首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combination of rapid chemical kinetic (quench-flow) and single-channel current measurements was used to evaluate kinetic parameters governing the opening of acetylcholine-receptor channels in the electric organ (electroplax) of Electrophorus electricus. Chemical kinetic measurements made on membrane vesicles, prepared from the E. electricus electroplax, using carbamoylcholine (200 microM-20 mM) at 12 degrees C, pH 7.0, and in the absence of a transmembrane voltage, yielded values for K1 (dissociation constant for receptor activation), phi (channel closing equilibrium constant), J (specific reaction rate for ion flux), and alpha max (maximum inactivation rate constant) of 1 mM, 3.4, 4 x 10(7) M-1 s-1, and 12 s-1, respectively. The single-channel current recordings were made with cells also from the E. electricus electroplax, at the same temperature and pH as the chemical kinetic measurements, using carbamoylcholine (50 microM-2 mM), acetylcholine (500 nM), or suberyldicholine (20 nM). Single-channel current measurements indicated the presence of a single, unique open-channel state of the E. electricus receptor, in concurrence with previous, less extensive measurements. The rate constant for channel closing (kc) obtained from the mean open time of the receptor channel is 1,100 s-1 for carbamoylcholine, 1,200 s-1 for acetylcholine, and 360 s-1 for suberyldicholine at zero membrane potential; and it decreases e-fold for an 80 mV decrease in transmembrane voltage in each case. The decrease in mean open times of the receptor channel that is associated with increasing the carbamoylcholine concentration is interpreted to be due to carbamoylcholine binding to the regulatory (inhibitory) site on the receptor. An analysis of data obtained with carbamoylcholine showed that the closed times within a burst of channel activity fit a two-exponential distribution, with a concentration-independent time constant considered to be the time constant for carbamoylcholine to dissociate from the regulatory site, and a carbamoylcholine concentration-dependent, but voltage-independent, time constant interpreted to represent the rate constant for channel opening (k0). An analysis of the mean closed time data on the basis of the minimum model gives values for K1 and k0 of 0.6 mM and 440 s-1, respectively, with carbamoylcholine as the activating ligand. The values obtained for K1, phi (= kc/k0), J, and alpha from the single-channel current measurements using electroplax are in good agreement with the values obtained from the chemical kinetic measurements using receptor-rich vesicles prepared from the same cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Suberyldicholine-induced ion translocation in the millisecond time region in acetylcholine receptor rich membrane vesicles prepared from the electric organ of Electrophorus electricus was investigated in eel Ringer's solution, pH 7.0, 1 degree C. A quench-flow technique with a time resolution of 5 ms was used to measure the transmembrane flux of a radioactive tracer ion (86Rb+). JA, the rate coefficient for ion flux mediated by the active form of the receptor, and alpha, the rate coefficient for the inactivation of the ion flux, increase with increasing suberyldicholine concentrations and reach a plateau value at about 15 microM. At higher suberyldicholine concentrations (greater than 50 microM), a concentration-dependent decrease in the ion flux rate was observed without a corresponding decrease in the rate of receptor inactivation. This regulatory effect was not observed with acetylcholine or carbamoylcholine. The minimal kinetic scheme previously presented for acetylcholine and carbamoylcholine, modified by the inclusion of an additional regulatory ligand-binding site for suberyldicholine and characterized by a single dissociation constant, KR, is consistent with the results obtained over a 10 000-fold concentration range of this ligand. Rate and equilibrium constants pertaining to this scheme were elucidated. Suberyldicholine binds to the regulatory site (KR = 500 microM) approximately 100-fold less well than to its activating sites, and the binding to the regulatory site has no effect on the inactivation (desensitization) rate coefficient alpha [alpha(max) = 5.7 s-1], which is comparable to that observed with acetylcholine. The maximum influx rate coefficient [JA(max) = 18.5 s-1] is approximately twice that obtained when carbamoylcholine is the activating ligand and somewhat higher than when acetylcholine is used.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The channel of the purified acetylcholine receptor from Torpedo californica electric organ reconstituted in lipid vesicles was assayed by direct electrical recording using patch-clamp pipets. High-resistance seals were obtained by gentle suction of vesicles into the pipet or after the formation of lipid bilayers from monolayers at the tip of the pipet. Single-channel currents were activated by three cholinergic ligands: acetylcholine, carbamylcholine, and suberyldicholine. The single-channel conductance, gamma, was 40 +/- 5 pS in 0.5 M NaCl, irrespective of the agonist used. The distributions of channel open times were fitted by a sum of two exponentials. The lifetimes of the two exponential components were a factor of 2 longer for suberyldicholine than for acetylcholine or carbamylcholine. At desensitizing concentrations of agonists the single events appeared in paroxysms of channel activity followed by quiescent periods. These results suggest that the full cycle of solubilization, purification, and reconstitution of this membrane receptor can be achieved without impairment of channel function.  相似文献   

4.
The veratridine/tetrodotoxin-sensitive sodium influx was measured in membrane fractions isolated from the electric organ of Electrophorus electricus. The fractions were characterized, and the main biochemical markers and their acetylcholine receptor content were determined. The innervated and noninnervated faces of the electroplax were separated. The different biochemical criteria used indicate that the pre- and postsynaptic membranes of the innervated face were isolated. Sodium influx increased by veratridine and blocked by tetrodotoxin was found in fractions from the presynaptic membrane. Because some of the vesicles in this fraction are in the inside-out conformation, tetrodotoxin had to be applied to both faces of the vesicles so that sodium influx was blocked completely. The fractions from the innervated face of the electroplax contained sodium channels with sensitivities to tetrodotoxin and veratridine similar to those of fractions from other nerve membrane preparations.  相似文献   

5.
Antisera against purified acetylcholine receptors from the electric tissues of Torpedo californica and of Electrophorus electricus were raised in rabbits. The antisera contain antibodies which bind to both autologous and heterologous receptors in solution as shown by an immunoprecipitation assay. Antibodies in both types of antisera bind specifically to the postjunctional membrane on the innervated surface of the intact electroplax from Electrophorus electric tissue as demonstrated by an indirect immunohistochemical procedure using horseradish peroxidase conjugated to anti-rabbit IgG. Only anti-Electrophorus receptor antisera, however, cause inhibition of the receptor-mediated depolarization of the intact Electrophorus electroplax. The lack of inhibition by anti-Torpedo receptor antibodies, which do bind, suggests that the receptor does not undergo extensive movement during activity. The binding of anti-Torpedo antibodies to receptor-rich vesicles prepared by subcellular fractionation of Torpedo electric tissue was demonstrated by both direct and indirect immunohistochemical methods using ferritin conjugates. These vesicles can be conveniently collected and prepared for electron microscopy on Millipore filters, a procedure requiring only 25 micrograms of membrane protein per filter. In addition, it was possible to visualize the binding of anti-Torpedo receptor antibodies directly, without ferritin. These anti-Torpedo receptor antibodies, however, do not inhibit the binding of acetylcholine or of alpha-neurotoxin to receptor in Torpedo microsacs but do inhibit binding of alpha-neurotoxin to Torpedo receptor in Triton X-100 solution. It is likely that the principal antigenic determinants on receptor are at sites other than the acetylcholine-binding sites and that inhibition of receptor function, when it occurs, may be due to a stabilization by antibody binding of an inactive conformational state.  相似文献   

6.
Summary Membranes were isolated from the main electric organ of Electrophorus electricus and studied by means of cytochemistry and freezefracture. The membrane fractions consisted of vesicles inside-in as determined by localization of anionic sites using colloidal iron and cationized ferritin particles. The anionic sites were not homogeneously distributed on the surface of the vesicle. Freeze-fracture showed the presence of intramembranous particles associated with either protoplasmic (P) or extracellular (E) faces of the membrane. Regions of the membrane without particles were observed. The results are discussed in relation to the existence of association between intramembranous particles and membrane receptors.For all correspondence  相似文献   

7.
Attempts were made to isolate acetylcholine receptors from the electric organ of Electrophorus electricus by means of chloroform-methanol extraction and subsequent purification on Sephadex LH-20 columns. Evidence is presented which indicates that the “receptor”-ligand binding observed may be artifactual  相似文献   

8.
J W Walker  J A McCray  G P Hess 《Biochemistry》1986,25(7):1799-1805
Two compounds have been synthesized that feature a photosensitive o-nitrobenzyl moiety attached directly to the carbamate nitrogen of carbamoylcholine. The well-characterized acetylcholine analogue, carbamoylcholine, was released from these derivatives in response to laser light pulses at wavelengths between 300 and 355 nm. Photolysis products were isolated by high-performance liquid chromatography and identified by chemical and spectroscopic analysis. The yield of carbamoylcholine molecules per photon absorbed was 0.25. A short-lived photochromic intermediate in the photolysis reaction was detected by laser flash photolysis. A single laser flash induced an instantaneous increase in absorbance at 406 nm, followed by a first-order decay to products, with a half-time of 0.07 ms for one of the compounds [N-[1-(2-nitrophenyl)ethyl]carbamoylcholine iodide] in aqueous buffers at pH 7 and 23 degrees C. Decay rates and quantum yields depended on the nature of the substituent on the protecting group. Evidence is presented in support of the conclusion that the transient species is an aci-nitro intermediate that decays directly to carbamoylcholine and therefore determines its rate of release. The photosensitive carbamoylcholine derivatives activated the nicotinic acetylcholine receptor only after photolysis, as determined by 86Rb+ flux measurements with membrane vesicles prepared from Torpedo californica and Electrophorus electricus. Before photolysis, the compounds interacted weakly with the acetylcholine-binding sites as shown by competitive inhibition of acetylcholine-stimulated flux at high concentrations. The compounds did not induce receptor desensitization at a significant rate. The new compounds afford several major advantages over other photoactivatable acetylcholine analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Muscle from the electric eel Electrophorus electricus contains acetylcholine receptors at 50 times the concentration of normal mammalian muscle and fully one-tenth the concentration of receptors in its electric organ tissue. Receptor is organized much more diffusely over the surface of Electrophorus muscle cells than is the case in normally innervated mammalian skeletal muscle. Receptor was purified from Electrophorus muscle by affinity chromatography on cobra toxin-agarose and found to contain subunits which correspond immunochemically to the alpha, beta, gamma, and delta subunits of receptor from electric organ tissue of Torpedo californica. Receptor purified from Electrophorus muscle appears virtually identical with receptor purified from Electrophorus electric organ tissue.  相似文献   

10.
N Matsubara  G P Hess 《Biochemistry》1992,31(24):5477-5487
The mammalian nicotinic acetylcholine receptor in PC12 cells has many properties characteristic of the neuronal receptors involved in key chemical reactions that are responsible for signal transmission between cells of the nervous system. This report describes initial investigations of the mechanism of this receptor using a rapid chemical kinetic technique with a time resolution of 20 ms, which represents a 250-fold improvement over the best time resolution (5 s) employed in previous studies. Carbamoylcholine, a stable analogue of the neurotransmitter acetylcholine, was the activating ligand used, and the concentration of open transmembrane receptor-channels in PC12 cells was measured by recording whole-cell currents at pH 7.4, 21-23 degrees C, and a transmembrane voltage of -60 mV. Two receptor forms that account for 80% and 20% of the receptor-controlled current were detected; the main receptor form, accounting for 80% of the whole-cell current, desensitized completely before the first measurements had been made in previous studies. Only the main receptor form has been investigated so far using the new method. The constants of a mechanism that accounts for the concentration of the open transmembrane receptor-channel over a 100-fold range of carbamoylcholine concentration were evaluated: the dissociation constant of the site controlling channel opening (K1 = 2.0 mM), the channel-opening equilibrium constant (phi -1 = 5.0), and the dissociation constant of an inhibitory site to which carbamoylcholine binds (KR = 6.5 mM). These evaluated constants allow one to calculate Po, the conditional probability that at a given concentration of carbamoylcholine the receptor-channel is open. Po was also determined in the presence of 2 mM carbamoylcholine by an independent method, the single-channel current-recording technique, and the agreement between the Po values obtained in two independent ways is within experimental error. This result indicates that the time resolution of the chemical kinetic technique employed was sufficient to evaluate the constants pertaining to the active state of the receptor, which forms a transmembrane channel, before its conversion to desensitized receptor forms with different properties. Previous kinetic measurements with a time resolution of 5 s showed that many compounds, such as anesthetic-like molecules, nerve growth factor, and substance P, modify the function of the neuronal receptor in PC12 cells or react specifically with the neuronal but not with the muscle receptor, for example, some toxins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Desmin, the intermediate filament protein of muscle, is present in the electric organs of Electrophorus electricus L. as five isovariants, instead of the one to two isovariants found in muscle. We analyzed the isodesmin pattern in the three different electric organs using densitometry of Coomassie blue-stained bands in electrofocusing polyacrylamide gel electrophoresis. We were able to compare the relative amount of each of the five desmin isovariants in an isodesmin pattern characteristic of each electric organ. These patterns proved to be, in some cases, statistically different. Desmin in each electric organ could have slightly different functions in order to correlate with the organ-specific isovariant patterns.  相似文献   

12.
Equilibrium binding studies of the interaction of activators (decamethonium, carbamylcholine) and inhibitors (d-tubocurarine, α-bungarotoxin) of membrane electrical potential changes in electroplax membrane preparations from Electrophorus electricus have been carried out at 4°C, in cel Ringer solution, pH 7.0. The properties of the interaction of these chemical mediators with the membrane-bound receptor appear to be similar to those observed with regulatory enzymes which exhibit an allosteric mechanism involving ligand-induced conformational changes. The data presented here show that activators and inhibitors compete for only one-half the available membrane sites. The experiments also provide additional support for the interpretation of kinetic studies which indicated that electroplax membranes contain two different binding sites, one for activators and one for inhibitors of electrical membrane potential changes.  相似文献   

13.
Summary Several intrinsic properties of acetylcholine receptor-rich membrane vesicles prepared fromElectrophorus electricus, which need to be considered in measurements of receptor-mediated ion flux, have been identified. One of these properties is a slow exchange of inorganic ions in the vesicles. The slow exchange of ions is not related to the receptor-mediated flux of ions and accounts for 30–35% of the efflux observed. A method to separate this process from the receptor-controlled flux has been developed. It has also been shown, using a light-scattering method, that aggregation-disaggregation of the vesicles can interfere with the efflux measurements, and a method to overcome this problem has been developed. The difference in the amplitude of effluxes induced by saturating amounts of carbamylcholine and gramicidin has been investigated and has been shown not to be due to a receptor-controlled process; therefore, the amplitude difference does not need to be considered in understanding the receptor-controlled process.  相似文献   

14.
Electrocytes from the electric organ of Electrophorus electricus exhibited sodium action potentials that have been proposed to be repolarized by leak currents and not by outward voltage-gated potassium currents. However, patch-clamp recordings have suggested that electrocytes may contain a very low density of voltage-gated K+ channels. We report here the cloning of a K+ channel from an eel electric organ cDNA library, which, when expressed in mammalian tissue culture cells, displayed delayed-rectifier K+ channel characteristics. The amino-acid sequence of the eel K+ channel had the highest identity to Kv1.1 potassium channels. However, different important functional regions of eel Kv1.1 had higher amino-acid identity to other Kv1 members, for example, the eel Kv1.1 S4-S5 region was identical to Kv1.5 and Kv1.6. Northern blot analysis indicated that eel Kv1.1 mRNA was expressed at appreciable levels in the electric organ but it was not detected in eel brain, muscle, or cardiac tissue. Because electrocytes do not express robust outward voltage-gated potassium currents we speculate that eel Kv1.1 channels are chronically inhibited in the electric organ and may be functionally recruited by an unknown mechanism.  相似文献   

15.
Tetrodotoxin binding sites in detergent extracts of electric organ membranes from Electrophorus electricus may be conveniently and precisely quantified by a rapid gel filtration assay. This procedure also allows estimation of the equilibrium and kinetic binding parameters describing the interaction of tetrodotoxin with a soluble site. However, the binding of saxitoxin could not be well quantified by this assay, and serves as an example of the limitations of the method as applied to other ligand/receptors systems.  相似文献   

16.
A convenient, large-scale method for the isolation of membrane vesicles permeable to specific inorganic ions has been developed. The general principle of this method involves the exchange of Na+ within the vesicles for external Cs+. Vesicles in which this exchange rapidly occurs can be separated on the basis of their density from vesicles in which the exchange occurs slowly (G. P. Hess and J. P. Andrews (1977) Proc. Nat. Acad. Sci. USA74, 482–486). This approach has been adapted to develop a method suitable for the large-scale isolation of vesicles that contain functional acetylcholine receptors from the Electrophorus electricus electroplax. The new procedure involves a discontinuous sucrose gradient for an initial purification of the vescles. This allows the use of a low-speed centrifuge, which has a capacity up to 30 times greater than the Beckman ultracentrifuge previously used. A self-forming CsCl-Percoll gradient and low-speed centrifugation are then used for the isolation of the functional acetylcholine receptor-containing vesicles. The isolation step leads close to the theoretically possible fourfold purification of the vesicles that contain functional receptors. The yield, up to 12 mg membrane protein/centrifugal run, is about 100-fold higher than the yield from the sucrose-CsCl density gradient previously (Hess and Andrews, see above) used. The gradients are self-forming and an equilibrium is reached after centrifugation for only 30 min. In 12 experiments with membrane preparations from 12 different ceis, the functional vesicles had an internal volume of 2.0 ± 0.3 μl/mg vesicle protein and a receptor concentration of 1.2 ± 0.02 μm (1.2 μmol/liter of internal volume). Electron micrographs of these vesicles show an average vesicle radius of 1600 ± 300 Å. From these results, an average of 12 receptor molecules/membrane vesicle is calculated.  相似文献   

17.
The use of membrane vesicles to make quantitative studies of transmembrane transport and exchange processes involves an assumption of homogeneity of the membrane vesicles. In studies of 86Rb+ exchange mediated by acetylcholine receptor from the electric organ of Electrophorus electricus and of 36Cl- exchange mediated by GABA receptor from rat brain, measurements of ion exchange and receptor desensitization precisely followed first order kinetics in support of this assumption. In other measurements a biphasic decay of receptor activity was seen. To elucidate the molecular properties of receptors from such measurements it is important to appreciate what the requirements of vesicle monodispersity are for meaningful results and what the effect of vesicle heterogeneity would be. The experiments were simulated with single vesicle populations with variable defined size distributions as well as with mixtures of different populations of vesicles. The properties of the receptors and their density in the membrane could be varied. Different receptors could be present on the same or different membrane vesicles. The simulated measurements were not very sensitive to size dispersity. A very broad size distribution of a single vesicle population was necessary to give rise to detectable deviations from first order kinetics or errors in the determined kinetic constants. Errors could become significant with mixtures of different vesicle populations, where the dispersity in initial ion exchange rate constant, proportional to the receptor concentration per internal volume, became large. In this case the apparent rate of receptor desensitization would diverge in opposite directions from the input value when measured by two different methods, suggesting an experimental test for such kinetic heterogeneity. A biphasic decrease of receptor activity could not be attributed to vesicle heterogeneity and must be due to desensitization processes with different rates. Significant errors would not arise from the size dispersity apparent in subpopulations of vesicles seen by imaging techniques in membrane preparations.  相似文献   

18.
Abstract— Cottonmouth moccasin snake venom (SV) was applied to the innervated membrane of the isolated single cell of the Sachs electric organ (electroplax) of the electric eel, Electrophorus electricus. Concentrations as low as 0.05 μg/ml irreversibly antagonized depolarization by carbamylcholine, whereas concentrations of 0.1 mg/ml or higher were required to directly and irreversibly depolarize and block electrical excitation. The active component of the venom was stable to boiling at acid pH, destroyed by boiling at alkaline pH and nondialyzable and corresponded to those fractions containing maximum phospholipase A activity demonstrable when isolated by paper electrophoresis and Sephadex filtration. Phospholipase C and lysolecithin in concentrations of 1 mg/ml and 0.2 mg/ml, respectively, depolarized and blocked electrical excitation, whereas lower concentrations did not antagonize depolarization by carbamylcholine. Triton X-100 (0.01 mg/ml) antagonized carbamylcholine, whereas 10-fold higher concentrations directly blocked electrical excitation. Hyaluronidase had no effect on resting or action potential but decreased the depolarizing response to carbamylcholine. At minimal concentrations which blocked the depolarizing response to carbamylcholine, SV caused only slight splitting of phospholipids in single cells of the Sachs organ. A concentration (1 mg/ml) of SV which blocked electrical excitation caused 80–100 per cent splitting of lecithin, phosphatidylethanolamine and phosphatidylserine, the three principal phospholipids of the electric tissue. Similar percentages of splitting of the latter two phospholipids but only about one-third of the lecithin occurred at SV concentration of 0.1 mg/ml. These results indicate that electrical excitability in the eel electroplax can be maintained in the presence of extensive phospholipid splitting. Depolarization and block of electrical excitation by relatively high concentrations of SV may have resulted from splitting of phospholipids, especially lecithin, or may have reflected action of lysophosphatide detergents produced as a result of the action of phospholipase A upon membranal phospholipids.  相似文献   

19.
A simple assay for the study of solubilized acetylcholine receptors   总被引:46,自引:0,他引:46  
Detergent-solubilized acetylcholine receptors from the electric organs of Electrophorus electricus and Torpedo californica are rapidly, quantitatively and specifically assayed by exposure to 125I-α-bungarotoxin and subsequent adsorption onto DEAE-cellulose paper disks.  相似文献   

20.
The receptor for acetylcholine in the subsynaptic membrane of the electroplax of Electrophorus electricus is a protein with a disulfide bond in the vicinity of the active site. This disulfide can be reduced and reoxidized with concomitant inhibition and restoration of the response to acetylcholine and other monoquaternary ammonium-depolarizing agents. Conversely, the bisquaternary hexamethonium, normally a competitive inhibitor, causes depolarization, and the activity of decamethonium is increased following reduction of the disulfide. The reduced receptor can be alkylated by various maleimide derivatives and is then no longer reoxidizable. Some quaternary ammonium maleimide derivatives act as affinity labels of the reduced receptor, alkylating it at a rate three orders of magnitude faster then do uncharged maleimide derivatives. Other types of potential affinity labels also react only with the reduced receptor and the resulting covalently attached quaternary ammonium moieties interact with the active site, strongly activating the receptor. These results suggest a model for the active site and its transitions in which an activator such as acetylcholine bridges between a negative subsite and a hydrophobic subsite in the vicinity of the disulfide, causing an altered conformation around the negative subsite and a decrasee of a few angstroms in the distance between the two subsites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号