首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Previously, we reported the molecular cloning of cDNA for the prophenoloxidase activating factor-I (PPAF-I) that encoded a member of the serine proteinase group with a disulfide-knotted motif at the N-terminus and a trypsin-like catalytic domain at the C-terminus [Lee, S.Y., Cho, M.Y., Hyun, J.H., Lee, K.M., Homma, K.I., Natori, S. , Kawabata, S.I., Iwanaga, S. & Lee, B.L. (1998) Eur. J. Biochem. 257, 615-621]. PPAF-I is directly involved in the activation of pro-phenoloxidase (pro-PO) by limited proteolysis and the overall structure is highly similar to that of Drosophila easter serine protease, an essential serine protease zymogen for pattern formation in normal embryonic development. Here, we report purification and molecular cloning of cDNA for another 45-kDa novel PPAF from the hemocyte lysate of Holotrichia diomphalia larvae. The gene encodes a serine proteinase homologue consisting of 415 amino-acid residues with a molecular mass of 45 256 Da. The overall structure of the 45-kDa protein is similar to that of masquerade, a serine proteinase homologue expressed during embryogenesis, larval, and pupal development in Drosophila melanogaster. The 45-kDa protein contained a trypsin-like serine proteinase domain at the C-terminus, except for the substitution of Ser of the active site triad to Gly and had a disulfide-knotted domain at the N-terminus. A highly similar 45-kDa serine proteinase homologue was also cloned from the larval cDNA library of another coleopteran, Tenebrio molitor. By in vitro reconstitution experiments, we found that the purified 45-kDa serine proteinase homologue, the purified active PPAF-I and the purified pro-PO were necessary for expressing phenoloxidase activity in the Holotrichia pro-PO system. However, incubation of pro-PO with either PPAF-I or 45-kDa protein, no phenoloxidase activity was observed. Interestingly, when the 45-kDa protein was incubated with PPAF-I and pro-PO in the absence, but not in the presence of Ca2+, the 45-kDa protein was cleaved to a 35-kDa protein. RNA blot hybridization revealed that expression of the 45-kDa protein was increased in the Holotrichia hemolymph after Escherichia coli challenge.  相似文献   

2.
The prophenoloxidase (proPO) activation pathway, like the vertebrate complement system, consists of a protease cascade and functions as a non-self-recognition system in these animals. Determining the molecular mechanism by which pattern recognition molecules differentiate non-self from self and transduce signals that stimulate defense responses is a key for understanding the ways in which innate immune systems are regulated. However, the proPO system is poorly defined at the molecular level. The proPO-activating system of the insect Holotrichia diomphalia comprises several components, some of which have been cloned and characterized, such as the novel 27-kDa proPO-activating factor-III (PPAF-III) from the plasma of H. diomphalia larvae and two prophenoloxidases. The PPAF-III gene encodes an easter-type serine protease zymogen consisting of 351 amino acid residues with a mass of 40 kDa. The purified 27-kDa PPAF-III specifically cleaved a 55-kDa proPPAF-II to generate a 45-kDa PPAF-II with or without Ca2+ present. Furthermore, two Holotrichia prophenoloxidases (proPO-I and -II) have been characterized, and their structural changes during activation were examined by in vitro reconstitution experiments. When the proPOs were incubated with PPAF-I, the 79-kDa proPOs were converted to 76-kDa proPOs, which did not exhibit any phenoloxidase (PO) activity. However, when the proPOs were incubated simultaneously with PPAF-I, proPPAF-II, and PPAF-III in the presence of Ca2+, a 60-kDa protein (PO-1) with PO activity was detected in addition to the 76-kDa proPO-II protein. These results indicate that the conversion of Holotrichia proPOs to enzymatically active phenoloxidase is accomplished by PPAF-I, PAF-II, and PPAF-III through a two-step limited proteolysis in the presence of Ca2+.  相似文献   

3.
A serine proteinase cascade in insect hemolymph mediates prophenoloxidase activation, a defense mechanism against pathogen or parasite infection. Little is known regarding its initiating proteinase or how this enzyme is activated in response to invading microorganisms. We have isolated from the tobacco hornworm, Manduca sexta, a cDNA encoding a modular protein designated hemolymph proteinase 14 (HP14). It contains five low density lipoprotein receptor class A repeats, a Sushi domain, a unique Cys-rich region, and a proteinase-catalytic domain. The HP14 mRNA exists in fat body and hemocytes of the naive larvae, and its level increases significantly at 24 h after a bacterial challenge. We expressed proHP14 with a carboxyl-terminal hexahistidine tag in a baculovirus/insect cell system and detected the recombinant protein in two forms. The 87-kDa protein was primarily intracellular, whereas the 75-kDa form was present in the medium. Interaction with peptidoglycan resulted in proteolytic processing of the purified zymogen and generation of an amidase activity. Supplementation of hemolymph with proHP14 greatly enhanced prophenoloxidase activation in response to Micrococcus luteus. These data suggest that proHP14 is a pattern recognition protein that binds to bacteria and autoactivates and triggers the prophenoloxidase activation system in the hemolymph of M. sexta.  相似文献   

4.
Many serine proteinase inhibitors of the serpin superfamily have evolved in vertebrates and invertebrates to regulate serine proteinase cascades that mediate the host defense responses. We have isolated an immune-responsive serpin from the tobacco hornworm, Manduca sexta. This inhibitor, M. sexta serpin-3, contains a reactive site loop strikingly similar to the proteolytic activation site in prophenoloxidase (pro-PO). Molecular cloning and sequence comparison indicate that serpin-3 is orthologous to Drosophila melanogaster serpin 27A, a regulator of melanization. M. sexta serpin-3 is constitutively present in hemolymph at a low concentration of 5-12 microg/ml and increases to 30-75 microg/ml after a microbial challenge. Recombinant serpin-3 efficiently blocks pro-PO activation in the hemolymph, and it forms SDS-stable acyl-enzyme complexes with purified pro-PO-activating proteinases (PAPs) from M. sexta. PAP-serpin-3 complexes were isolated by immunoaffinity chromatography from hemolymph activated by treatment with Micrococcus luteus. Kinetic analysis of PAP-serpin-3 association strongly suggests that serpin-3 is a physiological regulator of the pro-PO activation reaction.  相似文献   

5.
One of the biological functions of activated phenoloxidase in arthropods is the synthesis of melanin around invaded foreign materials. However, little is known about how activated phenoloxidase synthesizes melanin at the molecular level. Even though it has been suggested that the quinone derivatives generated by activated phenoloxidase might use endogenous protein components for melanin synthesis in arthropods, there is no report of protein components engaged in melanin synthesis induced by activated phenoloxidase. In this study, to isolate and characterize proteins involved in melanin synthesis, we prepared in vitro prophenoloxidase activating solution (designated G-100 solution), specifically showing phenoloxidase activity in the presence of Ca2+ and beta-1, 3-glucan, from the hemolymph of larvae of the coleopteran Tenebrio molitor by using a Sephadex G-100 column. When G-100 solution was incubated with dopamine to induce melanin synthesis in the presence of Ca2+ and beta-1,3-glucan, four types of protein (160 kDa, prophenoloxidase, phenoloxidase and 45 kDa) disappeared from SDS/PAGE under reducing conditions. Under identical conditions, but including phenylthiourea as a phenoloxidase inhibitor added to the G-100 solution, three of these proteins (160 kDa, phenoloxidase and 45 kDa) did not disappear. To characterize these melanization-engaging proteins, we first purified the 160-kDa melanization-engaging protein to homogeneity and raised a polyclonal antibody against it. Analysis of the cDNA revealed that it consisted of 1439 amino-acid residues and showed partial homology with Caenorhabditis elegans vitellogenin precursor-6 (19.7%). Western blot analysis showed that it disappeared when active phenoloxidase induced melanin synthesis. Furthermore, when the purified 160-kDa melanization-engaging protein was added to a G-100 solution deficient in it, melanin synthesis was enhanced compared with the same solution without the protein. These data support the conclusion that the 160-kDa vitellogenin-like protein is involved in arthropod melanin synthesis.  相似文献   

6.
康桦华  陆承平 《动物学报》2005,51(6):1109-1114
根据本课题组从克氏原螯虾中新发现的丝氨酸蛋白酶抑制物的基因序列(GenBank登录号CD644775)设计一对引物,应用逆转录-聚合酶链式反应(RT-PCR)技术,从螯虾血淋巴细胞中扩增出丝氨酸蛋白酶抑制物基因PCI188,将其连入原核表达载体pET-32a,转化至大肠杆菌Rosetta株和BL21株中进行蛋白表达,结果该蛋白只在前者表达。表达产物用免疫转印检测,出现50kD的特异性条带,与螯虾PCI188基因编码的蛋白大小相符。将融合蛋白纯化后免疫新西兰兔,用免疫血清与螯虾血淋巴作用后测定酚氧化酶活力,结果显示,酚氧化酶活力有所升高,从而首次证实螯虾PCI188编码的蛋白对丝氨酸蛋白酶有抑制作用。  相似文献   

7.
Analogous to human thrombin, prophenoloxidase-activating proteinase (PAP) is a terminal enzyme of a serine proteinase cascade in the tobacco hornworm Manduca sexta. In order to purify and study the activating enzyme for PAP from this insect, we produced the zymogen of PAP (proPAP) in a bacterial expression system. The affinity-purified protein was then used as an antigen to generate a specific rabbit antiserum. Immunoblot analysis indicated that the proPAP was present at a low level in Manduca larval hemolymph, but was induced by six- to eightfold in larvae that had been injected with Escherichia coli or Micrococcus lysodeikticus. To produce the native proenzyme for functional analyses, we constructed a recombinant baculovirus to infect Spodoptera frugiperda Sf21 cells. ProPAP was secreted into the medium at a low concentration of approximately 0.37 mg/liter under the optimal conditions. We then developed a simple, efficient scheme to enrich and purify this protein, which involves two lectin affinity and one HPLC ion-exchange chromatographic steps. Immunoblot analysis following SDS-polyacrylamide gel electrophoresis indicated that the recombinant proPAP is nearly identical in mobility to the zymogen from Manduca hemolymph. After the purified proPAP was added to the larval hemolymph, it was readily activated by an unknown proteinase in the presence of M. lysodeikticus.  相似文献   

8.
Prophenoloxidase activation is a component of the immune system in insects and crustaceans. We recently purified and cloned a new prophenoloxidase-activating proteinase (PAP-2) from hemolymph of the tobacco hornworm Manduca sexta [J. Biol. Chem. 278, 3552-3561]. As the terminal component of a putative serine proteinase cascade, this enzyme activates prophenoloxidase (proPO) via limited proteolysis. To purify and study the activating proteinase for PAP-2 from this insect, we expressed the zymogen of PAP-2 (proPAP-2) in insect cells infected by a recombinant baculovirus that harbors the cDNA. To facilitate the purification of proPAP-2, we modified a commercial vector (pFastBac1) by inserting a synthetic DNA fragment encoding a hexahistidine sequence, allowing fusion of the affinity tag to the carboxyl terminus of a protein. After Spodoptera frugiperda Sf21 cells were infected by the virus, recombinant proPAP-2 was efficiently secreted into the media at a concentration of 5.9 microg/ml under the optimal conditions. After ammonium sulfate precipitation, the proenzyme was purified to near homogeneity by affinity chromatography on Ni(2+)-NTA agarose. Western blot analysis indicated that the recombinant proPAP-2 has a mobility slightly lower than that of the zymogen from M. sexta hemolymph. The molecular mass and isoelectric point of proPAP-2 were determined to be 47,573+/-11Da and 6.6, respectively. After the purified proenzyme was added to hemolymph from induced M. sexta larvae, it was rapidly activated by an unknown proteinase in the presence of peptidoglycan.  相似文献   

9.
A cDNA encoding a protein resembling masquerade, a serine proteinase homologue expressed during embryogenesis, larval, and pupal development in Drosophila melanogaster, was identified in hemocytes of the adult freshwater crayfish, Pacifastacus leniusculus. The crayfish protein is similar to Drosophila masquerade in the following aspects: (a) overall sequence of the serine proteinase domain, such as the position of three putative disulfide bridges, glycine in the place of the catalytic serine residue, and the presence of a substrate-lining pocket typical for trypsins; (b) the presence of several copies of a disulfide-knotted motif in the putative propeptide. This masquerade-like protein is cleaved into a 27-kDa fragment, which could be detected by immunoblot analysis using an affinity-purified antibody against a synthetic peptide in the C-terminal domain of the protein. The 27-kDa protein could be immunoaffinity-purified from hemocyte lysate supernatant and exhibited cell adhesion activity in vitro, indicating that the C-terminal domain of the crayfish masquerade-like protein mediates cell adhesion.  相似文献   

10.
Upon wounding or infection, a serine proteinase cascade in insect hemolymph leads to prophenoloxidase (proPO) activation and melanization, a defense response against invading microbes. In the tobacco hornworm Manduca sexta, this response is initiated via hemolymph proteinase 14 (HP14), a mosaic protein that interacts with bacterial peptidoglycan or fungal beta-1,3-glucan to autoactivate. In this paper, we report the expression, purification, and functional analysis of M. sexta HP21 precursor, an HP14 substrate similar to Drosophila snake. The recombinant proHP21 is a 51.1 kDa glycoprotein with an amino-terminal clip domain, a linker region, and a carboxyl-terminal serine proteinase domain. HP14, generated by incubating proHP14 with beta-1,3-glucan and beta-1,3-glucan recognition protein-2, activated proHP21 by limited proteolysis between Leu(152) and Ile(153). Active HP21 formed an SDS-stable complex with M. sexta serpin-4, a physiological regulator of the proPO activation system. We determined the P1 site of serpin-4 to be Arg(355) and, thus, confirmed our prediction that HP21 has trypsin-like specificity. After active HP21 was added to the plasma, there was a major increase in PO activity. HP21 cleaved proPO activating proteinase-2 precursor (proPAP-2) after Lys(153) and generated an amidase activity, which activated proPO in the presence of serine proteinase homolog-1 and 2. In summary, we have discovered and reconstituted a branch of the proPO activation cascade in vitro: beta-1,3-glucan recognition--proHP14 autoactivation--proHP21 cleavage--PAP-2 generation--proPO activation--melanin formation.  相似文献   

11.
A serine proteinase pathway in insect hemolymph leads to prophenoloxidase activation, an innate immune response against pathogen infection. In the tobacco hornworm Manduca sexta, recombinant hemolymph proteinase 14 precursor (pro-HP14) interacts with peptidoglycan, autoactivates, and initiates the proteinase cascade (Ji, C., Wang, Y., Guo, X., Hartson, S., and Jiang, H. (2004) J. Biol. Chem. 279, 34101-34106). Here, we report the purification and characterization of pro-HP14 from the hemolymph of bacteria-injected M. sexta larvae. The zymogen, consisting of a single polypeptide with a molecular mass of 68.5 kDa, is truncated at the amino terminus. It is converted to a two-chain active form in the presence of beta-1,3-glucan (a fungal cell wall component) and beta-1,3-glucan recognition protein-2. The 45-kDa heavy chain contains four low-density lipoprotein receptor A repeats, one Sushi domain, and one unique cysteine-rich region, whereas the 30-kDa light chain contains a serine proteinase domain, which was labeled by [(3)H]diisopropyl fluorophosphate. Pro-HP14 in the plasma strongly binds curdlan, zymosan, and yeast and interacts with peptidoglycan and Micrococcus luteus. Addition of autoactivated HP14 elevated phenoloxidase activity level in the larval plasma. Recombinant M. sexta serpin-1I reduced prophenoloxidase activation by inhibiting HP14. These data are consistent with the current model on initiation and regulation of the prophenoloxidase activation cascade upon recognition of pathogen-associated molecular patterns by specific pattern recognition proteins.  相似文献   

12.
The prophenoloxidase (proPO) activation system is an important defense mechanism in arthropods, and activation of proPO to active phenoloxidase (PO) involves a serine proteinase cascade. Here, we report the purification and characterization of a small cationic protein CP8 from the tobacco hornworm, Manduca sexta, which can stimulate proPO activation. BLAST search showed that Manduca CP8 is similar to a fungal proteinase inhibitor-1 (AmFPI-1), an inducible serine proteinase inhibitor-1 (ISPI-1), and other small cationic proteins with unknown functions. However, we showed that Manduca CP8 did not inhibit proteinase activity, but stimulated proPO activation in plasma. When small amount (0.1 μg) of purified native CP8 or BSA was added to cell-free plasma samples and incubated for 20 min, low PO activity was observed in both groups. But significantly higher PO activity was observed in the CP8-group than in the BSA-group when more proteins (0.5 μg) were added and incubated for 20 min. However, when the plasma samples were incubated with proteins for 30 min, high PO activity was observed in both the CP8 and BSA groups regardless of the amount of proteins added. Moreover, when PO in the plasma was pre-activated with Micrococcus luteus, addition of CP8 did not have an effect on PO activity, and CP8/bacteria mixture did not stimulate PO activity to a higher level than did BSA/bacteria. These results suggest that CP8 helps activate proPO more rapidly at the initial stage. CP8 mRNA was specifically expressed in fat body and its mRNA level decreased when larvae were injected with saline or bacteria. However, CP8 protein concentration in hemolymph did not change significantly in larvae injected with saline or microorganisms.  相似文献   

13.
Molecular control of phenoloxidase-induced melanin synthesis in an insect   总被引:2,自引:0,他引:2  
The melanization reaction induced by activated phenoloxidase in arthropods must be tightly controlled because of excessive formation of quinones and excessive systemic melanization damage to the hosts. However, the molecular mechanism by which phenoloxidase-induced melanin synthesis is regulated in vivo is largely unknown. It is known that the Sp?tzle-processing enzyme is a key enzyme in the production of cleaved Sp?tzle from pro-Sp?tzle in the Drosophila Toll pathway. Here, we provide biochemical evidence that the Tenebrio molitor Sp?tzle-processing enzyme converts both the 79-kDa Tenebrio prophenoloxidase and Tenebrio clip-domain SPH1 zymogen to an active melanization complex. This complex, consisting of the 76-kDa Tenebrio phenoloxidase and an active form of Tenebrio clip-domain SPH1, efficiently produces melanin on the surface of bacteria, and this activity has a strong bactericidal effect. Interestingly, we found the phenoloxidase-induced melanization reaction to be tightly regulated by Tenebrio prophenoloxidase, which functions as a competitive inhibitor of melanization complex formation. These results demonstrate that the Tenebrio Toll pathway and the melanization reaction share a common serine protease for the regulation of these two major innate immune responses.  相似文献   

14.
《Insect Biochemistry》1990,20(7):709-718
A proteinase was purified from crayfish haemocytes by affinity chromatography on heparin-sepharose and phenyl-sepharose, followed by DEAE-cellulose ion-exchange chromatography. This proteinase could mediate the conversion of prophenoloxidase (proPO) to its active form, phenoloxidase (PO), and its was therefore designated a prophenoloxidase activating enzyme, ppA.The purified ppA had a molecular mass of about 36,000 Da. Since ppA was a proteinase able to cleave chromogenic peptide substrates of trypsin, and serine proteinase inhibitors were strongly inhibitory towards ppA activity, the enzyme appeared to be a serine type proteinase. It exhibited maximal enzyme activity at neutral and slightly alkaline pH, and was sensitive to heat inactivation at 58°C.  相似文献   

15.
Analogous to blood coagulation and complement activation in mammals, some insect defense responses (e.g. prophenoloxidase (proPO) activation and Toll pathway initiation) are mediated by serine proteinase cascades and regulated by serpins in hemolymph. We recently isolated Manduca sexta serpin-6 from hemolymph of the bacteria-challenged larvae, which selectively inhibited proPO-activating proteinase-3 (PAP-3) (Wang, Y., and Jiang, H. (2004) Insect Biochem. Mol. Biol. 34, 387-395). To further characterize its structure and function, we cloned serpin-6 from an induced fat body cDNA library using a PCR-derived probe. M. sexta serpin-6 is 55% similar in amino acid sequence to Drosophila melanogaster serpin-5, an immune-responsive protein. We produced serpin-6 in an Escherichia coli expression system and purified the soluble protein by nickel affinity and hydrophobic interaction chromatography. The recombinant protein specifically inhibited PAP-3 and blocked proPO activation in vitro in a concentration-dependent manner. Matrix-assisted laser desorption ionization-time of flight mass spectrometry indicated that the cleavage site of serpin-6 is between Arg373 and Ser374. Serpin-6 is constitutively present in hemolymph of naive larvae, and its mRNA and protein levels significantly increase after a bacterial injection. The association rate constant of serpin-6 and PAP-3 is 2.6 x 10(4) m(-1) s(-1), indicating that serpin-6 may contribute to the inhibitory regulation of PAP-3 in the hemolymph. We also identified the covalent complex of serpin-6 and PAP-3 in induced hemolymph by immunoaffinity chromatography and mass spectrometry. Furthermore, immulectin-2, serine proteinase homologs, proPO, PO, attacin-2, and a complex of serpin-6 and hemolymph proteinase-8 were also detected in the proteins eluted from the immunoaffinity column using serpin-6 antibody. These results suggest that serpin-6 plays important roles in the regulation of immune proteinases in the hemolymph.  相似文献   

16.
The N-terminal 70-kDa fragment of human plasma fibronectin, purified from a cathepsin D digest, is characterized by lack of stability. It is processed proteolytically during incubation in the presence of Ca2+ into 27-kDa N-terminal heparin-binding and 45-kDa collagen-binding domains. The N-terminal residue in the 27-kDa fragment was blocked as in native fibronectin. The 45-kDa fragments began with the sequences AAVYQP, AVYQP and VYQP (residues 260, 261, 262-265 of fibronectin) that correspond to the beginning of the collagen-binding domain. In the presence of Ca2+ the purified 27-kDa fragment underwent further processing finally leading to the cleavage of the bond K85-D86 and to the simultaneous appearance of a specific proteolytic activity. Inhibition studies suggests that the newly generated enzyme is a Ca(2+)-dependent serine proteinase. Among all assayed matrix proteins, the newly generated enzyme cleaves native fibronectin and its fragments. It is proposed that this fibronectinase may originate from the N-terminal domain of fibronectin.  相似文献   

17.
Monoclonal antibodies against a cell wall-associated 45-kDa proteinase from Lactobacillus helveticus CP790 were prepared and used for an immunoblotting analysis of the cell wall extract of CP790. They were found to react with an unidentified 46-kDa protein as well as the 45-kDa proteinase. The 46-kDa protein was copurified with the 45-kDa proteinase by affinity column chromatography using antibody-fixed Sepharose and sodium dodecyl sulfate-polyacrylamide gel electrophoresis and then extracted from the gels. An elution profile of the cyanogen bromide digest of the purified 46-kDa protein obtained by reversed-phase high-performance liquid chromatography was identical to that of the 45-kDa proteinase except for one peak. An analysis of the N-terminal 21-amino-acid sequence revealed that the 46-kDa protein possesses an extra 7 amino acids at the N terminus of the 45-kDa proteinase. The 46-kDa protein was produced at constant levels during fermentation in a skim milk medium, while the 45-kDa protein was mainly observed in the middle of the exponential phase of growth and was produced in proportion to the proteinase activity. Moreover, only the 46-kDa protein was detected in the crude extract of L. helveticus CP791, a variant strain of CP790 defective in proteinase activity. These data strongly suggest that the 46-kDa protein is a precursor, inactive form of the 45-kDa proteinase.  相似文献   

18.
F H Wolfe  A Szpacenko  K McGee  D E Goll 《Life sciences》1989,45(22):2093-2101
Five and nine-tenth kg of Elodea densa (Anacharis), a common aquarium plant, was extracted, and the extract was subjected to column chromatographic procedures that successfully purify the two Ca2(+)-dependent proteinases (calpains) and their protein inhibitor (calpastatin) from a variety of animal tissues. Although these procedures purified a protein having 55- and 16-kDa polypeptides, neither this protein nor any of the other chromatographic fractions contained detectable proteinase or calpastatin activity. Moreover, the purified 55- and 16-kDa polypeptides did not react on immunoblots with polyclonal antibodies that were monospecific for the calpains or calpastatin. We conclude that Elodea densa contains no calpain nor calpastatin at the level of 4 micrograms per g plant protein (1 part per 250,000), which was the sensitivity of our assay.  相似文献   

19.
The yeast proteinase that causes activation of the chitin synthetase zymogen has been purified by a procedure that includes affinity chromatography on an agarose column to which the proteinaceous inhibitor of the enzyme had been covalently attached. The purified enzyme yielded a single band upon disc gel electrophoresis at pH 4.5 in the presence of urea. At the same pH, but without urea, a faint band was detected in coincidence with enzymatic activity, whereas at pH 9.5, either in the absence or in the presence of sodium dodecyl sulfate, no protein zone could be seen. From sedimentation and gel filtration data, a molecular weight of 44,000 was estimated. The proteinase was active within a wide range of pH values, with an optimum between pH 6.5 AND 7. Titraton of the activity with the protein inhibitor from yeast required 1 mol of inhibitor/mol of enzyme. A similar result was obtained with phenylmethylsulfonyl fluoride, an indication that 1 serine residue is required for enzymatic activity. The enzyme exhibited hydrolytic activity with several proteins and esterolytic activity with many synthetic substrates, including benzoylarginine ethyl ester and acetyltyrosine ethyl ester.A comparison of the properties of the enzyme with those of known yeast proteinases led to the conclusion that the chitin synthestase activating factor is identical with the enzyme previously designated as proteinase B (EC 3.4.22.9). This is the first time that a homogeneous preparation of proteinase B has been obtained and characterized.  相似文献   

20.
Phenoloxidase (PO)-catalyzed reactions are crucial to the survival of insects after a pathogen or parasite infection. In Manduca sexta, active PO is generated from its precursor by a prophenoloxidase activating proteinase (PAP) in the presence of non-catalytic serine proteinase homologs (SPHs). The PAP and SPHs, located at the ends of a branched proteinase cascade, also require limited proteolysis to become functional. While the processing enzyme of M. sexta proPAP-2 and proPAP-3 is known, we are now investigating the proteolytic activation of proSPH-1 and proSPH-2. Here, we report the development of a series of Bac-to-Bac plasmid vectors for co-expression, secretion, and affinity purification of proSPH-1 and proSPH-2 from insect cells infected by one baculovirus. The purified proteins were characterized and used as substrates in a search for their activating enzymes in plasma of the larvae injected with microorganisms. Proteolytic processing occurred after the proSPHs had been incubated with hydroxyapatite or gel filtration column fractions. The cleaved proteins were active as a cofactor for proPO activation by PAP, and coexistence of SPH-1 and SPH-2 is essential for manifesting the auxiliary effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号