首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Cadherins mediate cell-cell adhesion, but little is known about how their expression is regulated. In Madin-Darby canine kidney (MDCK) cells, the cadherin-associated cytoplasmic proteins alpha- and beta-catenin form high molecular weight protein complexes with two glycoproteins (Stewart, D. B., and Nelson, W. J. (1997) J. Biol. Chem. 272, 29652-29662), one of which is E-cadherin and the other we show here is the type II cadherin, cadherin-6 (K-cadherin). In low density, motile MDCK cells, the steady-state level of cadherin-6 is low, but protein is synthesized. However, following cell-cell adhesion, cadherin-6 becomes stabilized and accumulates by >50-fold at cell-cell contacts while the E-cadherin level increases only 5-fold during the same period. To investigate a role of beta-catenin in regulation of cadherin expression in MDCK cells, we examined the effects of expressing signaling-active beta-catenin mutants (DeltaGSK, DeltaN90, and DeltaN131). In these cells, while levels of E-cadherin, alpha- and beta-catenin are similar to those in control cells, levels of cadherin-6 are significantly reduced due to rapid degradation of newly synthesized protein. Additionally, these cells appeared more motile and less cohesive, as expression of DeltaGSK-beta-catenin delayed the establishment of tight confluent cell monolayers compared with control cells. These results indicate that the level of cadherin-6, but not that of E-cadherin, is strictly regulated post-translationally in response to Wnt signaling, and that E-cadherin and cadherin-6 may contribute different properties to cell-cell adhesion and the epithelial phenotype.  相似文献   

2.
Interactions between E-cadherin, beta-catenin and PTP1B (protein tyrosine phosphatase 1B) are crucial for the organization of AJs (adherens junctions) and epithelial cell-cell adhesion. In the present study, the effect of acetaldehyde on the AJs and on the interactions between E-cadherin, beta-catenin and PTP1B was determined in Caco-2 cell monolayers. Treatment of cell monolayers with acetaldehyde induced redistribution of E-cadherin and beta-catenin from the intercellular junctions by a tyrosine phosphorylation-dependent mechanism. The PTPase activity associated with E-cadherin and beta-catenin was significantly reduced and the interaction of PTP1B with E-cadherin and beta-catenin was attenuated by acetaldehyde. Acetaldehyde treatment resulted in phosphorylation of beta-catenin on tyrosine residues, and abolished the interaction of beta-catenin with E-cadherin by a tyrosine kinase-dependent mechanism. Protein binding studies showed that the treatment of cells with acetaldehyde reduced the binding of beta-catenin to the C-terminal region of E-cadherin. Pairwise binding studies using purified proteins indicated that the direct interaction between E-cadherin and beta-catenin was reduced by tyrosine phosphorylation of beta-catenin, but was unaffected by tyrosine phosphorylation of E-cadherin-C. Treatment of cells with acetaldehyde also reduced the binding of E-cadherin to GST (glutathione S-transferase)-PTP1B. The pairwise binding study showed that GST-E-cadherin-C binds to recombinant PTP1B, but this binding was significantly reduced by tyrosine phosphorylation of E-cadherin. Acetaldehyde increased the phosphorylation of beta-catenin on Tyr-331, Tyr-333, Tyr-654 and Tyr-670. These results show that acetaldehyde induces disruption of interactions between E-cadherin, beta-catenin and PTP1B by a phosphorylation-dependent mechanism.  相似文献   

3.
The formation of stable cell-cell adhesions by type I cadherins depends on the association of their cytoplasmic domain with beta-catenin, and of beta-catenin with alpha-catenin. The binding of beta-catenin to these partners is regulated by phosphorylation of at least three critical tyrosine residues. Each of these residues is targeted by one or more specific kinases: Y142 by Fyn, Fer and cMet; Y489 by Abl; and Y654 by Src and the epidermal growth factor receptor. Developmental and physiological signals have been identified that initiate the specific phosphorylation and dephosphorylation of these residues, regulating cadherin function during neurite outgrowth, permeability of airway epithelium and synapse remodeling, and possibly initiating epithelial cell migration during development and metastasis.  相似文献   

4.
In MDCK cells, presenilin-1 (PS1) accumulates at intercellular contacts where it colocalizes with components of the cadherin-based adherens junctions. PS1 fragments form complexes with E-cadherin, beta-catenin, and alpha-catenin, all components of adherens junctions. In confluent MDCK cells, PS1 forms complexes with cell surface E-cadherin; disruption of Ca(2+)-dependent cell-cell contacts reduces surface PS1 and the levels of PS1-E-cadherin complexes. PS1 overexpression in human kidney cells enhances cell-cell adhesion. Together, these data show that PS1 incorporates into the cadherin/catenin adhesion system and regulates cell-cell adhesion. PS1 concentrates at intercellular contacts in epithelial tissue; in brain, it forms complexes with both E- and N-cadherin and concentrates at synaptic adhesions. That PS1 is a constituent of the cadherin/catenin complex makes that complex a potential target for PS1 FAD mutations.  相似文献   

5.
CD148 is a transmembrane tyrosine phosphatase that is expressed at cell junctions. Recent studies have shown that CD148 associates with the cadherin/catenin complex and p120 catenin (p120) may serve as a substrate. However, the role of CD148 in cadherin cell-cell adhesion remains unknown. Therefore, here we addressed this issue using a series of stable cells and cell-based assays. Wild-type (WT) and catalytically inactive (CS) CD148 were introduced to A431D (lacking classical cadherins), A431D/E-cadherin WT (expressing wild-type E-cadherin), and A431D/E-cadherin 764AAA (expressing p120-uncoupled E-cadherin mutant) cells. The effects of CD148 in cadherin adhesion were assessed by Ca2+ switch and cell aggregation assays. Phosphorylation of E-cadherin/catenin complex and Rho family GTPase activities were also examined. Although CD148 introduction did not alter the expression levels and complex formation of E-cadherin, p120, and β-catenin, CD148 WT, but not CS, promoted cadherin contacts and strengthened cell-cell adhesion in A431D/E-cadherin WT cells. This effect was accompanied by an increase in Rac1, but not RhoA and Cdc42, activity and largely diminished by Rac1 inhibition. Further, we demonstrate that CD148 reduces the tyrosine phosphorylation of p120 and β-catenin; causes the dephosphorylation of Y529 suppressive tyrosine residue in Src, a well-known CD148 site, increasing Src activity and enhancing the phosphorylation of Y228 (a Src kinase site) in p120, in E-cadherin contacts. Consistent with these findings, CD148 dephosphorylated both p120 and β-catenin in vitro. The shRNA-mediated CD148 knockdown in A431 cells showed opposite effects. CD148 showed no effects in A431D and A431D/E-cadherin 764AAA cells. In aggregate, these findings provide the first evidence that CD148 promotes E-cadherin adhesion by regulating Rac1 activity concomitant with modulation of p120, β-catenin, and Src tyrosine phosphorylation. This effect requires E-cadherin and p120 association.  相似文献   

6.
F9 teratocarcinoma cells in which beta-catenin and/or plakoglobin genes are knocked-out were generated and investigated in an effort to define the role of beta-catenin and plakoglobin in cell adhesion. Loss of beta-catenin expression only did not affect cadherin-mediated cell adhesion activity. Loss of both beta-catenin and plakoglobin expression, however, severely affected the strong cell adhesion activity of cadherin. In beta-catenin-deficient cells, the amount of plakoglobin associated with E-cadherin dramatically increased. In beta-catenin/plakoglobin-deficient cells, the level of E-cadherin and alpha-catenin markedly decreased. In these cells, E-cadherin formed large aggregates in cytoplasm and membrane localization of alpha-catenin was barely detected. These data confirmed that beta-catenin or plakoglobin is required for alpha-catenin to form complex with E-cadherin. It was also demonstrated that plakoglobin can compensate for the absence of beta-catenin. Moreover it was suggested that beta-catenin or plakoglobin is required not only for the cell adhesion activity but also for the stable expression and cell surface localization of E-cadherin.  相似文献   

7.
p120cas is a tyrosine kinase substrate implicated in ligand-induced receptor signaling through the epidermal growth factor, platelet-derived growth factor, and colony-stimulating factor receptors and in cell transformation by Src. Here we report that p120 associates with a complex containing E-cadherin, alpha-catenin, beta-catenin, and plakoglobin. Furthermore, p120 precisely colocalizes with E-cadherin and catenins in vivo in both normal and Src-transformed MDCK cells. Unlike beta-catenin and plakoglobin, p120 has at least four isoforms which are differentially expressed in a variety of cell types, suggesting novel means of modulating cadherin activities in cells. In Src-transformed MDCK cells, p120, beta-catenin, and plakoglobin were heavily phosphorylated on tyrosine, but the physical associations between these proteins were not disrupted. Association of p120 with the cadherin machinery indicates that both Src and receptor tyrosine kinases cross talk with proteins important for cadherin-mediated cell adhesion. These results also strongly suggest a role for p120 in cell adhesion.  相似文献   

8.
9.
beta-Catenin, a key component of the canonical Wnt pathway, is also regulated by tyrosine phosphorylation that regulates its association to E-cadherin. Previously, we reported its association with the hepatocyte growth factor (HGF) receptor Met at the membrane. HGF induced Met-beta-catenin dissociation and nuclear translocation of beta-catenin, which was tyrosine-phosphorylation-dependent. Here, we further investigate the Met-beta-catenin interaction by selectively mutating several tyrosine residues, alone or in combination, in beta-catenin. The mutants were subcloned into FLAG-CMV vector and stably transfected into rat hepatoma cells, which were treated with HGF. All single or double-mutant-transfected cells continued to show HGF-induced nuclear translocation of FLAG-beta-catenin except the mutations affecting 654 and 670 simultaneously (Y654/670F), which coincided with the lack of formation of beta-catenin-TCF complex and DNA synthesis, in response to the HGF treatment. In addition, the Y654/670F-transfected cells also showed no phosphorylation of beta-catenin or dissociation from Met in response to HGF. Thus, intact 654 and 670 tyrosine residues in beta-catenin are crucial in HGF-mediated beta-catenin translocation, activation and mitogenesis.  相似文献   

10.
Expression of a dominant-negative, catalytically inactive form of the nonreceptor protein-tyrosine phosphatase PTP1B in L-cells constitutively expressing N-cadherin results in loss of N-cadherin-mediated cell-cell adhesion. PTP1B interacts directly with the cytoplasmic domain of N-cadherin, and this association is regulated by phosphorylation of tyrosine residues in PTP1B. The following three tyrosine residues in PTP1B are potential substrates for tyrosine kinases: Tyr-66, Tyr-152, and Tyr-153. To determine the tyrosine residue(s) that are crucial for the cadherin-PTP1B interaction we used site-directed mutagenesis to create catalytically inactive PTP1B constructs bearing additional single, double, or triple mutations in which tyrosine was substituted by phenylalanine. Mutation Y152F eliminates binding to N-cadherin in vitro, whereas mutations Y66F and Y153F do not. Overexpression of the catalytically inactive PTP1B with the Y152F mutation in L-cells constitutively expressing N-cadherin has no effect on N-cadherin-mediated adhesion, and immunoprecipitation reveals that the mutant Y152F PTP1B does not associate with N-cadherin in situ. Furthermore, among cells overexpressing the Y152F mutant endogenous PTP1B associates with N-cadherin and is tyrosine-phosphorylated.  相似文献   

11.
Human mucosal lymphocyte antigen-1 (HML-1, alphaEbeta7) and E-cadherin, two members of unrelated cell adhesion superfamilies, have evolved to play cooperative roles in gut mucosal immunity. Human E-cadherin is self-ligand mediating intercellular adhesion of epithelial cells, as well as adhesion of intra-epithelial lymphocytes to intestinal enterocytes via an interaction with HML-1. Herein we report that both dimeric and monomeric forms of recombinant mouse E-cadherin-human immunoglobulin Fc chimera self-associate and support attachment of E-cadherin+ mouse colon epithelial cells. Both forms also support the adhesion of mouse MTC-1 T cells via M290, thereby establishing M290 as the functional mouse homologue of HML-1 and revealing that E-cadherin homophilic and heterophilic binding sites are distinct. Adhesion of MTC-1 cells to E-cadherin-Fc was inhibited by arginine-glycine-aspartate (RGD) peptides and vice versa cells bound to immobilized RGD polymer in an M290-dependent fashion, where adhesion was inhibitable with soluble E-cadherin-Fc. Hence, E-cadherin and RGD integrin ligands antagonize cell binding by one another, either by inducing integrin cross-talk or by binding to shared or overlapping sites within M290. Binding of E-cadherin-Fc by HML-1 costimulated the CD3-induced proliferation of purified CD4+ T cells, suggesting that E-cadherin expressed on dendritic cells may play a T cell costimulatory role in addition to facilitating dendritic cell-keratinocyte adhesion.  相似文献   

12.
Presenilin1 (PS1), a protein involved in cellular development, forms functional complexes with beta-catenin, a regulator of Wnt signaling and cell-cell adhesion. In addition, both proteins have been shown to play important roles in disease including cancer and Alzheimer disease. Although PS1 and beta-catenin are found in the same complexes, it is not clear whether they bind directly to each other or a third complex component, like cadherin, may mediate their interactions. Here we show that PS1 and beta-catenin form no detectable complexes in cells that express no cadherin. In contrast, these complexes are readily found in E-cadherin containing cells. Furthermore, binding of both PS1 and beta-catenin to E-cadherin is necessary for the formation of PS1/beta-catenin complexes. Importantly, our data show that binding of PS1 to cadherin mediates the effects of PS1 on the phosphorylation, ubiquitination, and destabilization of beta-catenin. Thus, cadherins mediate both the association of PS1 and beta-catenin and the effects of PS1 on the cellular levels of beta-catenin.  相似文献   

13.
W Zhu  B Leber  D W Andrews 《The EMBO journal》2001,20(21):5999-6007
Cellular adhesion is regulated by members of the cadherin family of adhesion receptors and their cytoplasmic adaptor proteins, the catenins. Adhesion complexes are regulated by recycling from the plasma membrane and proteolysis during apoptosis. We report that in MCF-7, MDA-MB-468 and MDCK cells, induction of apoptosis by agents that cause endoplasmic reticulum (ER) stress results in O-glycosylation of both beta-catenin and the E-cadherin cytoplasmic domain. O-glycosylation of newly synthesized E-cadherin blocks cell surface transport, resulting in reduced intercellular adhesion. O-glycosylated E-cadherin still binds to beta- and gamma-catenin, but not to p120-catenin. Although O-glycosylation can be inhibited with caspase inhibitors, cleavage of caspases associated with the ER or Golgi complex does not correlate with E-cadherin O-glycosylation. However, agents that induce apoptosis via mitochondria do not lead to E-cadherin O-glycosylation, and decrease adhesion more slowly. In MCF-7 cells, this is due to degradation of E-cadherin concomitant with cleavage of caspase-7 and its substrate poly(ADP-ribose) polymerase. We conclude that cytoplasmic O-glycosylation is a novel, rapid mechanism for regulating cell surface transport exploited to down-regulate adhesion in some but not all apoptosis pathways.  相似文献   

14.
The nonreceptor tyrosine phosphatase PTP1B associates with the cytoplasmic domain of N-cadherin and may regulate cadherin function through dephosphorylation of beta-catenin. We have now identified the domain on N-cadherin to which PTP1B binds and characterized the effect of perturbing this domain on cadherin function. Deletion constructs lacking amino acids 872-891 fail to bind PTP1B. This domain partially overlaps with the beta-catenin binding domain. To further define the relationship of these two sites, we used peptides to compete in vitro binding. A peptide representing the most NH(2)-terminal 8 amino acids of the PTP1B binding site, the region of overlap with the beta-catenin target, effectively competes for binding of beta-catenin but is much less effective in competing PTP1B, whereas two peptides representing the remaining 12 amino acids have no effect on beta-catenin binding but effectively compete for PTP1B binding. Introduction into embryonic chick retina cells of a cell-permeable peptide mimicking the 8 most COOH-terminal amino acids in the PTP1B target domain, the region most distant from the beta-catenin target site, prevents binding of PTP1B, increases the pool of free, tyrosine-phosphorylated beta-catenin, and results in loss of N-cadherin function. N-cadherin lacking this same region of the PTP1B target site does not associate with PTP1B or beta-catenin and is not efficiently expressed at the cell surface of transfected L cells. Thus, interaction of PTP1B with N-cadherin is essential for its association with beta-catenin, stable expression at the cell surface, and consequently, cadherin function.  相似文献   

15.
The Ca2+-independent immunoglobulin-like molecule nectin first forms cell-cell adhesion and then assembles cadherin at nectin-based cell-cell adhesion sites, resulting in the formation of adherens junctions (AJs). Afadin is a nectin- and actin filament-binding protein that connects nectin to the actin cytoskeleton. Here, we studied the roles and modes of action of nectin and afadin in the formation of AJs in cultured MDCK cells. The trans-interaction of nectin assembled E-cadherin, which associated with p120(ctn), beta-catenin, and alpha-catenin, at the nectin-based cell-cell adhesion sites in an afadin-independent manner. However, the assembled E-cadherin showed weak cell-cell adhesion activity and might be the non-trans-interacting form. This assembly was mediated by the IQGAP1-dependent actin cytoskeleton, which was organized by Cdc42 and Rac small G proteins that were activated by the action of trans-interacting nectin through c-Src and Rap1 small G protein in an afadin-independent manner. However, Rap1 bound to afadin, and this Rap1-afadin complex then interacted with p120(ctn) associated with non-trans-interacting E-cadherin, thereby causing the trans-interaction of E-cadherin. Thus, nectin regulates the assembly and cell-cell adhesion activity of E-cadherin through afadin, nectin signaling, and p120(ctn) for the formation of AJs in Madin-Darby canine kidney cells.  相似文献   

16.
E-cadherin based adherens junctions are finely regulated by multiple cellular signaling events. Here we show that the Ras-related Rap1 GTPase is enriched in regions of nascent cell-cell contacts and strengthens E-cadherin junctions: constitutively active Rap1 expressing MDCK cells exhibit increased junctional contact and resisted calcium depletion-induced cell-cell junction disruption. E-cadherin disengagement activated Rap1 and this correlated with E-cadherin association with the Rap GEFs, C3G and PDZ-GEF I. PDZ-GEF I associated with E-cadherin and beta-catenin whereas C3G interaction with E-cadherin did not involve beta-catenin. Knockdown of PDZ-GEF I in MDCK cells decreased Rap1 activity following E-cadherin junction disruption. We hereby show that Rap1 plays a role in the maintenance and repair of E-cadherin junctions and is activated via an "outside-in" signaling pathway initiated by E-cadherin and mediated at least in part by PDZ-GEF I.  相似文献   

17.
Cadherins are a family of cell-cell adhesion molecules which play a central role in controlling morphogenetic movements during development. Cadherin function is regulated by its association with the actin containing cytoskeleton, an association mediated by a complex of cytoplasmic proteins, the catenins: alpha, beta, and gamma. Phosphorylated tyrosine residues on beta-catenin are correlated with loss of cadherin function. Consistent with this, we find that only nontyrosine phosphorylated beta-catenin is associated with N-cadherin in E10 chick retina tissue. Moreover, we demonstrate that a PTP1B-like tyrosine phosphatase associates with N-cadherin and may function as a regulatory switch controlling cadherin function by dephosphorylating beta-catenin, thereby maintaining cells in an adhesion-competent state. The PTP1B-like phosphatase is itself tyrosine phosphorylated. Moreover, both direct binding experiments performed with phosphorylated and dephosphorylated molecules, and treatment of cells with tyrosine kinase inhibitors indicate that the interaction of the PTP1B-like phosphatase with N-cadherin depends on its tyrosine phosphorylation. Concomitant with the tyrosine kinase inhibitor-induced loss of the PTP1B-like phosphatase from its association with N-cadherin, phosphorylated tyrosine residues are retained on beta-catenin, the association of N- cadherin with the actin containing cytoskeleton is lost and N-cadherin- mediated cell adhesion is prevented. Tyrosine phosphatase inhibitors also result in the accumulation of phosphorylated tyrosine residues on beta-catenin, loss of the association of N-cadherin with the actin- containing cytoskeleton, and prevent N-cadherin mediated adhesion, presumably by directly blocking the function of the PTP1B-like phosphatase. We previously showed that the binding of two ligands to the cell surface N-acetylgalactosaminylphosphotransferase (GalNAcPTase), the monoclonal antibody 1B11 and a proteoglycan with a 250-kD core protein, results in the accumulation of phosphorylated tyrosine residues on beta-catenin, uncoupling of N-cadherin from its association with the actin containing cytoskeleton, and loss of N- cadherin function. We now report that binding of these ligands to the GalNAcPTase results in the absence of the PTP1B-like phosphatase from its association with N-cadherin as well as the loss of the tyrosine kinase and tyrosine phosphatase activities that otherwise co- precipitate with N-cadherin. Control antibodies and proteoglycans have no such effect. This effect is similar to that observed with tyrosine kinase inhibitors, suggesting that the GalNAcPTase/proteoglycan interaction inhibits a tyrosine kinase, thereby preventing the phosphorylation of the PTP1B-like phosphatase, and its association with N-cadherin. Taken together these data indicate that a PTP1B-like tyrosine phosphatase can regulate N-cadherin function through its ability to dephosphorylate beta-catenin and that the association of the phosphatase with N-cadherin is regulated via the interaction of the GalNAcPTase with its proteoglycan ligand. In this manner the GalNAcPTase-proteoglycan interaction may play a major role in morphogenetic cell and tissue interactions during development.  相似文献   

18.
The role of platelet endothelial cell adhesion molecule-1 (PECAM-1) in endothelial cell-cell interactions and its contribution to cadherin-mediated cell adhesion are poorly understood. Such studies have been difficult because all known endothelial cells express PECAM-1. We have used Madin-Darby canine kidney (MDCK) cells as a model system in which to evaluate the role of PECAM-1 isoforms that differ in their cytoplasmic domains in cell-cell interactions. MDCK cells lack endogenous PECAM-1 but form cell-cell junctions similar to those of endothelial cells, in which PECAM-1 is concentrated. MDCK cells were transfected with two isoforms of murine PECAM-1, Delta15 and Delta14&15, the predominant isoforms expressed in vivo. Expression of the Delta15 isoform resulted in apparent dedifferentiation of MDCK cells concomitant with the loss of adherens junctions, down-regulation of E-cadherin, alpha- and beta-catenin expression, and sustained activation of extracellular regulated kinases. The Delta15 isoform was not concentrated at cell-cell contacts. In contrast, the Delta14&15 isoform localized to sites of cell-cell contact and had no effect on MDCK cell morphology, cadherin/catenin expression, or extracellular regulated kinase activity. Thus, the presence of exon 14 in the cytoplasmic domain of PECAM-1 has dramatic effects on the ability of cells to maintain adherens junctions and an epithelial phenotype. Therefore, changes in the expression of exon 14 containing PECAM-1 isoforms, which we have observed during development, may have profound functional consequences.  相似文献   

19.
20.
Regulation of E-cadherin/Catenin association by tyrosine phosphorylation   总被引:28,自引:0,他引:28  
Alteration of cadherin-mediated cell-cell adhesion is frequently associated to tyrosine phosphorylation of p120- and beta-catenins. We have examined the role of this modification in these proteins in the control of beta-catenin/E-cadherin binding using in vitro assays with recombinant proteins. Recombinant pp60(c-src) efficiently phosphorylated both catenins in vitro, with stoichiometries of 1.5 and 2.0 mol of phosphate/mol of protein for beta-catenin and p120-catenin, respectively. pp60(c-src) phosphorylation had opposing effects on the affinities of beta-catenin and p120 for the cytosolic domain of E-cadherin; it decreased (in the case of beta-catenin) or increased (for p120) catenin/E-cadherin binding. However, a role for p120-catenin in the modulation of beta-catenin/E-cadherin binding was not observed, since addition of phosphorylated p120-catenin did not modify the affinity of phosphorylated (or unphosphorylated) beta-catenin for E-cadherin. The phosphorylated Tyr residues were identified as Tyr-86 and Tyr-654. Experiments using point mutants in these two residues indicated that, although Tyr-86 was a better substrate for pp60(c-src), only modification of Tyr-654 was relevant for the interaction with E-cadherin. Transient transfections of different mutants demonstrated that Tyr-654 is phosphorylated in conditions in which adherens junctions are disrupted and evidenced that binding of beta-catenin to E-cadherin in vivo is controlled by phosphorylation of beta-catenin Tyr-654.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号