首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The C-terminal region of focal adhesion kinase (FAK) consists of a right-turn, elongated, four-helix bundle termed the focal adhesion targeting (FAT) domain. The structure of this domain is maintained by hydrophobic interactions, and this domain is also the proposed binding site for the focal adhesion protein paxillin. Paxillin contains five well-conserved LD motifs, which have been implicated in the binding of many focal adhesion proteins. In this study we determined that LD4 binds specifically to only a single site between the H2 and H3 helices of the FAT domain and that the C-terminal end of LD4 is oriented toward the H2-H3 loop. Comparisons of chemical-shift perturbations in NMR spectra of the FAT domain in complex with the binding region of paxillin and the FAT domain bound to both the LD2 and LD4 motifs allowed us to construct a model of FAK-paxillin binding and suggest a possible mechanism of focal adhesion disassembly.  相似文献   

2.
Focal adhesion kinase (FAK) is a tyrosine kinase found in focal adhesions, intracellular signaling complexes that are formed following engagement of the extracellular matrix by integrins. The C-terminal 'focal adhesion targeting' (FAT) region is necessary and sufficient for localizing FAK to focal adhesions. We have determined the crystal structure of FAT and show that it forms a four-helix bundle that resembles those found in two other proteins involved in cell adhesion, alpha-catenin and vinculin. The binding of FAT to the focal adhesion protein, paxillin, requires the integrity of the helical bundle, whereas binding to another focal adhesion protein, talin, does not. We show by mutagenesis that paxillin binding involves two hydrophobic patches on opposite faces of the bundle and propose a model in which two LD motifs of paxillin adopt amphipathic helices that augment the hydrophobic core of FAT, creating a six-helix bundle.  相似文献   

3.
The cytoskeletal protein alpha-catenin, which shares structural similarity with vinculin, is required for cadherin-mediated cell adhesion, and functions to modulate cell adhesive strength and to link the cadherins to the actin-based cytoskeleton. Here we describe the crystal structure of a region of alpha-catenin (residues 377-633) termed the M-fragment. The M-fragment is composed of a tandem repeat of two antiparallel four-helix bundles of virtually identical architectures that are related in structure to the dimerization domain of alpha-catenin and the tail region of vinculin. These results suggest that alpha-catenin is composed of repeating antiparallel helical domains. The region of alpha-catenin previously defined as an adhesion modulation domain corresponds to the C-terminal four-helix bundle of the M-fragment, and in the crystal lattice these domains exist as dimers. Evidence for dimerization of the M-fragment of alpha-catenin in solution was detected by chemical cross-linking experiments. The tendency of the adhesion modulation domain to form dimers may explain its biological activity of promoting cell-cell adhesiveness by inducing lateral dimerization of the associated cadherin molecule.  相似文献   

4.
The focal adhesion targeting (FAT) domain of focal adhesion kinase (FAK) is critical for recruitment of FAK to focal adhesions and contains tyrosine 926, which, when phosphorylated, binds the SH2 domain of Grb2. Structural studies have shown that the FAT domain is a four-helix bundle that exists as a monomer and a dimer due to domain swapping of helix 1. Here, we report the NMR solution structure of the avian FAT domain, which is similar in overall structure to the X-ray crystal structures of monomeric forms of the FAT domain, except that loop 1 is longer and less structured in solution. Residues in this region undergo temperature-dependent exchange broadening and sample aberrant phi and psi angles, which suggests that this region samples multiple conformations. We have also identified a mutant that dimerizes approximately 8 fold more than WT FAT domain and exhibits increased phosphorylation of tyrosine 926 both in vitro and in vivo.  相似文献   

5.
The Crk-associated tyrosine kinase substrate p130cas (CAS) is a docking protein containing an SH3 domain near its N terminus, followed by a short proline-rich segment, a large central substrate domain composed of 15 repeats of the four amino acid sequence YxxP, a serine-rich region and a carboxy-terminal domain, which possesses consensus binding sites for the SH2 and SH3 domains of Src (YDYV and RPLPSPP, respectively). The SH3 domain of CAS mediates its interaction with several proteins involved in signaling pathways such as focal adhesion kinase (FAK), tyrosine phosphatases PTP1B and PTP-PEST, and the guanine nucleotide exchange factor C3G. As a homolog of the corresponding Src docking domain, the CAS SH3 domain binds to proline-rich sequences (PxxP) of its interacting partners that can adopt a polyproline type II helix. We have determined a high-resolution X-ray structure of the recombinant human CAS SH3 domain. The domain, residues 1-69, crystallized in two related space groups, P2(1) and C222(1), that provided diffraction data to 1.1 A and 2.1 A, respectively. The crystal structure shows, in addition to the conserved SH3 domain architecture, the way in which the CAS characteristic amino acids form an atypically charged ligand-binding surface. This arrangement provides a rationale for the unusual ligand recognition motif exhibited by the CAS SH3 domain. The structure enables modelling of the docking interactions to its ligands, for example from focal adhesion kinase, and supports structure-based drug design of inhibitors of the CAS-FAK interaction.  相似文献   

6.
Programmed cell death 10 (PDCD10) is a novel adaptor protein involved in human cerebral cavernous malformation, a common vascular lesion mostly occurring in the central nervous system. By interacting with different signal proteins, PDCD10 could regulate various physiological processes in the cell. The crystal structure of human PDCD10 complexed with inositol-(1,3,4,5)-tetrakisphosphate has been determined at 2.3 Å resolution. The structure reveals an integrated dimer via a unique assembly that has never been observed before. Each PDCD10 monomer contains two independent domains: an N-terminal domain with a new fold involved in the tight dimer assembly and a C-terminal four-helix bundle domain that closely resembles the focal adhesion targeting domain of focal adhesion kinase. An eight-residue flexible linker connects the two domains, potentially conferring mobility onto the C-terminal domain, resulting in the conformational variability of PDCD10. A variable basic cleft on the top of the dimer interface binds to phosphatidylinositide and regulates the intracellular localization of PDCD10. Two potential sites, respectively located on the two domains, are critical for recruiting different binding partners, such as germinal center kinase III proteins and the focal adhesion protein paxillin.  相似文献   

7.
The docking protein p130Cas becomes phosphorylated upon cell adhesion to extracellular matrix proteins, and is thought to play an essential role in cell transformation. Cas transmits signals through interactions with the Src-homology 3 (SH3) and Src-homology 2 domains of FAK or v-Crk signaling molecules, or with 14-3-3 protein, as well as phosphatases PTP1B and PTP-PEST. The large (130kDa), multi-domain Cas molecule contains an SH3 domain, a Src-binding domain, a serine-rich protein interaction region, and a C-terminal region that participates in protein interactions implicated in antiestrogen resistance in breast cancer. In this study, as part of a long-term goal to examine the protein interactions of Cas by X-ray crystallography and nuclear magnetic resonance spectroscopy, molecular constructs were designed to express two adjacent domains, the serine-rich domain and the Src-binding domain, that each participate in intermolecular contacts dependent on protein phosphorylation. The protein products are soluble, homogeneous, monodisperse, and highly suitable for structural studies to define the role of Cas in integrin-mediated cell signaling.  相似文献   

8.
GrpE proteins act as co-chaperones for DnaK heat-shock proteins. The dimeric protein unfolds under heat stress conditions, which results in impaired interaction with a DnaK protein. Since interaction of GrpE with DnaK is crucial for the DnaK chaperone activity, GrpE proteins act as a thermosensor in bacteria. Here we have analyzed the thermostability and function of two GrpE homologs of the mesophilic cyanobacterium Synechocystis sp. PCC 6803 and of the thermophilic cyanobacterium Thermosynechococcus elongatus BP1. While in Synechocystis an N-terminal helix pair of the GrpE dimer appears to be the thermosensing domain and mainly mediates GrpE dimerization, the C-terminal four-helix bundle is involved in additional stabilization of the dimeric structure. The four-helix bundle domain has a key role in the thermophilic cyanobacterium, since dimerization of the Thermosynechococcus protein appears to be mediated by the four-helix bundle domain, and melting of this domain is linked to monomerization of the GrpE protein. Thus, in two related cyanobacteria the GrpE thermosensing function might be mediated by different protein domains.  相似文献   

9.
Escherichia coli osmosensor EnvZ is a protein histidine kinase that plays a central role in osmoregulation, a cellular adaptation process involving the His-Asp phosphorelay signal transduction system. Dimerization of the transmembrane protein is essential for its autophosphorylation and phosphorelay signal transduction functions. Here we present the NMR-derived structure of the homodimeric core domain (residues 223-289) of EnvZ that includes His 243, the site of autophosphorylation and phosphate transfer reactions. The structure comprises a four-helix bundle formed by two identical helix-turn-helix subunits, revealing the molecular assembly of two active sites within the dimeric kinase.  相似文献   

10.
The G protein-coupled receptor kinase-interacting protein 1 (GIT1) is a multidomain protein that plays an important role in cell adhesion, motility, cytoskeletal remodeling, and membrane trafficking. GIT1 mediates the localization of the p21-activated kinase (PAK) and PAK-interactive exchange factor to focal adhesions, and its activation is regulated by the interaction between its C-terminal paxillin-binding domain (PBD) and the LD motifs of paxillin. In this study, we determined the solution structure of rat GIT1 PBD by NMR spectroscopy. The PBD folds into a four-helix bundle, which is structurally similar to the focal adhesion targeting and vinculin tail domains. Previous studies showed that GIT1 interacts with paxillin through the LD4 motif. Here, we demonstrated that in addition to the LD4 motif, the GIT1 PBD can also bind to the paxillin LD2 motif, and both LD2 and LD4 motifs competitively target the same site on the PBD surface. We also revealed that paxillin Ser(272) phosphorylation does not influence GIT1 PBD binding in vitro. These results are in agreement with the notion that phosphorylation of paxillin Ser(272) plays an essential role in regulating focal adhesion turnover.  相似文献   

11.
Zhu G  Zhai P  He X  Wakeham N  Rodgers K  Li G  Tang J  Zhang XC 《The EMBO journal》2004,23(20):3909-3917
GGA proteins coordinate the intracellular trafficking of clathrin-coated vesicles through their interaction with several other proteins. The GAT domain of GGA proteins interacts with ARF, ubiquitin, and Rabaptin5. The GGA-Rabaptin5 interaction is believed to function in the fusion of trans-Golgi-derived vesicles to endosomes. We determined the crystal structure of a human GGA1 GAT domain fragment in complex with the Rabaptin5 GAT-binding domain. In this structure, the Rabaptin5 domain is a 90-residue-long helix. At the N-terminal end, it forms a parallel coiled-coil homodimer, which binds one GAT domain of GGA1. In the C-terminal region, it further assembles into a four-helix bundle tetramer. The Rabaptin5-binding motif of the GGA1 GAT domain consists of a three-helix bundle. Thus, the binding between Rabaptin5 and GGA1 GAT domain is based on a helix bundle-helix bundle interaction. The current structural observation is consistent with previously reported mutagenesis data, and its biological relevance is further confirmed by new mutagenesis studies and affinity analysis. The four-helix bundle structure of Rabaptin5 suggests a functional role in tethering organelles.  相似文献   

12.
The GrpE heat shock protein from Escherichia coli has a homodimeric structure. The dimer interface encompasses two long alpha-helices at the NH(2)-terminal end from each monomer (forming a "tail"), which lead into a small four-helix bundle from which each monomer contributes two short sequential alpha-helices in an antiparallel topological arrangement. We have created a number of different deletion mutants of GrpE that have portions of the dimer interface to investigate requirements for dimerization and to study four-helix bundle formation. Using chemical crosslinking and analytical ultracentrifugation techniques to probe for multimeric states, we find that a mutant containing only the long alpha-helical tail portion (GrpE1-88) is unable to form a dimer, most likely due to a decrease in alpha-helical content as determined by circular dichroism spectroscopy, thus one reason for a dimeric structure for the GrpE protein is to support the tail region. Mutants containing both of the short alpha-helices (GrpE1-138 and GrpE88-197) are able to form a dimer and presumably the four-helix bundle at the dimer interface. These two mutants have equilibrium constants for the monomer-dimer equilibrium that are very similar to the full-length protein suggesting that the tail region does not contribute significantly to the stability of the dimer. Interestingly, one mutant that contains just one of the short alpha-helices (GrpE1-112) exists as a tetrameric species, which presumably is forming a four-helix bundle structure. A proposed model is discussed for this mutant and its relevance for factors influencing four-helix bundle formation.  相似文献   

13.
Earlier work demonstrated that a water-soluble four-helix bundle protein designed with a cavity in its nonpolar core is capable of binding the volatile anesthetic halothane with near-physiological affinity (0.7 mM Kd). To create a more relevant, model membrane protein receptor for studying the physicochemical specificity of anesthetic binding, we have synthesized a new protein that builds on the anesthetic-binding, hydrophilic four-helix bundle and incorporates a hydrophobic domain capable of ion-channel activity, resulting in an amphiphilic four-helix bundle that forms stable monolayers at the air/water interface. The affinity of the cavity within the core of the bundle for volatile anesthetic binding is decreased by a factor of 4-3.1 mM Kd as compared to its water-soluble counterpart. Nevertheless, the absence of the cavity within the otherwise identical amphiphilic peptide significantly decreases its affinity for halothane similar to its water-soluble counterpart. Specular x-ray reflectivity shows that the amphiphilic protein orients vectorially in Langmuir monolayers at higher surface pressure with its long axis perpendicular to the interface, and that it possesses a length consistent with its design. This provides a successful starting template for probing the nature of the anesthetic-peptide interaction, as well as a potential model system in structure/function correlation for understanding the anesthetic binding mechanism.  相似文献   

14.
Zhou Z  Feng H  Bai Y 《Proteins》2006,65(2):259-265
The focal adhesion target (FAT) domain of focal adhesion kinase has a four-helix bundle structure. Based on a hydrogen exchange-constrained computer simulation study and some indirect experimental results, it has been suggested that a partially unfolded state of the FAT domain with the N-terminal helix unfolded plays an important role in its biological function. Here, using a native-state hydrogen exchange method, we directly detected an intermediate with the N-terminal helix unfolded in a mutant (Y925E) of the FAT domain. In addition, kinetic folding studies on the FAT domain suggest that this intermediate exists on the native side of the rate-limiting transition state for folding. These results provide more direct evidence of the existence of the proposed intermediate and help to understand the folding mechanism of small single domain proteins.  相似文献   

15.
The GIT proteins, GIT1 and GIT2, are GTPase-activating proteins for the ADP-ribosylation factor family of small GTP-binding proteins, but also serve as adaptors to link signaling proteins to distinct cellular locations. One role for GIT proteins is to link the PIX family of Rho guanine nucleotide exchange factors and their binding partners, the p21-activated protein kinases, to remodeling focal adhesions by interacting with the focal adhesion adaptor protein paxillin. We here identified the C-terminal domain of GIT1 responsible for paxillin binding. Combining structural and mutational analyses, we show that this region folds into an anti-parallel four-helix domain highly reminiscent to the focal adhesion targeting (FAT) domain of focal adhesion kinase (FAK). Our results suggest that the GIT1 FAT-homology (FAH) domain and FAT bind the paxillin LD4 motif quite similarly. Since only a small fraction of GIT1 is bound to paxillin under normal conditions, regulation of paxillin binding was explored. Although paxillin binding to the FAT domain of FAK is regulated by tyrosine phosphorylation within this domain, we find that tyrosine phosphorylation of the FAH domain GIT1 is not involved in regulating binding to paxillin. Instead, we find that mutations within the FAH domain may alter binding to paxillin that has been phosphorylated within the LD4 motif. Thus, despite apparent structural similarity in their FAT domains, GIT1 and FAK binding to paxillin is differentially regulated.  相似文献   

16.
The exact sites, structures, and molecular mechanisms of interaction between junction organizing zona occludence protein 1 (ZO-1) and the tight junction protein occludin or the adherens junction protein alpha-catenin are unknown. Binding studies by surface plasmon resonance spectroscopy and peptide mapping combined with comparative modeling utilizing crystal structures led for the first time to a molecular model revealing the binding of both occludin and alpha-catenin to the same binding site in ZO-1. Our data support a concept that ZO-1 successively associates with alpha-catenin at the adherens junction and occludin at the tight junction. Strong spatial evidence indicates that the occludin C-terminal coiled-coil domain dimerizes and interacts finally as a four-helix bundle with the identified structural motifs in ZO-1. The helix bundle of occludin406-521 and alpha-catenin509-906 interacts with the hinge region (ZO-1591-632 and ZO-1591-622, respectively) and with (ZO-1726-754 and ZO-1756-781) in the GuK domain of ZO-1 containing coiled-coil and alpha-helical structures, respectively. The selectivity of both protein-protein interactions is defined by complementary shapes and charges between the participating epitopes. In conclusion, a common molecular mechanism of forming an intermolecular helical bundle between the hinge region/GuK domain of ZO-1 and alpha-catenin and occludin is identified as a general molecular principle organizing the association of ZO-1 at adherens and tight junctions.  相似文献   

17.
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is regulated by integrins. Upon activation, FAK generates signals that modulate crucial cell functions, including cell proliferation, migration, and survival. The C-terminal focal adhesion targeting (FAT) sequence mediates localization of FAK to discrete regions in the cell called focal adhesions. Several binding partners for the FAT domain of FAK have been identified, including paxillin. We have determined the solution structure of the avian FAT domain in complex with a peptide mimicking the LD2 motif of paxillin by NMR spectroscopy. The FAT domain retains a similar fold to that found in the unliganded form when complexed to the paxillin-derived LD2 peptide, an antiparallel four-helix bundle. However, noticeable conformational changes were observed upon the LD2 peptide binding, especially the position of helix 4. Multiple lines of evidence, including the results obtained from isothermal titration calorimetry, intermolecular nuclear Overhauser effects, mutagenesis, and protection from paramagnetic line broadening, support the existence of two distinct paxillin-binding sites on the opposite faces of the FAT domain. The structure of the FAT domain-LD2 complex was modeled using the program HADDOCK based on our solution structure of the LD2-bound FAT domain and mutagenesis data. Our model of the FAT domain-LD2 complex provides insight into the molecular basis of FAK-paxillin binding interactions, which will aid in understanding the role of paxillin in FAK targeting and signaling.  相似文献   

18.
Focal adhesion targeting (FAT) domains target the non-receptor tyrosine kinases FAK and Pyk2 to cellular focal adhesion areas, where the signaling molecule paxillin is also located. Here, we report the crystal structures of the Pyk2 FAT domain alone or in complex with paxillin LD4 peptides. The overall structure of Pyk2-FAT is an antiparallel four-helix bundle with an up-down, up-down, right-handed topology. In the LD4-bound FAT complex, two paxillin LD4 peptides interact with two opposite sides of Pyk2-FAT, at the surfaces of the α1α4 and α2α3 helices of each FAT molecule. We also demonstrate that, while paxillin is phosphorylated by Pyk2, complex formation between Pyk2 and paxillin does not depend on Pyk2 tyrosine kinase activity. These experiments reveal the structural basis underlying the selectivity of paxillin LD4 binding to the Pyk2 FAT domain and provide insights about the molecular details which influence the different behavior of these two closely-related kinases.  相似文献   

19.
20.
YabA negatively regulates initiation of DNA replication in low-GC Gram-positive bacteria. The protein exerts its control through interactions with the initiator protein DnaA and the sliding clamp DnaN. Here, we combined X-ray crystallography, X-ray scattering (SAXS), modeling and biophysical approaches, with in vivo experimental data to gain insight into YabA function. The crystal structure of the N-terminal domain (NTD) of YabA solved at 2.7 Å resolution reveals an extended α-helix that contributes to an intermolecular four-helix bundle. Homology modeling and biochemical analysis indicates that the C-terminal domain (CTD) of YabA is a small Zn-binding domain. Multi-angle light scattering and SAXS demonstrate that YabA is a tetramer in which the CTDs are independent and connected to the N-terminal four-helix bundle via flexible linkers. While YabA can simultaneously interact with both DnaA and DnaN, we found that an isolated CTD can bind to either DnaA or DnaN, individually. Site-directed mutagenesis and yeast-two hybrid assays identified DnaA and DnaN binding sites on the YabA CTD that partially overlap and point to a mutually exclusive mode of interaction. Our study defines YabA as a novel structural hub and explains how the protein tetramer uses independent CTDs to bind multiple partners to orchestrate replication initiation in the bacterial cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号