首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The effects of morphine on the constancy of spontaneous contractions (isometric developed TENSION = IDT and contractile FREQUENCY = CF), in uterine strips isolated from ovariectomized rats and the influence of naloxone, were explored. The inotropic responses to added prostaglandins (PGs) E2 and F and the influences of morphine and of morphine in the presence of naloxone on PG actions, were also determined. Moreover, the synthesis and outputs of PGs E and F from uteri and the effects of morphine alone and of morphine plus naloxone, were studied. Morphine (10−6 M) significantly depressed uterine constancy of IDT during the first hours following delivery, but its action on CF did not differ from controls. Naloxone, neither at 10−8 M nor at 10−6 M, altered the negative inotropoic influence of morphine on IDT. Exogenous PGs E2 and F, stimulated uterine inotropism in a concentration-dependent fashion. Morphine altered dose-response curves for exogenous PGE2, evoking a parallel surmountable shift to the right, but did not affect the inotropic action of added PGF. This antagonistic effect of the opioid was not altered by preincubation with naloxone. Basal synthesis and outputs of PGs E and F in uteri from ovariectomized rats were significantly depressed by morphine (10−6 M) but not altered by incubating tissues with morphine in presence of naloxone. Results are discussed in terms of a presumptive dual action of morphine on uterine motility, i.e., antagonizing PGE2 receptors and inhibiting the synthesis of some PGs by the uterus. These influences of morphine do not appear to be subserved by the activation of μ opioid receptors. Moreover, the possibility that endogenous opioids could play a relevant role modulating uterine PG influences, is also discussed.  相似文献   

2.
The effects of exogenous histamine (H) on prostaglandin (PG) generation and release in uteri isolated from diestrous rats and the influences of H2-receptors blockers (cimetidine and metiamide) on the output of uterine PGs, were explored. Moreover, the action of H on the uterine 9-keto-reductase, was also studied. Histamine (10(-4) M) failed to alter the basal output of PGE1 but reduced significantly the generation and release of PGE2 and augmented the output of PGF2 alpha. On the other hand, cimetidine (10(-5) M) enhanced the basal release of PGE2 but had no action on the outputs of PGs E1 or F2 alpha. The enhancing effect of H on the production and release of PGF2 alpha was abolished in the presence of cimetidine. Also, the antagonist reversed the influence of H on the output of PGE2. Metiamide, another H2-receptor antagonist, did not alter the basal control generation and release of uterine PGs, but antagonized the augmenting influence of H on PGF2 alpha uterine output, as much as cimetidine did, and prevented the depressive action of H on the release of PGE2 from uteri. Histamine (10(-4) M) significantly stimulated uterine formation of cyclic-adenosine monophosphate, an action which was antagonized by the presence of cimetidine (10(-5) M), a blocker of H2 receptors. Also, histamine (10(-5) M) and dibutyrylcyclic-adenosine monophosphate (DB-cAMP) at 10(-3) M, enhanced significantly the formation 3H-PGF2 alpha from 3H-PGE2. Results presented herein demonstrate that H is able to diminish the generation of PGE2 in uteri from rats at diestrus augmenting the synthesis of PGF2 alpha, apparently via the activation of H2-receptors, enhancing adenylate-cyclase. These effects appear to increase uterine 9-keto-reductase activity which transforms PGE2 into PGF2 alpha. Relationships between the foregoing results and those evoked by estradiol, are also discussed.  相似文献   

3.
Pretreatment of human lung fibroblasts with PGE2 but not PGF enhanced synthesis of prostaglandins (PGs). The effect of the pretreatment on PG synthesis was related to the concentration of PGE2 that was added to the culture medium. Pretreatment with PGE2 at 5 × 10−12M did not enhance PG synthesis whereas pretreatment with PGE2 at 5 × 10−6M induced a maximal effect. Production of PGs was increased following 1 day of pretreatment with PGE2 and was increased further following 3 days of pretreatment. The PGE2 treated cells showed only a slight increase in the bradykinin-induced release of radioactivity from cells prelabeled with [3H]arachidonic acid but showed a dramatic increase in the bradykinin-induced synthesis of radio-labeled PGs. The conversion of free arachidonate to PGs in both intact cells and in a cell-free preparation was increased by PGE2 pretreatment. The presence of cyclohexamide during the pretreatment did not inhibit the PGE2-induced activation of PG synthesis. Taken together, the results indicate that pretreatment of cells with PGE2 increased PG synthesis by augmenting the conversion of arachidonate to PGs.  相似文献   

4.
Prostaglandins (PG)I2, PGE2 and 6-keto PGF1α were infused directly into the gastric arterial supply at 10−9, 10−8 and 10−7 g/kg/min during an intra-gastric artery pentagastrin infusion in anesthetized dogs. 6-keto PGF1α was also infused at 10−6 g/kg/min. Gastric arterial blood flow was measured continuously with a non-cannulating electromagnetic flow probe and gastric acid collected directly from the stomach. PGI2 and PGE2 produced similar dose-dependent increases in blood flow with an increase of more than four-fold at the highest dose. Both PGs inhibited acid output over this dose range with PGE2 having 10 times the potency of PGI2. 6-keto PGF1α was at least 1000 times less active than PGI2 or PGE2 at increasing blood flow and failed to inhibit acid output even at 10−6 g/kg/min.  相似文献   

5.
Prostaglandins (PGs) E1 or F (1.4−8.4 × 10−8 M) contracted strips of rabbit aorta and increased the contractions produced by 1−6 × 10−7 M phenylephrine (PE). The addition of the PGs simultaneously with PE or after a low concentration of PE (2 × 10−7 M) significantly increased the PE-induced contractions. However, when the PGs were added after a higher concentration of PE (6 × 10−7 M) an additional increase in the PE-induced contraction was produced with PGF but not with PGE1. Isobolic plots of the data obtained from the simultaneous addition of PE and the PGs indicate that both PGs interact with PE in a synergistic or potentiative manner, suggesting that their effects are mediated through different receptor mechanisms. Addition of the PGs after a high dose of PE indicates that there may also be either qualitative or quantitative differences between PGE1 and PGF.  相似文献   

6.
Rat pancreas pieces spontaneously released PGE2 (2.3 ng/100 mg × 45 min) and PGF (7.6 ng/100 mg × 45 min). This release corresponds probably to a neo-synthesis since it was abolished by indomethacin. Carbamylcholine (≥ 10 μM), caerulein (≥ 10 nM) and secretin (≥ 10 nM) stimulated the release of PGE2 and PGF : the concentrations of stimulators required to increase PGs release were thus much higher than those which trigger enzyme secretion. Atropine specifically inhibited the cholinergic stimulation, whereas indomethacin blocked the stimulatory effects of all secretagogues. Stimulation of PGE2 and PGF release was reduced in a Ca++-free medium, abolished by EGTA and mimicked by the ionophore A23187, underscoring the crucial role of Ca++ in the regulation of PGs synthesis by the pancreas. Neither PGE2 nor PGF stimulated enzyme secretion in this system and indomethacin did not inhibit the secretory effect of carbamylcholine. Increased synthesis of prostaglandins in response to pancreatic secretagogues does not appear to be involved in the process of enzyme secretion.  相似文献   

7.
Prostaglandins (PG) of both the E and F series may serve as modulators of norepinephrine (NE) release from peripheral sympathetic neurons. We have studied the effects of PGE2 and PGF on the accumulation and release of 3H-NE in the CNS using synaptosomes isolated from rat hypothalami.The release of 3H-NE from synaptosomes superfused with Krebs-Ringer bicarbonate buffer was multiphasic with an initial fast release phase followed by a slower release. Raising KC1 concentration of the superfusion medium to 56mM during the slow release phase is known to stimulate 3H-NE release. PGE2 (1 × 10−6M) attenuated 3H-NE release during the fast phase and reduced the amount of 3H-NE released due to KC1 stimulation. At lower concentrations of PGE2 there was no change in the release profile. PGF was without effect on 3H-NE release at all concentrations tested.The accumulation of 3H-NE was significantly diminished by PGE2 at a concentration of 1 × 10−6M, while a lower concentration (1 × 10−7M) was ineffective. PGF had no effect on 3H-NE accumulation at all concentrations investigated.  相似文献   

8.
The possible existence of a selective and independent mechanism subserving the formation of prostaglandin E1 (PGE1) and of prostaglandin E2 (PGE2) has been reported in previous studies from our group. In the present experiments we have demonstrated that neutral lipid lipases play an important role yielding dihomo-gamma-linolenic acid for the formation of PGE1. Indeed, exogenous triglyceride lipase added to the incubation bathing solution at a concentration of 150 U/ml increased several fold the production of PGE1 by isolated uterine strips obtained from spayed rats. Nevertheless the presence of the enzyme did not modify significantly the synthesis and release of bisenoic PGs (PGE2 and PGF). When triarachidonin was added, as an artificial substrate into the incubating medium in order to detect the presence of endogenous triacylglycerol lipase, we observed a significant increment in the generation of PGE2 (p < 0.005) and of PGF (p < 0.001) without evident changes in the basal release of PGE1. On the other hand, the addition of phospholipase A2 (PLA2) at 0.2 U/ml, increased significantly the production of PGE2 (p < 0.001) but failed to alter the concentration of PGE1 in the incubating solution. Surprisingly, PLA2 did not enhance the synthesis of PGF in the present experiments, a situation for which we do not have a clear explanation. Exogenous bradykinin (10−6 M), a well known stimulant of PLA2 activity in several tissues, also increased significantly (p < 0.001) the production of PGE2 without altering that of PGE1. Results presented herein provide strong support to the notion that different enzyme mechanisms and different lipid stores are linked to the formation of PGE1 and PGE2 in isolated rat uteri.  相似文献   

9.
Prostaglandin biosynthesis was studied in the rat uterus during the oestrous cycle. Uterine homogenates were incubated for 20 minutes in the presence of exogenous substrate (2.10−5M). PGF and PGE2 were measured by R.I.A.. A sharp peak PGF and a smaller peak of PGE2 were observed at prooestrus, 20 h. Another small PGE2 peak occurred at dioestrus II, 15 h. The lowest values of both PGs were found on dioestrus, 15 h. Plasma oestradiol concentration were highest at proestrus, 15 h and 20 h. A sharp progesterone peak occurred at prooestrus, 20 h. The PGF peak is next to the oestradiol peak and is superimposable or lags slightly beyond the progesterone peak.Incubation with 14C arachidonic acid and subsequent analysis of extracts by TLC and scanning showed that the major metabolite is PGI2, identified as 6 keto PGF. The conversion rate of arachidonic acid into 6 keto PGF is 5 times higher than into PGF. 6 keto PGF was further identified by GC/MS. No significant difference was observed between 6 keto PGF production during oestrus and dioestrus.  相似文献   

10.
The accumulation and output of 3H -prostaglandins (PGs), E2 and F2α, into and from uterine strips isolated from ovariectomized rats, either in presence or in absence of exogenous progesterone, were explored. Tissue-to-medium ratio of 3H - counts (T/M-ratio), was determined. The same was done in solutions containing 14C-sucrose. During a 60 min incubation period in a solution containing 3H -PGF2α, a net accumulation of radioactivity was evident in control (no progesterone) uterine slices. The T/M-ratio for 3H-PGF2α, increased with time, reaching maximal values at 45 min. Progesterone (100 ug.ml−1) attenuated the uptake process, as evidenced by stable values of T/M-ratio, as time progressed. On the other hand, control T/M-ratio for fluenced by the presence of exogenous progesterone. Regarding labelled PG release from the tissue, it was observed that, during an experimental period of 60 min, most tritium from control slices was released within the first 30 min after incubation with 3H -PGF2α, whereas, following the presence and subsequent removal of exogenous progesterone, the bulk of 3H -released took place at 6–70 min. On the other hand, the release of 3H after an incubation with 3H -PGE2, was also maximal as that for 3H -PGF2, α within the first 30 min and resulted not altered after a period of exposure and removal of progesterone. The foregoing results suggest an specific pharmacological effect of progesterone, attenuating the uptake and retarding the outflow of PGF2α, but not that of PGE2, into and from uterine slices of ovariectomized rats. Findings reported herein are discussed in terms of progesterone priming and withdrawal, in relation to PGF2α fluxes in the rat uterus during the sex cycle, as well as in relation to PG binding to tissue receptors.  相似文献   

11.
The effect of cupric ions on the human uterus and the involvement of prostaglandins (PGs) in mediating this effect was studied by recording of isometric contractions of isolated myometrial strips and pieces of uterine arteries, and by intrauterine pressure recordings in women before the onset of menstruation. , CuCl2 in concentrations of 10−4 M and higher caused a significant inhibition of myometrial contractile activity, but no effect on the artery preparations was seen. Furthermore, the contractile response of myometrial strips to PGF and PGE2 (10 ng/ml) decreased in the presence of CuCl2 in concentrations of 5 and 50 μmol. , instillations of 0.3, 1.0 and 2.0 mM of CuCl2 in 0.7 ml of saline solution into the uterine cavity caused a dose-dependent stimulation of uterine activity, but after pretreatment with naproxen, 500 mg orally, the effect of these substances was abolished. After naproxen treatment, but during infusion of PGF (5 μg/min), the response to the CuCl2 solutions was partially restored. It is suggested that cupric ions, at high concentrations, have an inhibiting effect on myometrial activity. The stimulatory effect of low doses of CuCl2 seen after installation into the uterine cavity is largely exerted via initiation of synthesis and release of endometrial PGs.  相似文献   

12.
Prostaglandins have been implicated in the process of uterine decidualization , but sites of action are uncertain. Since one of the earliest changes in endometrial stroma following induction of decidualization is an increase in alkaline phosphataseactivity, we have investigated the effects of PGs on stromal cell alkaline phosphatase activity . Immature rats were pretreated with hormones to sensitize their uteri for the decidual cell reaction. Endometrial stromal cells were isolated and cultured for up to 4 days with PGE2 (0–10 μg/ml) or PGF2 (0–10 μg/ml) Analysis of variance revealed a highly significant interaction between day of culture and concentration of PGE2 in medium (P<0.01). Stromal cell alkaline phosphatase activity decreased significantly with increasing culture duration (P<0.01). In the presence of PGE2, alkaline phosphatase activity was significantly higher (P<0.01) regardless of day of culture. In contrast, PGF had only a small and inconsistent effect. These data indicate that PGs, and in particular PGE2, can act directly upon stromal cells.  相似文献   

13.
We studied PGE2 specific binding sites in human myometrial microsomes prepared from uterine specimens obtained by hysterectomy (women between 38 and 55 years of age). Competition experiments showed that the potency order for various prostaglandins (PGs) was : PGE2 ≥ PGE1 PGF > Iloprost ≥ Carbacyclin ZK 110841 (PGD2 analogue). These relative affinities indicated that the receptor was of the EP type.In kinetic experiments GTP, GppNHp and GTPγS increased the rate of PGE2 binding (steady state was reached more rapidly in the presence of nucleotides) but maximal specific binding was not significantly different. Complete dissociation could not be obtained, even in the presence of GTP. Only 50% of maximal binding was readily dissociable. The dissociation rate was 4.56.10−4 sec−1 (half time of about 660 sec) and in the presence of GTP analogues it was slightly increased (k−1 = 7.16 10−4 sec−1 half time 420 sec.). Scatchard analysis of saturation curves showed an increase in ligand receptor affinity in the presence of GTP or nucleotide analogues: the Kd shifted from 9.66 ± 2.8.10−9 M to 4.96 ± 1.25.10−9M, but the number of binding sites did not change significantly (310 ± 37 to 350 ± 17 fmol/mgP). The effect of GTP was observed at a concentration of 5.10−4M. GppNHp and GTPγS were effective at 1.10−5M. Pretreatment of myometrial membranes with pertussis or cholera toxins had no effect on PGE2 binding to membrane sites. Our conclusion is that GTP induced conversion of a population of low affinity sites into a population of higher affinity sites. This effect of guanine nucleotides was described in adipocytes and kidney medulla.Competition studies with PGE2 analogues (sulprostone, 17-phenyl-ω-trinor PGE2, M&B 28,767, misoprostol, butaprost) showed that this receptor mediates a contractile response and is probably an EP3 subtype.  相似文献   

14.
Preliminary characterization indicated the presence of separate prostaglandin (PG)E1 and (PG)F binding sites in membrane fractions prepared from bovine corpora lutea. These differ in the rate and temperature dependence of the specific binding. Equilibrium binding data indicate the apparent dissociation constants as 1.32 × 10−9M and 2.1 × 10−8M for PGE1 and PGF, respectively. Competition of several natural prostaglandins for the PGE1 and PGF bovine luteal specific binding sites indicates specificity for the 9-keto or 9α-hydroxyl moiety, respectively. Differences in relative ability to inhibit 3H-PG binding were found due to sensitivity to the absence or presence of the 5,6-cis-double bond as well.Bovine luteal function was affected following treatment of heifers with 25 mg PGF as measured by reduced estrous cycle length, decreased corpus luteum size and significantly decreased plasma progesterone levels. In contrast, treatment with 25 mg PGE1 resulted in cycle lengths comparable to those of non-treated herdmates with no apparent modification in corpus luteum size. However, plasma progesterone levels were increased significantly following PGE1 treatment compared to pretreatment values. In so far as data obtained on PGF relative binding affinity to the bovine CL can be compared to data obtained independently on PGF induced luteolysis in the bovine, PGF relative binding to the CL and luteolysis appeared to be associated. By similar reasoning, there was no apparent relationship between PGE1 relative binding affinity in the luteal fractions and luteolysis in estrous cyclic cattle.  相似文献   

15.
Mouse calvaria were maintained in organ culture without serum additives. Basal active resorption, as measured by 45Ca and hydroxyproline release, was significantly inhibited to 74% control levels by indomethacin (1.4 × 10−7 M). Prostaglandin F and prostaglandin E2 production, determined by radioimmunoassay, were both significantly lowered by this concentration of indomethacin. DNA, protein and hydroxyproline synthesis, as indices of cell toxicity, were unaffected by low concentrations of indomethacin, while concentrations of 1.4 × 10−6M inhibited protein synthesis (p<0.005). In the presence of indomethacin (1.4 × 10−7M) both PGE2 and PGF stimulated resorption in a dose-dependent manner, with PGE2 being the more potent. Neither prostaglandin affected hydroxyproline synthesis at low concentrations, but PGE2 had a marked inhibitory action at a higher concentration (10−6M). In combination, the effects of PGE2 and PGF showed no evidence of synergism or any antagonistic action. The study shows that in vitro calcium and hydroxyproline resorption in the unstimulated mouse calvaria are inhibited by indomethacin at concentrations measured in serum during human therapy. The decreased PGF and PGE2 production associated with this decreased bone resorption in the presence of non-toxic concentrations of indomethacin would suggest a role for these prostaglandins in maintaining the basal resorption of cultured bone.  相似文献   

16.
To determine the influence of prostaglandins on cAMP metabolism in renal papillary collecting tubule (RPCT) cells, intracellular cAMP levels were measured after incubating cells with prostaglandins (PGs) alone or in combination with arginine vasopressin (AVP). PGE1, PGE2 and PGI2, but not PGD2 or PGF, increased intracellular cAMP concentrations. At maximal concentrations (10−5 tthe effects of PGE2 plus PGI2 (or PGE1), but not of PGI2 plus PGE1, were additive suggesting that at least two different PG receptors may be present in RPCT cell populations. Bradykinin treatment of RPCT cells caused an accumulation of intracellular cAMP which was blocked by aspirin and was quantitatively similar to that observed with 10−5 PGE2. PGs, when tested at concentrations (e.g. 10−9 ) which had no independent effect on intracellular cAMP levels, did not inhibit the AVP-induced accumulation of intracellular cAMP in RPCT cells. These results indicate that PGs do not block AVP-induced accumulation of intracellular cAMP in RPCT cells at concentrations of PGs which have been shown to inhibit the hydroosmatic effect of AVP on perfused collecting tubule segments. However, at higher concentrations of PGs (e.g. 10−5 ), the effects of AVP plus PGE1, PGE2, PGI2 or bradykinin on intracellular cAMP levels were not additive. Thus, under certain conditions, there is an interaction between PGs and AVP at the level of cAMP metabolism in RPCT cells.  相似文献   

17.
Spontaneous changes in isometric developed tension (IDT) as a function of time after isolation (contractile constancy) in uteri from control-castrated and castrated chronic streptozotocin-diabetic rats, were explored. The effects of injecting 17-beta estradiol (E0) were also studied. No differences in the minor changes of contractile constancy, between control and diabetic preparations, during a period of 60 min, were detected, whereas uteri from non-diabetic EO injected animals (0.5+1.0 ug, prior to sacrifice), exhibited a profound reduction of IDT, significantly greater than in tissues obtained from E0 injected-diabetic rats. Moreover, basal generation and outputs into the suspending solution of prostaglandins (PGs) E1, E2 and F, were explored in the same groups, at 60 min following tissue isolation. The basal outputs of these three PGs were similar in castrated control rats, but preparations from castrated-diabetics released significantly more PGE1. The administration of E0 to castrated-diabetics, failed to alter the releases of the three PGs explored. In addition, the metabolism of labelled arachidonic acid (AA) into different prostanoids (6-keto-PGF1, PGF2, PGE2 and thromboxane B2-TXB2), was also investigated. The non-diabetic spayed rat uterus converted AA into these four prostanoids, the transformation into 6-keto-PGF1α (as an index of PGI2 formation) being the most prominent. In preparations from diabetic rats the formation) being the most prominent. In preparations from diabetic rats the formation of 6-keto-PGF1α, PGF2α and PGE2, was significantly smaller than in controls, whereas a greater % of TXB2 formation (as an index of TXA2), was detected. On the other hand uterine preparations from non-diabetic spayed rats injected with E0 formed less 6-
amounts of PGF2α or of TXB2 from AA, than E0 injected controls, whereas uteri from castrated diabetic animals injected with E0, formed a similar % of 6-keto-PGF1α, PGF2α and PGE2 from AA, than tissue preparations from non-estrogenized controls. However, the enhanced transformation of the labelled fatty acid precursor (AA) into TXB2 in the diabetic group, was significantly reduced by the steroid. The role of the augmented generation and release of PGE1 in uteri from diabetic rats is discussed in terms of precedents indicating the relevance of PGs type E supporting rat uterine motility. In addition the influence of E0 is attractive, because its reducing effect on TX production, in diabetes, a disease known to be accompanied by enhanced synthesis of vasoconstrictor and platelet aggregation TXA2, and by frequent obstructive circulatory problems.  相似文献   

18.
The present experiments report the effects of estradiol or of progesterone on the activity of 15-prostaglandin-dehydrogenase (PGDH) in the uterus of spayed rats. When the substrate was PGF the treatment with progesterone (4 mg.day−1, two days) or with estradiol-17-beta (0.5 ug + 1 ug) did not show any effect on the activity of the enzyme. On the contrary, uteri from ovariectomized rats injected with a higher dose of estradiol- 17-beta (0.5 ug + 50 ug) exhibited a significant increment. When the substrate was PGE2, progesterone failed again to modify the enzyme activity, whereas estradiol, both at a low and at a high doses, enhanced significantly the uterine PGDH activity. The possibility of two different PGDHs for each PG and the role of estradiol in enhancing PGE2 catabolism into 15-keto- PGE2 as a mechanism subserving the effect of estrogens on the output of this PG in the rat uterus, are discussed.  相似文献   

19.
Specificity of the effect of prostaglandins (PGs) on hormone release by the anterior pituitary gland was studied using cells in primary culture. Growth hormone (GH) release is stimulated by all eight PGs studied, PGE1 and E2 being 1000-fold more potent than the corresponding PGFs. The release of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and prolactin (PRL) remains unchanged upon addition of PGEs. While the basal release of thyrotropin (TSH) is only slightly stimulated by concentrations of PGEs above 10−6M, an important potentiation of the stimulatory effect of thyrotropin-releasing hormone on TSH release is observed. The release of GH, TSH and LH is stimulated equally well by PGAs and PGBs at concentrations higher than 10−6M, 3 × 10−6M, and 10−5M, respectively. PGFs do not affect the release of any of the measured pituitary hormones at concentrations below 10−4M. The stimulation of GH release by PGE2 can be inhibited by the PG antagonist 7-oxa-13-prostynoic acid, a half-maximal inhibition being found at a concentration of 4 × 10−5M of the antagonist in the presence of 10−6M PGE2. In the presence of somatostatin (10−8M), the inhibition of GH release cannot be reversed by PGE2 at concentrations up to 10−4M. 8-bromo-cyclic AMP-induced GH release is additive with that produced by PGE2.The present data show that 1) of the five pituitary hormones measured, only GH release is stimulated by prostaglandins at relatively low concentrations, 2) the PGE-induced GH release can be competitively inhibited by 7-oxa-13-prostynoic acid, 3) the inhibition of GH release by somatostatin cannot be reversed by PGE2 and 4) the PGEs increase the responsiveness of the thyrotrophs to TRH.  相似文献   

20.
The exogenous and endogenous syntheses of prostaglandins (PG's) by the cochlea of adult mongolian gerbils were studied . After incubation of the whole membraneous cochlea with [3H]-arachidonic acid (AA), syntheses of PGF, 6-keto PGF, PGE2, thromboxane (TX) B2 and PGD2 were evidenced in this order. The synthesis of radioactive PG's was almost completely inhibited by incubation with 10−5 M indomethacin. No significant amounts of those PG's were detected by radioimmunoassay (RIA) in the cochlea obtained from animals killed by microwave irradiation at 5.0 kw for 0.8 sec. However, when the homogenate of the whole membraneous cochlea obtained from animals without microwave irradiation was incubated at 37°C for 0–15 min, PGD2, PGE2, PGF2α and 6-keto PGF1α were found to be formed from endogenous AA in the cochlea by RIA. PG's were formed already at 0 time to considerable level (PGD2, PGF2α and 6-keto PGF1α, 90–120 pg/cochlea; PGE2, 370 pg/cochlea), reached to the maximum level (PGD2, PGF2α and 6-keto PGF1α, 170–200 pg/cochlea; PGE2, 500 pg/cochlea) at a 5-min incubation, and then gradually decreased. On the other hand, the amount of TXB2 was lower than the detection limit by RIA (<50 pg/cochlea) even after the incubation. The cochlea was dissected into three parts: organ of Corti + modiolus (OC + M), lateral wall (LW), and cochlear nerve (CN), and then PG's formed by these tissues were determined after a 5-min incubation of the homogenates. In the CN and OC + M, PGE2 was the major PG (100 and 160 pg/tissue, respectively), and the amounts of PGD2, PGF2α and 6-keto PGF1α were about of those of PGE2. In the LW, the amounts of PGD2, PGE2, PGF2α and 6-keto PGF1α were about the same level (70–100 pg/LW).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号