首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Several rhizobacteria play a vital role in plant protection, plant growth promotion and the improvement of soil health. In this study, we have isolated a strain of Lysobacter antibioticus HS124 from rhizosphere and demonstrate its antifungal activity against various pathogens including Phytophthora capsici, a destructive pathogen of pepper plants. L. antibioticus HS124 produced lytic enzymes such as chitinase, β-1,3-glucanase, lipase, protease, and an antibiotic compound. This antibiotic compound was purified by diaion HP-20, silica gel, sephadex LH-20 column chromatography and high performance liquid chromatography. The purified compound was identified as 4-hydroxyphenylacetic acid by gas chromatography-electron ionization (GC-EI) and gas chromatography-chemical ionization (GC-CI) mass spectrometry. This antibiotic exhibited destructive activity toward P. capsici hyphae. In vivo experiments utilizing green house grown pepper plants demonstrated the protective effect of L. antibioticus HS124 against P. capsici. The growth of pepper plants treated with L. antibioticus culture was enhanced, resulting in greater protection from fungal disease. Optimum growth and protection was found when cultures were grown in presence of Fe(III). Additionally, the activities of pathogenesis-related proteins such as chitinase and β-1,3-glucanase decreased in roots, but increased in leaves with time after treatment compared to controls. Our results demonstrate L. antibioticus HS124 as a promising candidate for biocontrol of P. capsici in pepper plants.  相似文献   

2.
Compost sustaining a multitude of chitinase-producing bacteria was evaluated in a greenhouse study as a soil amendment for the control of late blight (Phytophthora capsici L.) in pepper (Capsicum annuum L.). Microbial population and exogenous enzyme activity were measured in the rhizosphere and correlated to the growth and health of pepper plant. Rice straw was composted with and without a chitin source, after having been inoculated with an aliquot of coastal area soil containing a known titer of chitinase-producing bacteria. P. capsici inoculated plants cultivated in chitin compost-amended soil exhibited significantly higher root and shoot weights and lower root mortality than plants grown in pathogen-inoculated control compost. Chitinase and β-1,3-glucanase activities in rhizosphere of plants grown in chitin compost-amended soil were twice that seen in soil amended with control compost. Colony forming units of chitinase-producing bacteria isolated from rhizosphere of plants grown in chitin compost-amended soil were 103 times as prevalent as bacteria in control compost. These results indicate that increasing the population of chitinase-producing bacteria and soil enzyme activities in rhizosphere by compost amendment could alleviate pathogenic effects of P. capsici.  相似文献   

3.
To evaluate the biocontrol effectiveness of chitinase-producing bacterium, Paenibacillus illinoisensis strain KJA-424 against pathogenic strain of Phytophthora capsici in pepper plants, growth response and kinetics of pathogen related (PR) proteins were estimated after inoculation with P. capsici (P), and with a combination of P. capsici and strain KJA-424 cell culture (P+A). Fresh weight and chlorophyll content in shoots at P+A-treated plants significantly increased by 23.4 and 34.2%, respectively after 7days of inoculation, compared to P-treated plants. Root mortality in P+A-treated plants was significantly reduced compared to P-treated plants. Seven days after inoculation, the activities of -1,3-glucanase, cellulase and chitinase in P-treated roots had decreased by 54.8, 36.5 and 52.8%, respectively, compared to P+A-treated roots, while those in P-treated leaves increased by 22.8, 36.3 and 23.8%, respectively, compared to those in P+A-treated leaves. The activities of -1,3-glucanase, cellulase and chitinase in roots are negatively correlated with root mortality. All these results suggest that the inoculation of an antagonist, P. illinoisensis alleviates root mortality, reduction of PR proteins in roots, and activates of PR proteins in leaves infected by P. capsici.  相似文献   

4.
The pepper accession Criollo de Morelos 334 is the most efficient source of resistance currently known to Phytophthora capsici and P. parasitica. To investigate whether genetic controls of resistance to two Phytophthora species are independent, we compared the genetic architecture of resistance of CM334 to both Phytophthora species. The RIL population F5YC used to construct the high-resolution genetic linkage map of pepper was assessed for resistance to one isolate of each Phytophthora species. Inheritance of the P. capsici and P. parasitica resistance was polygenic. Twelve additive QTLs involved in the P. capsici resistance and 14 additive QTLs involved in the P. parasitica resistance were detected. The QTLs identified in this progeny were specific to these Phytophthora species. Comparative mapping analysis with literature data identified three colocations between resistance QTLs to P. parasitica and P. capsici in pepper. Whereas this result suggests presence of common resistance factors to the two Phytophthora species in pepper, which possibly derive from common ancestral genes, calculation of the colocation probability indicates that these colocations could occur by chance.  相似文献   

5.
This study investigated the induced defence responses and protective effects on susceptible tomato (Lycopersicon esculentum Mill.) against Xanthomonas vesicatoria (Doidge) by a heat-treated aqueous extract (VLA) from dry necrotic tissue of ‘Lobeira’ (Solanum lycocarpum St. Hil.) branches infected with the fungus Crinipellis perniciosa (Stahel) compared with acibenzolar-S-methyl (ASM), a commercial inducer of resistance. Plantlets were sprayed with VLA and ASM and challenged 4 days later with a virulent strain of X. vesicatoria, under greenhouse conditions. The disease severity, fresh weight of shoots, the activities of phenol peroxidase (POX), polyphenol oxidase (PPO), chitinase (CHI), phenylalanine ammonia-lyase (PAL), lignin deposition, and soluble phenolic contents were evaluated in the leaf tissues. Reduction of the bacterial spot severity was observed in plantlets treated with VLA which conferred 63% of the ASM protection. This protective effect and lesion reduction promoted by VLA were probably associated particularly with POX and PAL activities, lignin deposition on leaf tissues and, to a less extent, CHI activity.  相似文献   

6.
Naturally occurring endophytic bacteria from black pepper vines were found to exhibit strong antagonistic activities against Phytophthora capsici and Radopholus similis. In order to deliver these bacterial strains, as well as to produce disease-free plantlets of black pepper, a pre-plant stem and root bacterisation was standardised. Stem bacterisation with endophytic Pseudomonas spp. was found to suppress P. capsici infection (over 90% reduction in lesion length) on cut shoots. Pre-plant root bacterisation with Pseudomonas aeruginosa, Pseudomonas putida and Bacillus megaterium yielded over 60% of plantlets free from P. capsici infection on roots. Curtobacterium luteum and B. megaterium recorded over 70% reduction of nematode population in soil with concomitant production of over 65% of nematode-free plantlets. Besides protecting the plants from the pathogens, the bacteria were also found to enhance the growth of rooted cuttings. The biocontrol potential of the above endophytic bacteria and their exploitation for disease management in the black pepper nursery are discussed.  相似文献   

7.
To investigate the variations of the enzymes responsible for lignification, after inoculation with Phytophthora capsici and/or Paenibacillus illinoisensis KJA-424, in relation to biocontrol of Phytophthora blight in pepper, roots of two-month-old plants were inoculated with P. capsici inoculation (P), and co-inoculation of P. capsici and P. illinoisensis cell cultures (P + A). Root mortality of pepper plants induced by inoculation of P. capsici was completely recovered by co-inoculation with antagonistic KJA-424. At day 7, peroxidase (POD) activity increased by 36.7% in P-treated roots but by 7.1% only in P + A-treated, compared with control. Polyphenol oxidase (PPO) activity increased for 3 days and then drastically decreased in P-treated roots but maintained a constant level in control and P + A-treated. At day 7, PPO activity in P-treated leaves decreased but recovered to the level of control in the P + A-treated. Three major POD isozymes (45, 53, and 114 kDa) were shown in P-treated roots, while two major (53 and 114 kDa) in control and P + A-treated, suggesting that the 45 kDa of POD was actively induced in P-treated roots but not induced in P + A-treated roots. A PPO isozyme of 80 kDa was induced in P-treated roots but not induced by co-treated with KJA-424. In leaves, the POD isozyme of 45 kDa appears to be systemically induced in P-treated only. The PPO isozyme of 80 kDa in leaves was not induced by pathogen challenge but recovered by co-inoculated with P. illinoisensis. All these results suggest that the inoculation of an antagonist, P. illinoisensis alleviates root mortality, activates of lignification-related enzymes and induction of the isozymes in pepper plants infected by P. capsici.  相似文献   

8.
For field application of a bacterial strain used to control Phythophthora capsici, we will need a biologically and economically efficient carrier medium. The known antagonist Paenibacillus ehimensisKWN38 was grown in a grass medium where it showed high antifungal and lytic enzyme activities. To demonstrate the potential of P. ehimensisKWN38 for biocontrol of late blight disease in pepper, pot trials were conducted by treating the 1‐month‐old plants with water (W), a selected grass medium (G3), G plus P. ehimensisKWN38 inoculation (G3P) or synthetic fungicide (F). The shoot dry weight in G3P was higher than that in W and F treatments at 15 days after zoospore infection (DZI). The root dry weight in G3P was also higher than that in W. The root mortality of G3 and W increased over 58 and 80% at 15 DZI, and some plants in those treatments wilted due to the failure of root physiology. The plants in G3P and F survived well because of their better root health conditions. Soil cellulase activity of G3P was consistently higher than that of W and F at earlier observation times (0, 2 and 6 DZI). The root β‐1,3‐glucanase activity of G3P promptly increased to maximum shortly after zoospore infection and reached the maximum value of 51.12 unit g?1 of fresh weight at 2 DZI. All these results indicate that inoculation of P. ehimensisKWN38 to the root zone of potted pepper plants increases plant growth, root and soil enzyme activities and alleviates the root death caused by infection with P. capsici zoospores.  相似文献   

9.
Criollo de Morelos 334 (CM334) is one of the most promising sources of resistance to Phytophthora capsici in pepper. This Mexican accession is distantly related to bell pepper and its resistance displays a complex inheritance. The QTLs involved in resistance to P. capsici were previously mapped. In order to transfer the resistance factors from CM334 into a bell pepper genetic background, a modified, recurrent breeding scheme was initiated. The breeding population was divided into three sub-populations which were screened by distinct phenotypic tests of increasing severity. The plants from the first sub-population were screened with low-severity tests and backcrossed to the susceptible bell pepper; the plants from the second and third sub-populations were screened by more severe resistance tests and crossed with the plants from the first and second sub-populations, respectively. In this study, the phenotypic data for the three sub-populations during five screening/intermating cycles were analysed. In parallel, the changes in allelic frequencies at molecular markers linked to the resistance QTLs were reported. The resistance phenotype and allelic frequencies strongly depended on the sub-population and screening severity. Regarding allelic frequency changes across the selection cycles, a loss of resistant QTL alleles was observed in the first sub-population, particularly for the low-effect QTLs, whereas a better conservation of the resistant QTL alleles was observed in the two other sub-populations. The same trend was observed in the phenotypic data with an increasing resistance level from the first to the third sub-populations. The changes in the allelic frequencies of loci not linked to resistance QTLs and for horticultural traits across the breeding process indicated that the recovery of the recipient parent genome was not significantly affected by the selection for resistance.Communicated by D.A. Hoisington  相似文献   

10.
11.
Aims: Developing new bio‐agents to control plant disease is desirable. Entomopathogenic bacteria Xenorhabdus spp. have potential antimicrobial activity in agriculture. This work was conducted to evaluate the antimicrobial activity of Xenorhabdus bovienii YL002 on plant pathogenic fungi and oomycete in vitro and the efficiency of this strain to reduce the in vivo incidence of grey mould rot on tomato plants caused by Botrytis cinerea and leaf scorch on pepper plants caused by Phytophthora capsici. Methods and Results: The antimicrobial activity of X. bovienii YL002 was firstly determined on in vitro plant pathogenic fungi and oomycete and then on tomato fruits and plants infected with B. cinerea and pepper plants infected with P. capsici. The cell‐free filtrate of X. bovienii YL002 exhibited highest inhibition effects (>98%) on mycelia growth of P. capsici and B. cinerea. The 50% inhibition concentration (EC50) of the methanol‐extracted bioactive compounds (methanol extract) of the cell‐free filtrate against P. capsici and B. cinerea were 164·83 and 42·16 μg ml?1. The methanol extract also had a strong effect on the spore germination of P. capsici and B. cinerea, with a EC50 of 70·38 and 69·33 μg ml?1, respectively. At 1000 μg ml?1, the methanol extract showed a therapeutic effect of 70·82% and a protective effect of 77·4% against B. cinerea on tomato plants compared with the control. The methanol extract also showed potent effect against P. capsici, with a therapeutic effect of 68·14% and a protective effect of 65·46% on pepper plants compared with the control. Conclusions: Xenorhabdus bovienii YL002 produces antimicrobial compounds with strong activity on plant pathogenic fungi and oomycete and has the potential for controlling grey mould rot of tomato plants and leaf scorch of pepper and could be useful in integrated control against diverse plant pathogenic fungi and oomycete. Significance and Impact of the Study: This study showed the potential that X. bovienii YL002 can be used to control the grey mould rot caused by B. cinerea on tomato plants and leaf scorch caused by P. capsici on pepper plants with the objective to reduce treatments with chemical fungicides.  相似文献   

12.
More than 500 isolates of bacteria were obtained from the aerial part and rhizosphere of sweet pepper (Capsicum annuum L.) plants harvested from different places in the Region of Murcia (Spain). The isolates were purified and assayed in vitro against Phytophthora capsici and Alternaria alternata. Sixty isolates (12 %) produced an inhibition zone against at least one of the pathogens, while ten had a strongly inhibitory effect on both pathogens assayed. Microscopic observation of interactions zone showed cell vacuolisation, hyphae lysis and spilling of cytoplasm content of the pathogens in the culture media. These ten isolates were then chosen for biocontrol of Phytophthora root rot and Alternaria leaf spots of pepper plants in vivo. Four of them denominated HS93, LS234, LS523 and LS674 reduced P. capsici root rot by 80, 51, 49 and 54 %, respectively, and A. alternata leaf spots by 54, 74, 62 and 53 %. HS93 belongs to the genus Bacillus and probably the species subtilis, while LS234, LS523 and LS674 belong to the genus Bacillus and probably the species licheniformis. Dry mass of plants treated with these bacteria was significantly higher than that of non-treated and inoculated plants.  相似文献   

13.
Summary The activity of antioxidative enzymes after inoculation of pepper (Capsicum annuum L. Chungok) with a pathogen, Phytophthora capsici (P), the causal agent of Phytophtora blight and dual inoculation of pathogen and an antagonist, Paenibacillus illinoisensis KJA-424 (P+A), were measured and compared with that of non-inoculated (C) roots. Root mortality was significantly reduced by about 84% in P+A treatment compared with P treatment alone. When compared to the non-inoculated (C) roots, malondialdehyde (MDA) concentration gradually decreased by 52.4% in 7 days only in P-treated roots and hydrogen peroxide (H2O2) was not significantly affected by the treatment for 5 days but significantly decreased in the P+A-treated roots at day 7. P-treatment continuously induced peroxidase (POD) and superoxide dismutase (SOD), resulting in significant increases of 36.7% and 27.7% at day 7, respectively, compared to the control. In P+A-treated roots, the activities of POD and SOD also increased for 5 days but returned to the control level at day 7. Catalase activity fluctuated but again increased over the 7-day period following P+A inoculation. These results indicate that an antagonist P. illinoisensis KJA-424 alleviated root mortality and suppressed the elevated activities of POD and SOD in the root of pepper plant root caused by P.␣capsici infection.  相似文献   

14.
Aims: Previously, we selected a bacterial strain (GSE09) antagonistic to Phytophthora capsici on pepper, which produced a volatile compound (2,4‐di‐tert‐butylphenol), inhibiting the pathogen. In this study, we identified strain GSE09 and characterized some of the biological traits of this strain in relation to its antagonistic properties against P. capsici. In addition, we examined bacterial colonization on the root surface or in rhizosphere soil and the effect of various concentrations of the volatile compound and strain GSE09 on pathogen development and radicle infection as well as radicle growth. Methods and Results: Strain GSE09 was identified as Flavobacterium johnsoniae, which forms biofilms and produces indolic compounds and biosurfactant but not hydrogen cyanide (HCN) with little or low levels of antifungal activity and swimming and swarming activities. Fl. johnsoniae GSE09 effectively colonized on pepper root, rhizosphere, and bulk (pot) soil, which reduced the pathogen colonization in the roots and disease severity in the plants. Various concentrations of 2,4‐di‐tert‐butylphenol or strain GSE09 inhibited pathogen development (mycelial growth, sporulation, and zoospore germination) in I‐plate (a plastic plate containing a center partition). In addition, germinated seeds treated with the compound (1–100 μg ml?1) or the strain (102–1010 cells ml?1) significantly reduced radicle infection by P. capsici without radicle growth inhibition. Conclusions: These results indicate that colonization of pepper root and rhizosphere by the Fl. johnsoniae strain GSE09, which can form biofilms and produce indolic compounds, biosurfactant, and 2,4‐di‐tert‐butylphenol, might provide effective biocontrol activity against P. capsici. Significance and Impact of the Study: To our knowledge, this is the first study demonstrating that the Fl. johnsoniae strain GSE09, as a potential biocontrol agent, can effectively protect pepper plants against P. capsici infection by colonizing the roots.  相似文献   

15.
Previously, we selected bacterial strain ISE14 through a sequential selection procedure that included radicle, seedling, and in planta assays and field tests. This strain not only suppressed a destructive soilborne disease, Phytophthora blight, caused by Phytophthora capsici but also increased fruit yields of pepper plants in the fields. This study was conducted to identify strain ISE14 by 16S rRNA gene sequence analysis and to characterise biocontrol and plant growth promotion activities of the strain in pepper plants. Strain ISE14, identified as Chryseobacterium sp., significantly reduced disease severity in plants inoculated with Ph. capsici and promoted plant growth (lengths and dry weights of shoots and roots) compared with those in plants treated with Escherichia coli DH5α (negative control) or MgSO4 solution (untreated control). This strain effectively colonised pepper plant roots as assessed by bacterial population analysis and confocal laser scanning microscopy; it enhanced soil microbial activity and biofilm formation, but not the production of indole acetic acid. Strain ISE14 also solubilised organic or inorganic phosphate by production of acid and alkaline phosphatases or reduction in pH, resulting in enhanced pepper plant growth. This strain exhibited similar or greater activity in disease control and plant growth promotion tests compared with positive control strains Paenibacillus polymyxa AC‐1 (biocontrol) and Bacillus vallismortis EXTN‐1 (plant growth). Therefore, Chryseobacterium sp. ISE14 may be a phosphate‐solubilising and plant growth‐promoting rhizobacterium (PGPR) strain that suppresses Phytophthora blight of pepper. To our knowledge, this is the first report of a phosphate‐solubilising PGPR strain of Chryseobacterium sp. that suppresses the pepper disease.  相似文献   

16.
Induced resistance in plants is a systemic response to certain microorganisms or chemicals that enhances basal defense responses during subsequent plant infection by pathogens. Inoculation of chile pepper with zoospores of non-host Phytophthora nicotianae or the chemical elicitor beta-aminobutyric acid (BABA) significantly inhibited foliar blight caused by Phytophthora capsici. Tissue extract analyses by GC/MS identified conserved change in certain metabolite concentrations following P. nicotianae or BABA treatment. Induced chile pepper plants had reduced concentrations of sucrose and TCA cycle intermediates and increased concentrations of specific hexose-phosphates, hexose-disaccharides and amino acids. Galactose, which increased significantly in induced chile pepper plants, was shown to inhibit growth of P. capsici in a plate assay.  相似文献   

17.
Phytophthora capsici causes serious diseases in numerous crop plants. Polygalacturonases (PGs) are cell wall‐degrading enzymes that play an important role in pathogenesis in straminopilous pathogens. To understand PGs as they relate to the virulence of P. capsici, Pcipg2 was identified from a genomic library of a highly virulent P. capsici strain. Pcipg2 was strongly expressed during symptom development after the inoculation of pepper leaves with P. capsici. The wild protein (PCIPGII) was obtained from the expression of pcipg2 and found that increasing activity of PGs in PCIPGII‐treated pepper leaves was consistent with increasing symptom development. Asp residues in active sites within pcipg2 affected PCIPGII activity or its virulence on pepper leaves. Results show that pcipg2 is an important gene among pcipg genes, and illustrate the benefit of analyzing mechanisms of pathogenicity during the period of host/parasite interaction. genesis 47:535–544, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Phytophthora blight caused by Phytophthora capsici is a serious disease in the production of peppers and other vegetables worldwide. Application of fungicides is an important component in developing effective disease management programmes. However, resistance in P. capsici populations to some commonly used fungicides has been documented. Identification of effective new fungicides with different mode of actions is highly desirable. This study was conducted to determine baseline sensitivity of P. capsici isolates to oxathiapiprolin, the first member of a new class of isoxazoline fungicides, and efficacy of this compound for reduction of Phytophthora blight on bell pepper. A collection of 126 P. capsici isolates were evaluated and all the isolates were sensitive to oxathiapiprolin. EC50 values of oxathiapiprolin in inhibiting mycelial growth, sporangium formation and zoospore germination of 25 selected isolates averaged 0.001, 0.0003 and 0.54 µg mL?1, respectively. It appeared that asexual life stages of P. capsici were more sensitive to oxathiapiprolin than other compounds used for control of oomycete pathogens. In field studies, oxathiapiprolin applied at different rates through drip irrigation tubes, or by soil drench plus foliar sprays, reduced Phytophthora blight and increased pepper yield significantly. This is the first report of the efficacy of oxathiapiprolin in suppression of P. capsici, which indicates that oxathiapiprolin is effective in inhibiting the pathogen and has the promise to be a viable option for managing Phytophthora blight in bell pepper production.  相似文献   

19.
Resistance induction on pepper and tomato after dipping roots into watersoluble elicitor Fractions issued from Phytophthora casici culture filtrate are generally tested for the elicitor activity on detached cotyledons, Another technic is proposed: young plants (pepper or tomato) are uprooted and their roots dipped into elicitor; after detaching the foliar organs, resistance induction is controlled against Phytophthora capsici or Phytophthora infestans. With pepper, dipping time optimum is about 48 hours; the leaves are better protected than the cotyledons. After elicitation and transplanting, resistance induction remains at the level of the leaves during about one month (50% protection) and decreases progressively beyond. Systemicity of induction is discussed and several hypothesis proposed.  相似文献   

20.
The relationship between inoculum density and mortality or infection was studied for various pepper varieties (Capsicum annuum L.) inoculated with zoospores of two P. capsici isolates. The inoculum concentrations required for 50% mortality (LD 50) varied greatly between pepper varieties and P. capsici isolates: with one isolate, LD 50 was 40 zoospores/ml for a susceptible variety and reached 4,380 to 97,300 zoospores/ml for resistant varieties. For another isolate, LD 50 for the, same varieties ranged from 26 to 800 zoospores/ml. Comparisons between LD 50 and inoculum doses required for 50 % Infection (ID 50) also revealed differences between varieties but not between isolates. After multiple infection correction, regression slopes of infections/inoculum concentration were low for resistant varieties (0.28 to 0.50) but higher for susceptible varieties (0.72 to 0.94), indicating strong competition between spores for infection of resistant plants, but not for infection of susceptible plants. This analysis provided many criteria which can be used to differentiate susceptible from resistant varieties and to evaluate with precision the resistance level of the different resistance genitors used in our breeding program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号