demonstrates that HGF protects adult cardiac myocytes against oxidative stress-induced apoptosis. HGF, at the concentrations which can be detected in the plasma of humans subsequent to myocardial infarction, effectively attenuated death of isolated adult rat cardiac myocytes and cultured HL-1 cardiac muscle cells induced by apoptosis-inducing oxidative stress stimuli such as daunorubicin, serum deprivation, and hydrogen peroxide. We identified expression of c-Met HGF receptor in adult cardiac myocytes, which can be rapidly tyrosine phosphorylated in response to HGF treatment. HGF also activated MEK, p44/42 MAPK, and p90RSK. To determine if MEK-MAPK pathway may be involved in the mechanism of HGF-mediated cardiac myocyte protection, effects of a specific MEK inhibitor, PD98059, were studied. Pretreatment of cells with PD98059 partially blocked HGF signaling for protection against hydrogen peroxide-induced cell death. Thus, HGF protects cardiac myocytes against oxidative stress, in part, via activating MEK-MAPK pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号