首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
中国雨蛙精子形成的研究   总被引:4,自引:0,他引:4  
林丹军  尤永隆 《动物学报》2000,46(4):376-384,T005,T007
中国雨蛙的精子形成过程中,细胞核的浓缩经历了5个时期。从第1期进入第2期,染色质纤维增粗并聚集成卷曲的柱状结构。从第2期进入第3期,染色质纤维进一步增粗,细胞核逐渐伸直成柱状。进入第4期,染色质紧密聚集,纤维之间间隙很小。进入第5期,染色质纤维聚集成均匀的致密结构。伴随着染色质的浓缩,核膜数次更新,核内不参与浓缩的物质渐次从核中排出,核中出现一串核泡。顶体在染色质未浓缩之前(第1期)开始分化,由一  相似文献   

2.
An electron microscope study was carried out on Hypselodoris tricolor spermatids to describe the development of the nuclear morphogenesis and investigate the possible cause(s) of the change in the shape of the spermatid nucleus during spermiogenesis. Three different stages may be distinguished in the course of the nuclear morphogenesis on the basis of the morphology and inner organization of the nucleus. Stage 1 spermatid nuclei are spherical or ovoid in shape and the nucleoplasm finely granular in appearance. Stage 2 nuclei exhibit a disc- or cup-shaped morphology, and the chromatin forms short, thin filaments. During stage 3, a progressive nuclear elongation takes place, accompanied by chromatin rearrangement, first into fibers and then into lamellae, both formations helically oriented. A row of microtubules attached to the nuclear envelope completely surrounds the nucleus. Interestingly, the microtubules always lie parallel to the chromatin fibers adjacent to them. Late stage 3 spermatids show the highest degree of chromatin condensation and lack the manchette at the end of spermiogenesis. Our findings indicate the existence of a clear influence exerted on the chromatin by the manchette microtubules, which appear to be involved in determining the specific pattern of chromatin condensation in Hypselodoris tricolor.  相似文献   

3.
The mutant nc4 allele of whirligig (3-54.4) of Drosophila melanogaster fails to complement mutations in an alpha-tubulin locus, alpha 1t, mutations in a beta-tubulin locus, B2t, or a mutation in the haywire locus. However, wrl fails to map to any of the known alpha- or beta-tubulin genes. The extragenic failure to complement could indicate that the wrl product participates in structural interactions with microtubule proteins. The whirligig locus appears to be haploinsufficient for male fertility. Both a deficiency of wrl and possible loss of function alleles obtained by reverting the failure to complement between wrlnc4 and B2tn are dominant male sterile in a genetic background wild type for tubulin. The dominant male sterility of the revertant alleles is suppressed if the flies are also heterozygous for B2tn, for a deficiency of alpha 1t, or for the haync2 allele. These results suggest that it is not the absolute level of wrl gene product but its level relative to tubulin or microtubule function that is important for normal spermatogenesis. The phenotype of homozygous wrl mutants suggests that the whirligig product plays a role in postmeiotic spermatid differentiation, possibly in organizing the microtubules of the sperm flagellar axoneme. Flies homozygous for either wrlnc4 or revertant alleles are viable and female fertile but male sterile. Premeiotic and meiotic stages of spermatogenesis appear normal. However, in post-meiotic stages, flagellar axonemes show loss of the accessory microtubule on the B-subfiber of outer doublet microtubules, outer triplet instead of outer doublet microtubules, and missing central pair microtubules.  相似文献   

4.
It is proposed that elongation of the nucleus in spermatids of Marchantia results from interaction between its membranous envelope and microtubules of the spermatid's cytoskeleton. The nucleus may be drawn out in two directions along microtubules until forces attracting the nucleus to them are balanced by forces resisting envelope distortion. Condensation of nuclear chromatin into fibrils of uniform diameter and probable shaping of the nucleus by blebbing of its envelope occur together before elongation is complete. The nucleus becomes crescent shaped and it is prolonged distally into a chromatin-free diverticulum. In accord with their distribution along the axis of the nucleus, chromatin fibrils are compacted together forming a cone-like rod of chromatin which narrows anteriorly and extends distally to the tip of the preexisting diverticulum. Elongation and shaping of the nucleus influence the distribution of its chromatin and thus its ultimate morphology. Coiling of the nucleus is related to a reduction of spermatid cytoplasm during maturation.  相似文献   

5.
Summary We constructed balancer-chromosomes for the large autosomes ofDrosophila hydei and screened more than 16000 chromosomes for male sterile mutations in order to dissect spermatogenesis genetically. 365 mutants on the X chromosome and the autosomes 2, 3, and 4 were recovered and analysed cytologically in squash preparations under phase-contrast optics. The majority of the mutations allows a rather advanced differentiation of the spermatozoa. At the light-microscopical level, it is possible to classify these mutations with respect to individualization, coiling or motility of the mutant spermatozoa. In contrast, a small number of mutants exhibits conspicuous, pleiotropic phenotypes. Gonial divisions, the shaping of the spermatocyte nucleus and male meiotic divisions are controlled by X chromosomal or autosomal genes which can mutate to male sterile alleles. A number of nonallelic 3rd chromosome male sterile mutations interfere with the unfolding of the Y chromosomal lampbrush loops. Other autosomal male sterile mutations modify the morphology of these lampbrush loops. Another group of mutations inhibits the formation of the nebenkern while the development of the spermatid nucleus and the flagellum can proceed. Such male sterile mutations can decouple the development of nucleus, protein body, nebenkern, and flagellum of the spermatid. Thus, we can describe spermatogenesis inDrosophila as the coordinate execution of the individual developmental programs of the different components of the spermatozoon.  相似文献   

6.
Thrips spermiogenesis is characterized by unusual features in the differentiating spermatid cells. Three centrioles from which three individual short flagella are initially assembled, make the early spermatid a tri-flagellated cell. Successively, during spermatid maturation, the three basal bodies maintain a position close to the most anterior end of the elongating nucleus, so that the three axonemes are progressively incorporated in the spermatid cytoplasm, where they run in parallel to the main nuclear axis. Finally, the three axonemes amalgamate to form a microtubular bundle. The process starts with the formation of rifts at three specific points in each axonemal circumference, corresponding to sites 1,3,7 and leads to the formation of 9 microtubular rows of different length, i.e. 3 "dyads", 3 "triads" and 3 "tetrads". In the spermatozoon, the nucleus, the mitochondrion and the bundle of microtubules are arranged in a helicoidal pattern. The elongation of the spermatozoon is allowed by the deep anchorage of the spermatid to the cyst cell through a dense mass of material which, at the end of spermiogenesis, becomes a long anterior cylindrical structure. This bizarre "axoneme" does not show any trace of progressive movement but it is able to beat. According to the presence of dynein arms, sliding can take place only within each row and not between the rows. The possible molecular basis underlying the peculiar instability of thrips axonemes is discussed in light of the present knowledge on the organization of the axoneme in mutant organisms carrying alterations of the tubulin molecule.  相似文献   

7.
The mechanisms underlying cell cycle progression and differentiation are tightly entwined with changes associated in the structure and composition of the cytoskeleton. Mammalian spermatogenesis is a highly intricate process that involves differentiation and polarization of the round spermatid. We found that pachytene spermatocytes and round spermatids have most of the microtubules randomly distributed in a cortical network without any apparent centrosome. The Golgi apparatus faces the acrosomal vesicle and some microtubules contact its surface. In round spermatids, at step 7, there is an increase in short microtubules around and over the nucleus. These microtubules are located between the rims of the acrosome and may be the very first sign in the formation of the manchette. This new microtubular configuration is correlated with the beginning of the migration of the Golgi apparatus from the acrosomal region towards the opposite pole of the cell. Next, the cortical microtubules form a bundle running around the nucleus perpendicular to the main axis of the cell. At later stages, the nuclear microtubules increase in size and a fully formed manchette appears at stage 9. On the other hand, acetylated tubulin is present in a few microtubules in pachytene spermatocytes and in the axial filament (precursor of the sperm tail) in round spermatids. Our results suggest that at step 7, the spermatid undergoes a major microtubular reordering that induces or allows organelle movement and prepares the cell for the formation of the manchette and further nuclear shaping. This new microtubular configuration is associated with an increase in short microtubules over the nucleus that may correspond to the initial step of the manchette formation. The new structure of the cytoskeleton may be associated with major migratory events occurring at this step of differentiation.  相似文献   

8.
The spermatozoon features an extremely condensed and inactive nucleus. The unique sperm chromatin organization is acquired during the late stages of spermatid differentiation by the replacement of somatic histones with sperm-specific chromosomal proteins. At fertilization, the inactive sperm nucleus must be rapidly transformed into a DNA replication competent male pronucleus before the formation of the zygote. The sequential events of this crucial process are well conserved among animals and are controlled by molecules present in the egg. We have previously identified a Drosophila maternal effect mutation called sésame, which specifically arrests male pronucleus formation at a late stage of chromatin decondensation. In this study, we show that sésame affects maternal histone incorporation in the male pronucleus, a situation that is expected to prevent nucleosomal organization of the paternal chromatin. As an apparent consequence, the male pronucleus is arrested before the first S-phase and does not condense mitotic chromosomes. However, centromeric heterochromatin is present on paternal centromeres, which occasionally interact with microtubules. The abnormal chromatin organization of the male pronucleus does not prevent the formation of a male pronuclear envelope, which breaks down and reassembles in synchrony with maternally derived nuclei present in the same cytoplasm.  相似文献   

9.
The fine structure of the developing spermatids and the mature sperm of Nippostrongylus brasiliensis was investigated. Immature spermatids are found at one end of the tubelike testis, and the mature sperm at the other. The spermatid has a prominent nucleus, with the chromatin clumped at the margin. It also contains a pair of centrioles, located near the nucleus. The cytoplasm is filled with ribosomal clusters, but it lacks an organized Golgi area or endoplasmic reticulum. Besides the normal mitochondria, the spermatid has specialized mitochondrionlike inclusions with dense matrix, few broad cristae, and a crystalloid structure always facing the nucleus. As spermiogenesis proceeds, the nucleus elongates, comes to lie at one end, and later evaginates to form a separate head structure, leaving the mitochondria and other cytoplasmic organelles in a broad cytoplasmic region. The nuclear material becomes filamentous and spiral, and the centrioles come to lie at one end near the junction of the head and the cytoplasmic portion of the sperm. Microtubules are found in the cytoplasmic region extending from the tubelike nucleus. The specialized mitochondria are about eighteen in number, and are arranged in rows in staggered groups of three around the microtubules in the cytoplasmic region. The mature sperm is aflagellate and lacks an acrosome. No movement of the sperm was ever observed.  相似文献   

10.
This is the first study investigating spermatogenesis and spermatozoan ultrastructure in the polyclad flatworm Prosthiostomum siphunculus. The testes are numerous and scattered as follicles ventrally between the digestive ramifications. Each follicle contains the different stages of sperm differentiation. Spermatocytes and spermatids derive from a spermatogonium and the spermatids remain connected by intercellular bridges. Chromatoid bodies are present in the cytoplasm of spermatogonia up to spermatids. During early spermiogenesis, a differentiation zone appears in the distal part of spermatids. A ring of microtubules extends along the entire sperm shaft just beneath the cell membrane. An intercentriolar body is present and gives rise to two axonemes, each with a 9 + “1” micro‐tubular pattern. Development of the spermatid leads to cell elongation and formation of a filiform, mature spermatozoon with two free flagella and with cortical microtubules along the sperm shaft. The flagella exit the sperm shaft at different levels, a finding common for acotyleans, but so far unique for cotylean polyclads. The Golgi complex produces numerous electron‐dense bodies of two types and of different sizes. These bodies are located around a perinuclear row of mitochondria. The elongated nucleus extends almost along the entire sperm body. The nucleus is wide in the proximal part and becomes narrow going towards the distal end. Thread‐like chromatin mixed with electron‐dense intranuclear spindle‐shaped bodies are present throughout nucleus. The general sperm ultrastructure, the presence of intranuclear bodies and a second type of cytoplasmic electron‐dense bodies may provide characters useful for phylogenetic analysis.  相似文献   

11.
The early stages of nuclear differentiation in spermatids of the house cricket are described with regard to the fine structural elements and chemical components which occur. Particular attention is given to the loss of nonhistone protein from the nucleus and its relation to chromatin structure. Granular elements about 25 to 80 mµ in diameter, and fibers about 8 mµ in diameter occur in the earliest spermatid nucleus. The fibers are found in diffuse and condensed chromatin while granules are found only in diffuse material. DNA and histone parallel the chromatin fibers in distribution, while nonhistone protein and RNA parallel the granules in distribution. The granules and most of the nonhistone protein are lost, simultaneously, after the early spermatid stage. The protein loss occurs without detectable change in the structure of chromatin fibers. Chromatin fibers first show a structural change in mid spermiogenesis, when they become thicker and very contorted. Unusually thin fibers (about 5 mµ) also appear in mid spermatid nuclei; they are apparently composed of nonhistone protein and free of DNA and histone.  相似文献   

12.
东方扁虾精子发生的超微结构   总被引:2,自引:0,他引:2  
应用电镜技术研究了东方扁虾(Thenus orientalis)精子发生的全过程,精原细胞呈椭圆形,其染色质分布较均匀,线粒体集中于细胞一端形成“线粒体区”。初级精母细胞较大,染色质凝聚成块,次级精母细胞核质间常出现大的囊泡,胞质内囊泡丰富而线粒体数量却明显减少,早期精细胞核发生极化、解聚,部分胞质被抛弃。中期精细胞外观呈金字塔形,分为三区;正在形成的顶体位于塔顶,核位于塔基部,居间的细胞质基质内富含膜复合物,后期精细胞顶体进一步分化。形成顶体帽和内、外顶体物质等三个结构组份。成熟精子核呈盘状或碗状,具有5-6条内部充满微管的辐射臂。  相似文献   

13.
In accordance with the characteristic shape of the nucleus and degree of condensation of the nuclear substance, spermiogenesis in Euhadra hickonis can be roughly divided into four stages. The chromatin in the highly polymorphic nucleus of the first stage, early spermatid, forms relatively thick (ca. 50 nm) fibrils which associate here and there into irregular clumps. In the next stage, the spermatid nucleus becomes conspicuously spherical, its contents appear more finely homogeneous and the irregular clumps of chromatin are few. In the third stage, the nucleus gradually takes on an ellipsoidal shape as the antero-posterior axis shortens. The anterior part of its envelope becomes structurally modified in preparation for the adherence to it of the developing acrosome, and an implantation fossa forms posteriorly at the center of a second area where the nuclear envelope has been modified. The diameter of the chromatin fibrils again increases and those near the implantation fossa become oriented perpendicular to the nuclear envelope.
As the nucleus elongates in the fourth stage, a concentric sheath of microtubules closely surrounds it. These appear to depolymerize as the nuclear elongation proceeds, so that they are no longer present in the head region of the mature spermatozoon. The diameter of the chromatin fibrils increases to about 10 nm and they become oriented parallel to the long axis of the cell. With the decrease in the nuclear volume the fibrils unite laterally to form longitudinal sheets, and these finally merge in the mature spermatozoon into a mass of very dense chromatin without perceptible internal structure.  相似文献   

14.
Abstract. The ultrastructure of the male reproductive system in the polyclad flatworm Pleioplana atomata is described. Numerous testes are scattered throughout the entire body but are heavily concentrated on the ventral side. All stages of differentiating sperm cells are present in all testes follicles. Intercellular bridges connect spermatocytes and spermatids derived from a single spermatogonium. In the distal part of spermatids, a zone of differentiation develops with a row of microtubules beneath the plasmalemma. Adjacent to these microtubules, an intercentriolar body is flanked by two basal bodies that give rise to two axonemes (each with a 9+“1” microtubular pattern) that face in opposite directions. The Golgi complex appears in the central portion of the spermatid and produces numerous small and large electron-dense bodies. The small bodies surround the nucleus, whereas the large bodies cluster along with the mitochondria in the central part of the spermatid. Development of the spermatid leads to cell elongation and formation of a filiform, biflagellate mature spermatozoon with cortical microtubules all along the sperm shaft. The male canal system consists of paired vasa deferentia that separately enter a single seminal vesicle. A single prostatic canal connects the seminal vesicle to the prostatic vesicle. Ultrastructurally, the seminal vesicle and prostatic canal are very similar, and along with the prostatic vesicle and stylet pocket, are lined by a ciliated epithelium. The ultrastructure of the prostatic vesicle indicates that it probably produces a large volume of seminal fluid that, along with spermatozoa, is transferred to the mating partner through a stylet. Some of the findings, particularly on sperm ultrastructure, may provide characters useful for phylogenetic analysis.  相似文献   

15.
本文用透射电子显微镜研究了大头金蝇(hrysomyia megacephala)和肥须亚麻蝇(Parasarcophaga crassipalpis)精细胞发育过程中细胞核的变态过程.精细胞从球形细胞演变为线形精子,核要经历四个时期,即:球核期,细胞为球形,核亦为球形,核膜与一般体细胞核无异;棒核期,核拉长如棒,顶体形成,核膜孔聚集于一侧;染色质凝聚期,染色质与核质分开,经过一系列变化,再凝聚成致密的块状,多余核质从核孔聚集处开口排出核外;成熟期,核变成一团电子密度极大的腊肠形.精细胞抛弃绝大部分细胞质和多余的结构,变成线形精子.以上演变过程两种蝇类完全相似,但在染色质凝聚期的变化中差异却很大:大头金蝇凝聚程序为:细纤维—粗纤维—块状—致密团;肥须亚麻蝇则为:蚁蚕状—纵列薄片状—厚片状—块伙—致密团.  相似文献   

16.
Spermiogenesis in the South American leptodactylid frog Odontophrynus cultripes was analyzed ultrastructurally. The spermatids undergo morphological modification while still enclosed in microtubule-rich processes of Sertoli cells. Electron-dense plates resembling junctional structures appear in regions at which the spermatids lie in close contact with the surface of Sertoli cell processes. Spermatid differentiation can be divided into five distinct stages based mainly on chromatin condensation. In the late stages, the densely compacted chromatin loses reactivity to ethanolic phosphotungstic acid (E-PTA). Helical arrangements of microtubules appear in the cytoplasm that surrounds the spermatid nucleus after the second stage. The acrosomal vesicle differentiates into a cone-shaped acrosome that caps the anterior region of the nucleus. The connecting piece, located in the flagellum implantation zone, has transverse striations, and is continuous with the axial rod. The tail is formed by a 9 + 2 axoneme, an undulating membrane, and an axial rod that is rich in basic proteins as demonstrated by E-PTA staining.  相似文献   

17.
The spermatozoon of Chiton marginatus is a long uniflagellate cell displaying structural features of “modified sperm.” The nucleus presents a conical shape with a long apical cylindrical extension. The chromatin is homogeneously dense. Scattered inside the condensed nucleus, a few nuclear lacunae are visible. The acrosomal complex is lacking. Some mitochondria are located in a laterofrontal structure side by side with the nucleus. The typical midpiece is absent. The cytoplasm forms a thin layer around the nucleus and the mitochondria. The proximal centriole is in a basal nuclear indent. The distal centriole serves to form the axoneme tail with the usual microtubular pattern. During nuclear maturation, the early spermatid nucleus is spherical and contains fine granular chromatin patches. The nuclear envelope shows a deposit of dense material at the base of the nucleus, forming a semicircular invagination occupied by a flocculent mass. In middle spermatid stage, the chromatin gets organized in filaments, coiled as a hank, attached over the inner surface of the basal thickening of the nuclear envelope. The nucleus starts to elongate anteroposteriorly. At the pointed apical portion of the spermatid, a group of microtubules is observed seeming to impose external pressure to the nucleus giving rise to the long apical nuclear point. The mitochondria have a basal position. Late spermatids have an elongated conical nucleus. The chromatin filaments are further condensed, and lacunae appear inside the nucleus. Some mitochondria migrate to a lateral position.  相似文献   

18.
Electron microscopy of the testes of the free-living flatworm Mesocastrada fuhrmanni collected from temporary freshwater ponds shows stages of spermiogenesis that are like other species of the Typhloplanidae. Spermiogenesis in Mesocastrada fuhrmanni is characterized by the presence, in the spermatid, of a differentiation zone underlain by peripheral microtubules and centered on two centrioles with an intercentriolar body. Two flagella of the 9+“1” pattern of the Trepaxonemata grow out in opposite directions from the centrioles. The flagella undergo a latero-ventral rotation, and a subsequent disto-proximal rotation of centrioles occurs in the spermatid. The former rotation involves the compression and the detachment of a row of cortical microtubules, and allows us to recognize a ventral from a dorsal side. Two features are of special interest at the end of differentiation: peripheral cortical microtubules lie parallel to the sperm axis near the anterior tip, but microtubules become twisted (about 40° with reference to the gamete axis) near the posterior extremity; in the same way, the posterior tip of the nucleus is spiralled. As far as we know, these features are observed for the first time in the Typhloplanidae. The pattern of spermiogenesis and the ultrastructural organization of the spermatozoon are compared with the available data on Typhloplanoida and in particular, species of the Typhloplanidae family.  相似文献   

19.
余山拟异蚖和3种古蚖的精子均为扁圆形,未见顶体,线粒体集中在一侧;核呈环形、边位、中部由膜状体分布其间.领结古蚖的早期精细胞为球形,染色质凝集成团,继而核中裂并沿细胞赤道逐渐围绕成环,染色质呈细沙状,胞间有“桥”相通.核膜一端开始内陷,出现黑点.待发育到中期精细胞,这些黑点逐渐形成奇特的管状核膜陷体;染色质变成短线形,随后排成4—5行.线粒体颗粒状,细胞间仍有“桥”连通.晚期精细胞的染色质凝集成粗带,最后形成光滑质密的核,而多余的核物质,一段一段从精子一端脱离,形成一串孢囊状体夹在精子之间,待精子成熟游离时,这些孢状体分散开来.从观察结果表明拟异蚖精子与古蚖的非常相近.  相似文献   

20.
Using Drosophila spermatogenesis as a model, we show that function of the beta-tubulin C-terminal tail (CTT) is not independent of the body of the molecule. For optimal microtubule function, the beta-tubulin CTT and body must match. beta2 is the only beta-tubulin used in meiosis and spermatid differentiation. beta1-tubulin is used in basal bodies, but beta1 cannot replace beta2. However, when beta1 is co-expressed with beta2, both beta-tubulins are equally incorporated into all microtubules, and males exhibit near wild type fertility. In contrast, co-expression of beta2beta1C and beta1beta2C, two reciprocal chimeric molecules with bodies and tails swapped, results in defects in meiosis, cytoskeletal microtubules, and axonemes; males produce few functional sperm and few or no progeny. In these experiments, all the same beta-tubulin parts are present, but unlike the co-assembled native beta-tubulins, the "trans" configuration of the co-assembled chimeras is poorly functional. Our data thus reveal essential intra-molecular interactions between the CTT and other parts of the beta-tubulin molecule, even though the CTT is a flexible surface feature of tubulin heterodimers and microtubules. In addition, we show that Drosophila sperm tail length depends on the total tubulin pool available for axoneme assembly and spermatid elongation. D. melanogaster and other Drosophila species have extraordinarily long sperm tails, the length of which is remarkably constant in wild type flies. We show that in males of experimental genotypes that express wild type tubulins but have half the amount of the normal tubulin pool size, sperm tails are substantially shorter than wild type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号