首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mildew resistance in the ornamental apple White Angel was found to be determined by complementary genes. The gene R w was found to be necessary for the expression of resistance controlled by the resistance gene Pl w . The close linkage between the isoenzyme gene, Lap-2, for leucine aminopeptidase and P1 w was confirmed. The efficiency of Lap-2 as a marker in screening for mildew resistance is limited, as it cannot account for susceptible plants with the r w r w P1 w p1 w genotype. It has, however, an important role to play in combining resistance genes from different sources. The genotypes of White Angel (R w r w , Pl w pl w , Lap-2an), Jester (R w r w , p1 w p w , Lap-2an) Katja (R w r w ,p1 w p1 w , Lap-2an) and Gloster 69 (r w r w , p1 w p1 w , Lap-2an) were determined. It also appeared that R w might influence Lap-2 activity in young seedlings.  相似文献   

2.
Different yeast plasmid systems containing different promoters such as ADH1, PGK, GAPDH and GAL1, and different selectable markers, such as URA3, TRP1 and leu2-d were compared to obtain the yeast expression system that provides high intracellular expression of giant catfish growth hormone (gcGH). The highest level of gcGH expression was observed in a recombinant yeast under the control of PGK promoter (17.1 mg/l or 1.4 g/0.1 OD). The amount of gcGH was increased six-fold (102.5 mg/l) when cells were grown in a rich medium (YEPD) with the inoculum and medium ratio of 1:1, although the amount of gcGH expression per cell density did not increase (1.0 g/0.1 OD). This indicated that the increased yield of gcGH in rich medium was due to the increased cell density. The aim of the study was to produce high level gcGH in the cells of S. cerevisiae in order to use the yeast cells as potential feed additives to promote growth in giant catfish.  相似文献   

3.
The β-oxidation of oleic acid in Saccharomyces cerevisiae (S. cerevisiae) was studied by comparing the growth of wild-type cells on oleic acid or palmitic acid with the growth of mutants that either had a deletion in the YOR180c (DCI1) gene reported to encode Δ3,52,4-dienoyl-CoA isomerase (dienoyl-CoA isomerase) or in the PTE1 gene encoding peroxisomal thioesterase 1. Growth of wild-type cells was indistinguishable from that of YOR180c mutant cells on either palmitic acid or oleic acid, whereas the PTE1 mutant grew slower and to a lower density on oleic acid but not on palmitic acid. The identification of 3,5-tetradecadienoic acid in the medium of wild-type cells but not in the medium of the PTE1 mutant proves the operation of the thioesterase-dependent pathway of oleate β-oxidation in S. cerevisiae. Dienoyl-CoA isomerase activity was very low in wild-type cells, fourfold higher in the YOR180c mutant, and not associated with purified Yor180c protein. These observations support the conclusion that the YOR180c gene does not encode dienoyl-CoA isomerase.  相似文献   

4.
Summary A DNA fragment conferring resistance to zinc and cadmium ions in the yeast Saccharomyces cerevisiae was isolated from a library of yeast genomic DNA. Its nucleotide sequence revealed the presence of a single open reading frame (ORF; 1326 bp) having the potential to encode a protein of 442 amino acid residues (molecular mass of 48.3 kDa). A frameshift mutation introduced within the ORF abolished resistance to heavy metal ions, indicating the ORF is required for resistance. Therefore, we termed it the ZRC1 (zinc resistance conferring) gene. The deduced amino acid sequence of the gene product predicts a rather hydrophobic protein with six possible membrane-spanning regions. While multiple copies of the ZRC1 gene enable yeast cells to grow in the presence of 40 mM Zn2+, a level at which wild-type cells cannot survive, the disruption of the chromosomal ZRC1 locus, though not a lethal event, makes cells more sensitive to zinc ions than are wild-type cells.  相似文献   

5.
Conformational transitions in cytochrome c (cyt c) are being realized to be responsible for its multi-functions. Among a number of conformational transitions in cyt c, the alkaline transition has attracted much attention. The cDNA of human cyt c is cloned by RT-PCR and a high-effective expression system for human cyt c has been developed in this study. The equilibrium and kinetics of the alkaline transition of human cyt c have been systematically investigated for the first time, and compared with those of yeast and horse cyt c from an evolutionary perspective. The pKa value for the alkaline transition of human cyt c is apparently higher than that of yeast and horse. Kinetic studies suggest that it is increasingly difficult for the alkaline transition of cyt c from yeast, horse and human. Molecular modeling of human cyt c shows that the omega loop where the lysine residue is located apparently further away from heme in human cyt c than in yeast iso-1 and horse heart cyt c. These results regarding alkaline conformational transition provide valuable information for understanding the molecular basis for the biological multi-functions of cyt c.  相似文献   

6.
N-Acetyltransferase Mpr1 of Saccharomyces cerevisiae can reduce intracellular oxidation levels and protect yeast cells under oxidative stress, including H2O2, heat-shock, or freeze-thaw treatment. Unlike many antioxidant enzyme genes induced in response to oxidative stress, the MPR1 gene seems to be constitutively expressed in yeast cells. Based on a recent report that ethanol toxicity is correlated with the production of reactive oxygen species (ROS), we examined here the role of Mpr1 under ethanol stress conditions. The null mutant of the MPR1 and MPR2 genes showed hypersensitivity to ethanol stress, and the expression of the MPR1 gene conferred stress tolerance. We also found that yeast cells exhibited increased ROS levels during exposure to ethanol stress, and that Mpr1 protects yeast cells from ethanol stress by reducing intracellular ROS levels. When the MPR1 gene was overexpressed in antioxidant enzyme-deficient mutants, increased resistance to H2O2 or heat shock was observed in cells lacking the CTA1, CTT1, or GPX1 gene encoding catalase A, catalase T, or glutathione peroxidase, respectively. These results suggest that Mpr1 might compensate the function of enzymes that detoxify H2O2. Hence, Mpr1 has promising potential for the breeding of novel ethanol-tolerant yeast strains.  相似文献   

7.
Small molecules that exhibit biological activity have contributed to the understanding of the molecular mechanisms of various biological phenomena. 5-Bromodeoxyuridine (BrdU) is a thymidine analogue that modulates various biological phenomena such as cellular differentiation and cellular senescence in cultured mammalian cells. Although BrdU is thought to function through changing chromatin structure and gene expression, its precise molecular mechanisms are not understood. To study the molecular mechanism for the action of BrdU, we have employed the yeast Saccharomycescerevisiae as a model system, and screened multi-copy suppressor genes that confer resistance to BrdU. Our genetic screen has revealed that expression of the N-terminal short fragment of TUP1, and also disruption of HDA1 or HOS1, histone deacetylases that interact with TUP1, conferred resistance to BrdU. These results suggest the implication of the chromatin proteins in the function of BrdU, and would provide novel clues to answer the old question of how BrdU modulates various biological phenomena.  相似文献   

8.
The upstream region of the isocitrate lyase gene (UPR-ICL, 1530bp) of an n-alkane-utilizable yeast, Candida tropicalis, induced gene expression in another yeast, Saccharomyces cerevisiae, when the yeasts were grown on acetate. Surprisingly, UPR-ICL displayed the same regulatory function in the bacterium Escherichia coli when grown on acetate. We determined the interesting nucleotide sequence of UPR-ICL. The deletion analysis of UPR-ICL in both cells revealed the presence of two distinct promoters: one was localized at-394 to-379 and regulated gene expression in S. cerevisiae; the other was tocated near the initiation codon and regulated gene expression in E. coli. The two promoter sequences were similar, but not identical to regulatory elements that have been previously reported in S. cerevisiae and E. coli, respectively. Accordingly, the possibility of novel regulatory mechanisms could not be excluded. This is an interesting example of the presence of distinct cis-acting regulatory elements responsible for the induction of gene expression in one gene by acetate in both S. cerevisiae and E. coli. Preservation of such promoters through evolution is also discussed.Abbreviations ICL Isocitrate lyase - UPR-ICL Upstream region of the Candida tropicalis isocitrate lyase gene  相似文献   

9.
Boron is a micronutrient in plants and animals, but its specific roles in cellular processes are not known. To understand boron transport and functions, we screened a yeast genomic DNA library for genes that confer resistance to the element in Saccharomyces cerevisiae. Thirty boron-resistant transformants were isolated, and they all contained the ATR1 (YML116w) gene. Atr1 is a multidrug resistance transport protein belonging to the major facilitator superfamily. C-terminal green fluorescent protein-tagged Atr1 localized to the cell membrane and vacuole, and ATR1 gene expression was upregulated by boron and several stress conditions. We found that atr1Δ mutants were highly sensitive to boron treatment, whereas cells overexpressing ATR1 were boron resistant. In addition, atr1Δ cells accumulated boron, whereas ATR1-overexpressing cells had low intracellular levels of the element. Furthermore, atr1Δ cells showed stronger boron-dependent phenotypes than mutants deficient in genes previously reported to be implicated in boron metabolism. ATR1 is widely distributed in bacteria, archaea, and lower eukaryotes. Our data suggest that Atr1 functions as a boron efflux pump and is required for boron tolerance.Boron has been proposed as an important micronutrient in plants and animals. Studies have shown the presence of several genes associated with boron transport and tolerance in plants (18, 25, 27); however, boron transport mechanisms in other organisms, including animals, remain unclear. In plants, boron functions as a cross-linker for rhammogalacturanon II in the cell membrane (9, 14, 21) and also as a structural component in cytoskeleton assembly (1). Arabidopsis thaliana BOR1 was the first gene shown to play a role in boron tolerance (28). Homologs of BOR1 were found in many organisms, including yeasts, plants, and mammals (22, 25, 29). A high level of boron leads to degradation of its own exporter, BOR1, in A. thaliana (27), and A. thaliana BOR1 cannot be used to produce genetically modified plants that grow in soil with high boron levels. However, transgenic plants expressing BOR4, one of six paralogs of BOR1, showed high tolerance to toxic levels of boron (18). Multicopy expression of BOT1, a BOR1 ortholog, provided boron tolerance to barley (25).The yeast Saccharomyces cerevisiae has been used as a model organism for characterization of plant boron tolerance genes (19, 20, 25, 26, 29). While 10 mM boric acid is lethal to Arabidopsis (18), yeast can grow in the presence of 80 mM boron and is considered a boron-tolerant organism (19, 20). Yeast Bor1 was characterized in detail (10). This protein is localized to the plasma membrane and functions as a boric acid exporter (26). The bor1Δ yeast strain overaccumulates boron (20, 28), and cells that overexpress BOR1 have less intracellular boron and show resistance to boron treatment (20). In addition to Bor1, two other proteins, Dur3 and Fps1, have been implicated in boron tolerance in yeast, but their functions are not clear (20). Dur3 is a plasma membrane transporter that plays a role in urea and polyamine transport (5, 31), and Fps1 is a member of the major intrinsic protein family and plays a role in glycerol, acetic acid, arsenite, and antimonite transport (16, 30, 33). Overexpression of FPS1 and DUR3 showed controversial effects on cellular boron levels. While FPS1 expression lowered the protoplasmic boron concentration, DUR3 expression led to a small increase in boron (20).The objective of this study was to identify proteins that are primarily responsible for boron transport in yeast. ATR1 was identified as a boron tolerance gene by screening a yeast DNA expression library. Yeast Atr1 is a member of the DHA2 family of drug-H+ antiporters with 14 predicted membrane-spanning segments (7). It was first characterized in a genetic screen as a high-copy-number suppressor of the 3-amino-1,2,4-triazole sensitivity of gcn4Δ mutants (11). It also conferred resistance to the DNA-damaging agent 4-nitroquinoline-N-oxide in a separate genetic screen (17). In this study, we demonstrated that high-copy-number expression of ATR1 conferred extreme resistance to boron and reduced intracellular levels of the element, whereas cells lacking the ATR1 gene were hypersensitive to boron and increased its intracellular levels. We analyzed changes in the global gene expression profile in response to boron and found that ATR1 is the most induced transporter gene. The Atr1-green fluorescent protein (GFP) fusion protein localized to the plasma membrane and vacuole. Taken together, our data show that Atr1 functions as a major boron efflux pump and provides tolerance of the element by pumping boron out of cells.  相似文献   

10.
A non-traumatic electroporation procedure was developed to load exogenous cytochrome c into the cytoplasm and to study the apoptotic effect of cytochrome c, its K72-substitued mutants and “yeast → horse” hybrid cytochrome c in living WEHI-3 cells. The minimum apoptosis-activating intracellular concentration of horse heart cytochrome c was estimated to be 2.7 ± 0.5 μM (47 ± 9 fg/cell). The equieffective concentrations of the K72A-, K72E- and K72L-substituted mutants of cytochrome c were five-, 15- and 70-fold higher. The “yeast → horse” hybrid created by introducing S2D, K4E, A7K, T8K, and K11V substitutions (horse protein numbering) and deleting five N-terminal residues in yeast cytochrome c did not evoke apoptotic activity in mammalian cells. The apoptotic function of cytochrome c was abolished by the K72W substitution. The K72W-substituted cytochrome c possesses reduced affinity to the apoptotic protease activating factor-1 (Apaf-1) and forms an inactive complex. This mutant is competent as a respiratory-chain electron carrier and well suited for knock-in studies of cytochrome c-mediated apoptosis.  相似文献   

11.
Cytochrome c3 of Desulfovibrio desulfuricans strain G20 is an electron carrier for uranium (VI) reduction. When D. desulfuricans G20 was grown in medium containing a non-lethal concentration of uranyl acetate (1 mM), the rate at which the cells reduced U(VI) was decreased compared to cells grown in the absence of uranium. Western analysis did not detect cytochrome c3 in periplasmic extracts from cells grown in the presence of uranium. The expression of this predominant tetraheme cytochrome was not detectably altered by uranium during growth of the cells as monitored through a translational fusion of the gene encoding cytochrome c3 (cycA) to lacZ. Instead, cytochrome c3 protein was found tightly associated with insoluble U(IV), uraninite, after the periplasmic contents of cells were harvested by a pH shift. The association of cytochrome c3 with U(IV) was interpreted to be non-specific, since pure cytochrome c3 adsorbed to other insoluble metal oxides, including cupric oxide (CuO), ferric oxide (Fe2O3), and commercially available U(IV) oxide.An erratum to this article can be found at  相似文献   

12.
CaMDR1 encodes a major facilitator superfamily (MFS) protein inCandida albicans whose expression has been linked to azole resistance and which is frequently encountered in this human pathogenic yeast. In this report we have overexpressed CaMdr1p inSf9 insect cells and demonstrated for the first time that it can mediate methotrexate (MTX) and fluconazole (FLC) transport. MTX appeared to be a better substrate for CaMdr1p among these two tested drugs. Due to severe toxicity of these drugs to insect cells, further characterization of CaMdr1p as a drug transporter could not be done with this system. Therefore, as an alternative, CaMdr1p and Cdr1p, which is an ABC protein (ATP binding cassette) also involved in azole resistance inC. albicans, were independently expressed in a common hypersensitive host JG436 ofSaccharomyces cerevisiae. This allowed a better comparison between the functionality of the two export pumps. We observed that while both FLC and MTX are effluxed by CaMdr1p, MTX appeared to be a poor substrate for Cdr1p. JG436 cells expressing Cdr1p thus conferred resistance to other antifungal drugs but remained hypersensitive to MTX. Since MTX is preferentially transported by CaMdr1p, it can be used for studying the function of this MFS protein.  相似文献   

13.
Water-use strategies of Populus tremula and Tilia cordata, and the role of abscisic acid in these strategies, were analysed. P. tremula dominated in the overstorey and T. cordata in the lower layer of the tree canopy of the temperate deciduous forest canopy. Shoot water potential (), bulk-leaf abscisic acid concentration ([ABA]leaf), abscisic acid concentration in xylem sap ([ABA]xyl), and rate of stomatal closure following the supply of exogenous ABA (v) decreased acropetally through the whole tree canopy, and foliar water content per area (w), concentration of the leaf osmoticum (c), maximum leaf-specific hydraulic conductance of shoot (L), stomatal conductance (gs), and the threshold dose per leaf area of the exogenous ABA (da) required to reduce stomatal conductance increased acropetally through the tree canopy (from the base of the foliage of T. cordata to the top of the foliage of P. tremula) in non-stressed trees. The threshold dose per leaf dry mass of the exogenous ABA (dw) required to reduce stomatal conductance, was similar through the tree canopy. After a drought period (3 weeks), the , w, L, gs, da and dw had decreased, and c and v had increased in both species. Yet, the effect of the drought period was more pronounced on L, gs, da, dw and v in T. cordata, and on , w and c in P. tremula. It was concluded that the water use of the species of the lower canopy layer—T. cordata, is more conservative than that of the species of the overstorey, P. tremula. [ABA]leaf had not been significantly changed in these trees, and [ABA]xyl had increased during the drought period only in P. tremula. The relations between [ABA]leaf, [ABA]xyl and the stomatal conductance, the osmotic adjustment and the shoot hydraulic conductance are also discussed.  相似文献   

14.
【目的】在无任何外界凋亡因素诱导条件下,探究家蚕微孢子虫感染对家蚕卵巢细胞-BmN凋亡的影响,以及凋亡蛋白抑制因子IAPs实相表达的变化情况。【方法】显微镜下观察家蚕微孢子虫感染BmN细胞后不同时间段宿主细胞的变化情况,以及利用荧光定量PCR方法检测家蚕促凋亡基因——细胞色素C(BmCyt c)表达水平的变化,随后检索家蚕基因组与蛋白质家族数据库搜寻家蚕凋亡蛋白抑制因子IAPs基因信息,并通过荧光定量PCR方法对这些基因的实相表达情况进行定量分析。【结果】家蚕微孢子虫感染BmN细胞的前5 d,细胞状态未见明显变化。感染后7 d,BmN细胞的生长受到了一定程度的影响。第12天时,对照组中几乎所有细胞出现空泡化或细胞死亡的现象,而感染家蚕微孢子虫的BmN细胞未见空泡的出现,并且大量细胞形态完整,细胞核清晰可见。同时,BmCyt c基因的表达几乎一直处于被抑制状态,特别是感染后的第10天与第12天,该基因的表达量显著性降低(P0.01)。通过数据库检索共得到4个家蚕凋亡蛋白抑制因子:BmIAP-1、BmIAP-2、BmSurvivin-1与BmSurvivin-2。荧光定量PCR结果表明:BmIAP-1和BmSurvivin-1基因在感染后期(10 d与12 d)表达量有上升趋势,尤其是感染后的12 d,表达量显著上升(P0.01)。然而,BmIAP-2与BmSurvivin-2基因的表达在大多数时间段均处于下调状态。【结论】当无任何外界凋亡因素诱导条件下,家蚕微孢子虫感染BmN细胞后可影响宿主细胞的生长,并可抑制细胞的正常生理凋亡。依据荧光定量PCR结果,我们推测在家蚕微孢子虫感染BmN细胞时,BmIAP-1和BmSurvivin-1蛋白可能在调节细胞凋亡的过程中起一定作用。  相似文献   

15.
Biochemical and physiological studies have implicated cAMP and cAMP-dependent protein kinase (PKA) in a plethora of essential cellular processes. Here we show that yeast cells partially depleted of PKA activity (due to atpk w mutation) and bearing a lesion in a Golgi-localized Ca2+ pump (Pmr1), arrest division with a small bud. The bud morphology of the arrestedtpk1 w pmr1 mutant cells is characteristic of cells in S phase; however, the terminal phenotype of processes such as DNA replication and nuclear division suggests arrest at the G2/M boundary. This small bud, G2-arrest phenotype is similar to that of strains with a defect in cell wall biosynthesis (pkc1) or membrane biogenesis (och1); however, the biochemical defect may be different since thetpk1 w pmr1 double mutants retain viability. The growth defect of thetpk1 w pmr1 mutant can be alleviated by preventing the increase in cellular cAMP levels that is known to be associated with a decrease in PKA activity, or by supplementing the medium with millimolar amounts of Ca2+. Although the biochemical consequences of this increase in cAMP concentration are not known, the small-bud phenotype of the double mutant and the known protein processing defect of thepmr1 lesion suggest that the localization or function of some membrane component might be compromised and susceptible to perturbations in cellular cAMP levels. One candidate for such a protein is the cAMP-binding membrane ectoprotein recently described in yeast.  相似文献   

16.
Biofilms of bacteria, indigenous to oil field produced water, were grown in square section, glass capillary flow cells at 45 °C. Initially, in situ image analysis microscopy revealed predominantly coccoid bacteria (length-to-width ratio measurements (l c:w c) of bacterial cells gave a mean value of 1.1), while chemical measurements confirmed sulphate reduction and sulphide production. After nitrate ion addition at 100 and 80 mg/l, in the two repeat experiments respectively, the dominance of rod-shaped bacteria (mean l c:w c = 2.8) was observed. This coincided with the occurrence of nitrate reduction in the treated flow cells. Beneficially, no significant increase in biofilm cover was observed after the addition of nitrate. The dominant culturable nitrate-reducing bacterium was Marinobacter aquaeolei. The l c:w c ratio measured here concurs with previously reported cell dimensions for this organism. Several Marinobacter strains were also isolated from different oil fields in the North Sea where nitrate treatment has been applied to successfully treat reservoir souring, implying that this genus may play an important role in nitrate treatment.  相似文献   

17.
Glutathione is essential for protecting plants from a range of environmental stresses, including heavy metals where it acts as a precursor for the synthesis of phytochelatins. A 1658 bp cDNA clone for glutathione synthetase (gsh2) was isolated fromArabidopsis thaliana plants that were actively synthesizing glutathione upon exposure to cadmium. The sequence of the clone revealed a protein with an estimated molecular mass of 53858 Da that was very similar to the protein from higher eukaryotes, was less similar to the gene from the fission yeast,Schizosaccharomyces pombe, and shared only a small region of similarity with theEscherichia coli protein. A 4.3 kbSstI fragment containing the genomic clone for glutathione synthetase was also isolated and sequenced. A comparison of the cDNA and genomic sequences revealed that the gene was composed of twelve exons.When theArabidopsis cDNA cloned in a special shuttle vector was expressed in aS. pombe mutant deficient in glutathione synthetase activity, the plant cDNA was able to complement the yeast mutation. Glutathione synthetase activity was measurable in wild-type yeast cells, below detectable levels in thegsh2 - mutant, and restored to substantial levels by the expression of theArabidopsis cDNA. TheS. pombe mutant expressing the plant cDNA had near wild type levels of total cellular thiols,109Cd2+ binding activity, and cadmium resistance. Since theArabidopsis cDNA was under control of a thiamine-repressible promoter, growth of the transformed yeast on thiamine-free medium increased expression of the cDNA resulting in increases in cadmium resistance.  相似文献   

18.
Summary The Escherichia coli recA protein coding region was ligated into an extrachromosomally replicating yeast expression vector downstream of the yeast alcohol dehydrogenase promoter region to produce plasmid pADHrecA. Transformation of the wild-type yeast strains YNN-27 and 7799-4B, as well as the recombination-deficient rad52-t C5-6 mutant, with this shuttle plasmid resulted in the expression of the bacterial 38 kDa RecA protein in exponential phase cells. The wild-type YNN27 and 7799-4B transformants expressing the bacterial recA gene showed increased resistance to the toxic effects of both ionizing and ultraviolet radiation. RecA moderately stimulated the UV-induced mutagenic response of 7799-4B cells. Transformation of the rad52-t mutant with plasmid pADHrecA did not result in the complementation of sensitivity to ionizing radiation. Thus, the RecA protein endows the yeast cells with additional activities, which were shown to be error-prone and dependent on the RAD52 gene.  相似文献   

19.
In cells a portion of cytochrome c (cyt c) (15–20%) is tightly bound to cardiolipin (CL), one of the phospholipids constituting the mitochondrial membrane. The CL-bound protein, which has nonnative tertiary structure, altered heme pocket, and disrupted Fe(III)-M80 axial bond, is thought to play a role in the apoptotic process. This has attracted considerable interest in order to clarify the mechanisms governing the cyt c–CL interaction. Herein we have investigated the binding reaction of CL with the c-type cytochromes from horse heart and yeast. Although the two proteins possess a similar tertiary architecture, yeast cyt c displays lower stability and, contrary to the equine protein, it does not bind ATP and lacks pro-apoptotic activity. The study has been performed in the absence and in the presence of ATP and NaCl, two compounds that influence the (horse cyt c)-CL binding process and, thus, the pro-apoptotic activity of the protein. The two proteins behave differently: while CL interaction with horse cyt c is strongly influenced by the two effectors, no effect is observed for yeast cyt c. It is noteworthy that NaCl induces dissociation of the (horse cyt c)–CL complex but has no influence on that of yeast cyt c. The differences found for the two proteins highlight that specific structural factors, such as the different local structure conformation of the regions involved in the interactions with either CL or ATP, can significantly affect the behavior of cyt c in its reaction with liposomes and the subsequent pro-apoptotic action of the protein.  相似文献   

20.
Previous work has established that the N57I amino acid replacement in iso-1-cytochrome c from the yeast Saccharomyces cerevisiae causes an unprecedented increase in thermodynamic stability of the protein in vitro, whereas the N57G replacement diminishes stability. Spectrophotometric measurements of intact cells revealed that the N57I iso-l-cytochrome c is present at higher than normal levels in vivo. Although iso-1-cytochrome c turnover is negligible during aerobic growth, transfer of fully derepressed, aerobically grown cells to anaerobic growth conditions leads to reduction in the levels of all of the cytochromes. Pulsechase experiments carried out under these anaerobic conditions demonstrated that the N57I iso-l-cytochrome c has a longer half-life than the normal protein. This is the first report of enhanced stability in vivo of a mutant form of a protein that has an enhanced thermodynamic stability in vitro. Although the N57I protein concentration is higher than the normal level, reduced growth in lactate medium indicated that the specific activity of this iso-l-cytochrome c in vivo is diminished relative to wild-type. On the other hand, the level of the thermodynamically labile N57G iso-1-cytochrome c was below normal. The in vivo levels of the N57I and N57G iso-l-cytochrome c suggest that proteins in the mitochondrial intermembrane space can be subjected to degradation, and that this degradation may play a role in controlling their normal levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号