首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
  • Habitat fragmentation and small population size can lead to genetic erosion in threatened plant populations. Classical theory implies that dioecy can counteract genetic erosion as it decreases the magnitude of inbreeding and genetic drift due to obligate outcrossing. However, in small populations, sex ratios may be strongly male‐ or female‐biased, leading to substantial reductions in effective population size. This may theoretically result in a unimodal relationship between sex ratios and genetic diversity; yet, empirical studies on this relationship are scarce.
  • Using AFLP markers, we studied genetic diversity, structure and differentiation in 14 highly fragmented Antennaria dioica populations from the Central European lowlands. Our analyses focused on the relationship between sex ratio, population size and genetic diversity.
  • Although most populations were small (mean: 35.5 patches), genetic diversity was moderately high. We found evidence for isolation‐by‐distance, but overall differentiation of the populations was rather weak. Females dominated 11 populations, which overall resulted in a slightly female‐biased sex ratio (61.5%). There was no significant relationship between population size and genetic diversity. The proportion of females was not unimodally but positively linearly related to genetic diversity.
  • The high genetic diversity and low genetic differentiation suggest that A. dioica has been widely distributed in the Central European lowlands in the past, while fragmentation occurred only in the last decades. Sex ratio has more immediate consequences on genetic diversity than population size. An increasing proportion of females can increase genetic diversity in dioecious plants, probably due to a higher amount of sexual reproduction.
  相似文献   

2.
Nuclear-cytoplasmic gynodioecy is a breeding system of plants in which females and hermaphrodites co-occur in populations, and gender is jointly determined by cytoplasmic male sterility (CMS) genes and nuclear restorers of male fertility. Persistent polymorphism at both CMS and nuclear-restorer loci is necessary to maintain this breeding system. Theoretical models have explained how nuclear-cytoplasmic gynodioecy can be stable for certain assumptions. However, recent advances in our understanding of the genetics, population biology, and molecular mechanisms of sex determination in nuclear-cytoplasmic gynodioecious species suggest the utility of new models with different underlying assumptions. In this article, we examine different negative pleiotropic fitness effects of nuclear restorers (costs of restoration) using genetic and population assumptions based on recent literature. Specifically, we model populations with two CMS types and separate nuclear restorer loci for each CMS type. Under these assumptions, both overdominance for fitness and frequency-dependent selection at nuclear-restorer loci can support nuclear-cytoplasmic gynodioecy. Costs of restoration can be either dependent or independent of the cytoplasmic background. Seed fitness costs are more vulnerable to fixation of CMS types than pollen costs. Survivorship costs are effective at maintaining polymorphism even when total reproductive effects are low. Overall, our models display differences in the stability of nuclear-cytoplasmic gynodioecy and predicted population sex ratios that should be informative to researchers studying gynodioecy in the wild.  相似文献   

3.
In small populations of plant species with separate sexes, it can be expected that besides the local environment also stochastic events influence population sex ratios. Biased sex ratios may in turn negatively affect genetic diversity due to increased genetic drift and, in clonal plants, due to reduced sexual reproductive output. Empirical evidence for these processes is scarce, however. We investigated the pattern of sex ratio variation and the distribution of genetic variation of the dioecious clonal forest herb Mercurialis perennis using AFLP markers. Analysis of molecular variance indicated a pronounced genetic structure. Overall within-population genetic diversity was moderate and local sex ratios were slightly male biased. The proportion of male to female plants in large populations slightly increased with increasing light penetration to the herb layer. Small populations, on the contrary, displayed high variability in sex ratios, unrelated to the local light environment. Genotypic diversity decreased with more male-biased sex ratios. We conclude that stochastic events related to small population size and the local forest environment, related to canopy closure, affect the proportion of female plants and indirectly influence local genotypic diversity, likely through the degree of sexual reproduction. This is one of the first studies to report a clear association between gender proportions and genetic diversity of a dioecious plant species in a fairly large survey.  相似文献   

4.
Many plants combine sexual reproduction with some form of asexual reproduction to different degrees, and lower genetic diversity is expected with asexuality. Moreover, the ratios of sexual morphs in species with gender dimorphism are expected to vary in proportion to the reproductive success of the sexual process. Hence, sex ratios can directly influence the genetic structure and diversity of a population. We investigated genotypic diversity in 23 populations of a facultative, apomictic gynodioecious orchid, Satyrium ciliatum, to examine the effect on genotypic diversity of variation in the frequency of females and in the amount of sexual reproduction. The study involved one pure female, seven gynodioecious (both females and hermaphrodites present) and 15 hermaphroditic populations. Pollinia receipt was higher in hermaphroditic than in gynodioecious populations. Analyses of variation in ISSRs demonstrated that genotypic diversity was high in all populations and was not significantly different between hermaphroditic and gynodioecious populations. We used character compatibility analysis to determine the extent to which recombination by sexual reproduction contributed to genotypic diversity. The results indicate that the contribution of recombination to genotypic diversity is higher in hermaphroditic than in gynodioecious populations, consistent with the finding that hermaphroditic populations received higher amounts of pollinia. Our finding of reduced recombination in gynodioecious populations suggests that maintenance of sex in hermaphrodites plays an important role in generating genotypic diversity in this apomictic orchid.  相似文献   

5.
In many gynodioecious species the nuclear inheritance of male fertility is complex and involves multiple (restorer) genes. In addition to restoring plants from the female (male sterile) to the hermaphrodite (male fertile) state, these genes are also thought to play a role in the determination of the quantity of pollen produced by hermaphrodites. The more restorer alleles a hermaphroditic plant possesses, the higher the pollen production. To test this hypothesis I combined the results of crossing studies of the genetics of male sterility with phenotypic data on investment in stamens and ovules among the progeny of plants involved in these studies. The sex ratio (i.e. the frequency of hermaphrodites among the progeny), being a measure of the number of restorer alleles of the maternal plant, was positively related to the investment in pollen (male function), but negatively related to the investment in ovules (female function), in both field and greenhouse experiments. Consequently, a negative correlation between male and female function was observed (trade-off) and it is suggested that antagonistic pleiotropic effects of restorer genes might be the cause. Phenotypic gender, a measure combining investment in both pollen and ovules, was highly repeatable between field and greenhouse, indicating genetic determination of a more male- or female-biased allocation pattern among the studied plants.  相似文献   

6.
This study is devoted to assess sex ratio variation among 33 populations of the gynodioecious Beta vulgaris ssp. maritima in Brittany (France) and to explore the causes of this variation. We showed that three different CMS (cytoplasmic male sterility) cytotypes occurred in populations, but strongly differed for their frequencies and the frequency of their associated nuclear restorer alleles (which counteract the effect of CMS and restore male fertility). No correlation was found between CMS and restorer frequencies within populations, which has been previously interpreted as a result of stochasticity. However, neutral genetic variation did not indicate recent population bottlenecks in studied populations. Moreover, no significant correlation was found between female frequency or variance and current population size. Consequently, stochastic processes could not be the major cause of sex ratio variation. Alternatively, empirical estimations of the variation of females, CMS genes and nuclear restorer allele's frequencies were compared to theoretical predictions based on a frequency‐dependent selection model of gynodioecy. In particular, we showed that an absence of correlation between CMS and restorer frequencies could also occur without stochasticity. The large variation of sex ratio in Beta vulgaris could thus be explained by frequency‐dependent selection acting on CMS genes and restorer alleles.  相似文献   

7.
A study is described of the influence of the introduction of a dominant nuclear restorer gene into a cytoplasmic gynodioecious plant population. This study includes the consideration of separate effects on the relative female fertility of nuclear, cytoplasmic and sex (phenotypic) factors. Under these assumptions, the introduction of a dominant nuclear restorer gene into a cytoplasmic gynodioecious population can lead to several different situations: persistence of cytoplasmic gynodioecy, appearance of a nuclear-cytoplasmic gynodioecy, appearance of a nuclear gynodioecy or complete restoration of male fertility. The development of stable nuclear-cytoplasmic gynodioecy in a mathematical model is new and is possible because of the consideration of the separate relative female fertilities. The possibility of a transformation of cytoplasmic gynodioecy into a nuclear one has never been obtained before. It could constitute a route for the appearance of this latter kind of gynodioecy in plant populations. Finally, the possibilities of evolution of gynodioecy from one kind to the other, and towards dioecy, are discussed, as are some theoretical schemes that seem to correspond to observed actual situations.  相似文献   

8.
BACKGROUND AND AIMS: For the maintenance of gynodioecy (i.e. the coexistence of female and hermaphroditic plants), females need to compensate for the lack of pollen production through higher seed production or better progeny quality compared to hermaphrodites. In Geranium sylvaticum, females produce more seeds per flower than hermaphrodites. This difference in seed production might be modified by biological interactions with pollinators and herbivores that may favour one sex and thus affect the maintenance of gynodioecy. METHODS: Sexual dimorphism in flower size and flowering phenology, and in attractiveness to pollinators, pre-dispersal seed predators and floral herbivores were examined in natural populations of G. sylvaticum. KEY RESULTS: Pollinators preferred hermaphrodites 25 % more often than females in two of the three study populations, and floral herbivores attacked hermaphrodites 15 % more often than females in two of the six study populations. These preferences might be explained by the larger flower size of hermaphrodites. In contrast, seed predators did not prefer either sex. CONCLUSIONS: The data suggest that pollinator preference does not benefit females, whereas the higher floral herbivory of hermaphrodites might enhance the maintenance of females in G. sylvaticum. Thus, although the data support the view that ecological factors may contribute to the maintenance of gynodioecy, they also suggest that these contributions may vary across populations and that they may function in opposite directions.  相似文献   

9.
D Charlesworth  V Laporte 《Genetics》1998,150(3):1267-1282
Results are given of genetic studies of male sterility using plants from two natural populations from Sussex, England. Both populations have substantial frequencies of females, approximately 0.25 in population 1 and 0.60 in population 3. As in the few other gynodioecious populations studied in detail, many genetic factors are present. In population 1, there are at least two, and more likely three, different cytoplasmic types, one of which appears to produce male sterility in progeny from any hermaphrodite pollen donor; in other words restorer alleles for this cytoplasm are rare or absent from the population. The other two populations can be carried in hermaphrodites that have the dominant restorers. In population 1, there are also probably three restorer loci with complementary recessive male-sterility alleles, as well as a locus with duplicate action, which cannot produce male sterility unless the plant is also homozygous for the recessive allele at another locus. The results from population 3 are quite similar, though there was no evidence in this population for an unrestored sterility cytoplasm. A similar joint nucleocytoplasmic model with multiple restorers fits data from Thymus vulgaris.  相似文献   

10.
The role of mutations of small versus large effect in adaptive evolution is of considerable interest to evolutionary biologists. The major evolutionary pathways for the origin of dioecy in plants (the gynodioecy and monoecy-paradioecy pathways) are often distinguished by the number of mutations involved and the magnitude of their effects. Here, we investigate the genetic and environmental determinants of sex in Sagittaria latifolia, a species with both monoecious and dioecious populations, and evaluate evidence for the evolution of dioecy via gynodioecy or monoecy-paradioecy. We crossed plants of the two sexual systems to generate F1, F2 and backcross progeny, and grew clones from dioecious populations in low-and high-fertilizer conditions to examine sex inconstancy in females and males. Several lines of evidence implicate two-locus control of the sex phenotypes. In dioecious populations sex is determined by Mendelian segregation of alleles, with males heterozygous at both the male- and female-sterility loci. In monoecious populations, plants are homozygous for alleles dominant to male sterility in females and recessive to female sterility in males. Experimental manipulation of resources revealed sex inconstancy in males but not females. These results are consistent with predictions for the evolution of dioecy via gynodioecy, rather than the expected monoecy-paradioecy pathway, given the ancestral monoecious condition.  相似文献   

11.
Natural populations of Thymelaea hirsuta have previously been shown to comprise four distinct sexual morphs: males, females, protogynous individuals, i.e., first female then male, and protandrous individuals, i.e., first male then female. The objective of the present study has been to confirm the genetic basis of this sexual tetramorphism by quantifying morph ratios in the open-pollinated progeny of the four sexual phenotypes growing in a natural population. All four phenotypes were recovered in the progeny of each morph. All observed plants displayed a single sexual phenotype, thus confirming the genetic basis of the tetramorphism. The progeny sex ratios indicate that the genetic determination of sex in this species may be influenced by cytoplasmic factors, while the observed levels of functional female fertility suggest a near-dioecious system. The evolutionary significance of this tetramorphism as a transitional stage in the evolution of dioecy is discussed.  相似文献   

12.
The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited   总被引:22,自引:0,他引:22  
Budar F  Touzet P  De Paepe R 《Genetica》2003,117(1):3-16
Cytoplasmic male sterility (CMS) in plants is a classical example of genomic conflict, opposing maternally-inherited cytoplasmic genes (mitochondrial genes in most cases), which induce male sterility, and nuclear genes, which restore male fertility. In natural populations, this type of sex control leads to gynodioecy, that is, the co-occurrence of female and hermaphroditic individuals within a population. According to theoretical models, two conditions may maintain male sterility in a natural population: (1) female advantage (female plants are reproductively more successful than hermaphrodites on account of their global seed production); (2) the counter-selection of nuclear fertility restorers when the corresponding male-sterility-inducing cytoplasm is lacking. In this review, we re-examine the model of nuclear-mitochondrial conflict in the light of recent experimental results from naturally occurring CMS, alloplasmic CMS (appearing after interspecific crosses resulting from the association of nuclear and cytoplasmic genomes from different species), and CMS plants obtained in the laboratory and carrying mitochondrial mutations. We raise new hypotheses and discuss experimental models that would take physiological interactions between cytoplasmic and nuclear genomes into account.  相似文献   

13.
Parasite populations do not necessarily conform to expected patterns of genetic diversity and structure. Parasitic plants may be more vulnerable to the negative consequences of landscape fragmentation because of their specialized life history strategies and dependence on host plants, which are themselves susceptible to genetic erosion and reduced fitness following habitat change. We used AFLP genetic markers to investigate the effects of habitat fragmentation on genetic diversity and structure within and among populations of hemiparasitic Viscum album. Comparing populations from two landscapes differing in the amount of forest fragmentation allowed us to directly quantify habitat fragmentation effects. Populations from both landscapes exhibited significant isolation-by-distance and sex ratios biased towards females. The less severely fragmented landscape had larger and less isolated populations, resulting in lower levels of population genetic structure (F ST = 0.05 vs. 0.09) and inbreeding (F IS = 0.13 vs. 0.27). Genetic differentiation between host-tree subpopulations was also higher in the more fragmented landscape. We found no significant differences in within-population gene diversity, percentage of polymorphic loci, or molecular variance between the two regions, nor did we find relationships between genetic diversity measures and germination success. Our results indicate that increasing habitat fragmentation negatively affects population genetic structure and levels of inbreeding in V. album, with the degree of isolation among populations exerting a stronger influence than forest patch size.  相似文献   

14.
Small and relatively isolated populations that occupy fragmented habitat are at risk of local extinction. However, fitness consequences of fragmentation related to mating distance, such as inbreeding depression following increased self- and near-neighbor mating, may not follow standard expectations in species with specialized genetic systems. We investigated the effect of mating distance on progeny fitness in Calylophus serrulatus, a primarily autogamous, permanent translocation heterozygote that is restricted to prairie fragments in the North American tallgrass prairie region. We pollinated flowers by hand in the field with pollen sampled at various distances from the maternal parent within and between three populations in southeastern Minnesota. We raised the progeny in a greenhouse and measured fitness-related characters. Because their genetic system prevents loss of heterozygosity throughout much of the genome, regardless of inbreeding, permanent translocation heterozygotes are not expected to exhibit inbreeding depression. Consistent with this expectation, in no case did progeny of self matings suffer significantly reduced mean fitness compared to progeny from crosses between plants. Crosses between plants in the two closely situated (2 km) populations yielded progeny with fitness intermediate to their parents, but crosses between each of those populations and the more distant (20 km) population yielded progeny with reduced fitness, suggesting outbreeding depression at this largest spatial scale. Similarly, fitness of self-pollinated progeny and progeny from "near" crosses (<2 m) within populations tended to be higher than "mid" (10-25 m) and "far" (>35 m) cross-progeny fitness. Under the current conditions of fragmentation, it seems likely that the distant matings that produce outbreeding depression are rare. It appears that mean fitness in this species is maintained in the context of severe fragmentation of its populations, largely because of its genetic system.  相似文献   

15.
Sex-allocation models predict that the evolution of self-fertilization should result in a reduced allocation to male function and pollinator attraction in plants. The evolution of sex allocation may be constrained by both functional and genetic factors, however. We studied sex allocation and genetic variation for floral sex ratio and other reproductive traits in a Costa Rica population of the monoecious, highly selfing annual Begonia semiovata. Data on biomass of floral structures, flower sex ratios, and fruit set in the source population were used to calculate the average proportion of reproductive allocation invested in male function. Genetic variation and genetic correlations for floral sex ratio and for floral traits related to male and female function were estimated from the greenhouse-grown progeny of field-collected maternal families. The proportion of reproductive biomass invested in male function was low (0.34 at flowering, and 0.07 for total reproductive allocation). Significant among-family variation was detected in the size (mass) of individual male and female flowers, in the proportion of male flowers produced, and in the proportion of total flower mass invested in male flowers. Significant among-family variation was also found in flower number per inflorescence, petal length of male and female flowers, and petal number of female flowers. Except for female petal length, we found no difference in the mean value of these characters between selfed and outcrossed progeny, indicating that, with the possible exception of female petal length, the among-family variation detected was not the result of variation among families in the level of inbreeding. Significant positive phenotypic and broad-sense genetic correlations were detected between the mass of individual male and female flowers, between male and female petal length, and between number of male and number of female flowers per inflorescence. The ratio of stamen-to-pistil mass (0.33) was low compared to published data for autogamous species with hermaphroditic flowers, suggesting that highly efficient selfing mechanisms may evolve in monoecious species. Our results indicate that the study population harbors substantial genetic variation for reproductive characters. The positive genetic correlation between investment in male and female flowers may reflect selection for maximum pollination efficiency, because in this self-pollinating species, each female flower requires a neighboring male flower to provide pollen.  相似文献   

16.
Population fragmentation is often correlated with loss of genetic diversity and reduced fitness. Obligate out-crossing (dioecy) is expected to enhance genetic diversity, reduce genetic differentiation, and avoid inbreeding depression through frequent gene flow. However, in highly fragmented populations dioecy has only diminishing effects upon genetic structure as pollination limitations (e.g. flight distance of pollinators) most often restrict inter-population gene flow in insect pollinated species. In fragmented dry grasslands in northeastern Germany, we analysed genetic structure, fitness, and habitat quality of the endangered dioecious Silene otites (Caryophyllaceae). Using AFLP markers, a high level of differentiation among ten populations was found (F st = 0.36), while the intra-population genetic diversities (H E = 0.165–0.240) were similar as compared to hermaphroditic species. There was neither a correlation between geographic and genetic distance nor between genetic diversity and population size, which indicates reduced gene flow among populations and random genetic drift. Plant size was positively correlated with genetic diversity. Seed set and number of juveniles were positively related to population size. Higher total coverage resulted in reduced plant fitness, and the number of juveniles was negatively correlated to cryptogam cover. Additionally, we found a sex ratio bias towards more male plants in larger populations. Overall, our results indicate that on a regional geographic scale dioecy does not necessarily prevent genetic erosion in the case of habitat fragmentation, especially in the absence of long distance seed and pollen dispersal capacity.  相似文献   

17.
The Genetic Basis of Sex Ratio in Silene Alba (= S. Latifolia)   总被引:2,自引:1,他引:1       下载免费PDF全文
D. R. Taylor 《Genetics》1994,136(2):641-651
A survey of maternal families collected from natural populations showed that the sex ratio in Silene alba was slightly female biased. Sex ratio varied among populations and among families within a female biased population. Crosses among plants from the most female biased population and the most male biased population showed that the sex ratio polymorphism was inherited through or expressed in the male parent. Males from one family in particular exhibited a severe female bias, characterized by less than 20% male progeny. The inheritance of sex ratio was investigated using a reciprocal crossing design. Sex ratios from reciprocal crosses were significantly different, indicating either sex-linkage or cytoplasmic inheritance of sex ratio. The sex ratios produced by males generally resembled the sex ratios produced by their male parents, indicating that the sex ratio modifier was Y linked. The maternal parent also significantly influenced sex ratio through an interaction with the genotype of the paternal parent. Sex ratio, therefore, is apparently controlled by several loci. Although sex ratio bias in this species may be due to deleterious alleles on the Y chromosome, it is more likely to involve an interaction between loci that cause the female bias and a Y-linked locus that enhances the proportion of males in the progeny.  相似文献   

18.
  • Due to ongoing human impacts, plant species increasingly occur in landscapes that are highly fragmented, with remaining natural habitats occupying small areas, resulting in populations that are smaller and more isolated than in previous time periods. This changed metapopulation structure is expected to have negative impacts on seed production. For example, the proportion of female plants within gynodioecious populations may be more volatile due to genetic drift in small populations associated with small habitat fragments, with concomitant impacts on seed production. My aims were to determine: (i) if variation in proportion of females is larger in smaller fragments; and (ii) if such changes in female frequency in small fragments result in reduced seed production.
  • Thirty‐two populations of Lobelia spicata Lam., a gynodioecious species, were surveyed in 2000, 2001 and 2009 in the tallgrass prairie region of Midwestern North America (Illinois and Indiana, USA). Data were collected for: proportion of female plants, total number of flowering plants (measure of population size), seed set per plant and prairie fragment size (another measure of population size).
  • The proportion of females is more variable in smaller prairie fragments. Seed number per fruit decreases as the proportion of females increases in a population, but only significantly for female plants. The number of flowering plants is positively associated with fruit production for both genders. Populations within larger prairie fragments have higher seed production.
  • The reproductive consequences of habitat fragmentation depend on the plant breeding system. While both sexes were negatively impacted, females were more adversely affected.
  相似文献   

19.
The mode of inheritance of the male sterility trait is crucial for understanding the evolutionary dynamics of the sexual system gynodioecy, which is the co-occurrence of female and hermaphrodite plants in natural populations. Both cytoplasmic (CMS) and nuclear (restorer) genes are known to be involved. Theoretical models usually assume a limited number of CMS genes with each a single restorer gene, while reality is more complex. In this study, it is shown that in the gynodioecious species Plantago coronopus two new CMS-restorer polymorphisms exist in addition to the two that were already known, which means four CMS-restorer systems at the species level. Furthermore, three CMS types were shown to co-occur within a single population. All new CMS types showed a multilocus system for male fertility restoration, in which both recessive and dominant restorer alleles occur. Our finding of more than two co-occurring CMS-restorer systems each with multiple restorer genes raises the question how this complex of male sterility systems is maintained in natural populations.  相似文献   

20.
Hybrid zones may serve as bridges permitting gene flow between species, including alleles influencing the evolution of breeding systems. Using greenhouse crosses, we assessed the likelihood that a hybrid zone could serve as a conduit for transfer of nuclear male‐sterility alleles between a gynodioecious species and a hermaphroditic species with very rare females in some populations. Segregation patterns in progeny of crosses between rare females of hermaphroditic Schiedea menziesii and hermaphroditic plants of gynodioecious Schiedea salicaria heterozygous at the male‐sterility locus, and between female S. salicaria and hermaphroditic plants from the hybrid zone, were used to determine whether male‐sterility was controlled at the same locus in the parental species and the hybrid zone. Segregations of females and hermaphrodites in approximately equal ratios from many of the crosses indicate that the same nuclear male‐sterility allele occurs in the parent species and the hybrid zone. These rare male‐sterility alleles in S. menziesii may result from gene flow from S. salicaria through the hybrid zone, presumably facilitated by wind pollination in S. salicaria. Alternatively, rare male‐sterility alleles might result from a reversal from gynodioecy to hermaphroditism in S. menziesii, or possibly de novo evolution of male sterility. Phylogenetic analysis indicates that some species of Schiedea have probably evolved separate sexes independently, but not in the lineage containing S. salicaria and S. menziesii. High levels of selfing and expression of strong inbreeding depression in S. menziesii, which together should favour females in populations, argue against a reversal from gynodioecy to hermaphroditism in S. menziesii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号