首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 169 毫秒
1.
2.
3.
Cellular differentiation is caused by highly controlled modifications in the gene expression but rarely involves a change in the DNA sequence itself. Histone acetylation is a major epigenetic factor that adds an acetyl group to histone proteins, thus altering their interaction with DNA and nuclear proteins. Illumination of the histone acetylation during dentinogenesis is important for odontoblast differentiation and dentinogenesis. In the current study, we aimed to discover the roles and regulation of acetylation at histone 3 lysine 9 (H3K9ac) and H3K27ac during dentinogenesis. We first found that both of these modifications were enhanced during odontoblast differentiation and dentinogenesis. These modifications are dynamically catalyzed by histone acetyltransferases (HATs) and deacetylases (HDACs), among which HDAC3 was decreased while p300 increased during odontoblast differentiation. Moreover, overexpression of HDAC3 or knockdown p300 inhibited odontoblast differentiation in vitro, and inhibition of HDAC3 and p300 with trichostatin A or C646 regulated odontoblast differentiation. Taken together, the results of our present study suggest that histone acetylation is involved in dentinogenesis and coordinated expression of p300- and HDAC3-regulated odontoblast differentiation through upregulating histone acetylation.  相似文献   

4.
Histone acetylation modulates gene expression and has been described as increased in systemic lupus erythematosus (SLE). We investigated interferon regulatory factor 1 (IRF1) interactions that influence H4 acetylation (H4ac) in SLE. Intracellular flow cytometry for H4 acetylated lysine (K) 5, K8, K12, and K16 was performed. Histone acetylation was defined in monocytes and T cells from controls and SLE patients. RNA-Seq studies were performed on monocytes to look for an imbalance in histone acetyltransferases and histone deacetylase enzyme expression. Expression levels were validated using real-time quantitative RT-PCR. IRF1 induction of H4ac was evaluated using D54MG cells overexpressing IRF1. IRF1 protein interactions were studied using co-immunoprecipitation assays. IRF1-dependent recruitment of histone acetyltransferases to target genes was examined by ChIP assays using p300 antibody. Flow cytometry data showed significantly increased H4K5, H4K8, H4K12, and H4K16 acetylation in SLE monocytes. HDAC3 and HDAC11 gene expression were decreased in SLE monocytes. PCAF showed significantly higher gene expression in SLE than controls. IRF1-overexpressing D54MG cells were associated with significantly increased H4K5, H4K8, and H4K12 acetylation compared to vector-control D54MG cells both globally and at specific target genes. Co-immunoprecipitation studies using D54MG cells revealed IRF1 protein-protein interactions with PCAF, P300, CBP, GCN5, ATF2, and HDAC3. ChIP experiments demonstrated increased p300 recruitment to known IRF1 targets in D54MG cells overexpressing IRF1. In contrast, p300 binding to IRF1 targets decreased in D54MG cells with IRF1 knockdown. SLE appears to be associated with an imbalance in histone acetyltransferases and histone deacetylase enzymes favoring pathologic H4 acetylation. Furthermore, IRF1 directly interacts with chromatin modifying enzymes, supporting a model where recruitment to specific target genes is mediated in part by IRF1.  相似文献   

5.
6.
7.
8.
Prospects: histone deacetylase inhibitors   总被引:14,自引:0,他引:14  
  相似文献   

9.
10.
Histone acetylation is a key modification that regulates chromatin accessibility. Here we show that treatment with butyrate or other histone deacetylase (HDAC) inhibitors does not induce histone hyperacetylation in metaphase-arrested HeLa cells. When compared to similarly treated interphase cells, acetylation levels are significantly decreased in all four core histones and at all individual sites examined. However, the extent of the decrease varies, ranging from only slight reduction at H3K23 and H4K12 to no acetylation at H3K27 and barely detectable acetylation at H4K16. Our results show that the bulk effect is not due to increased or butyrate-insensitive HDAC activity, though these factors may play a role with some individual sites. We conclude that the lack of histone acetylation during mitosis is primarily due to changes in histone acetyltransferases (HATs) or changes in chromatin. The effects of protein phosphatase inhibitors on histone acetylation in cell lysates suggest that the reduced ability of histones to become acetylated in mitotic cells depends on protein phosphorylation.  相似文献   

11.
12.
13.
14.
15.
16.
Control of global histone acetylation status is largely governed by the opposing enzymatic activities of histone acetyltransferases and deacetylases (HDACs). HDACs were originally identified as modulators of nuclear histone acetylation status and have been linked to chromosomal condensation and subsequent gene repression. Accumulating evidence highlights HDAC modification of non-histone targets. Mitochondria were first characterized as intracellular organelles responsible for energy production through the coupling of oxidative phosphorylation to respiration. More recently, mitochondria have been implicated in programmed cell death whereby release of pro-apoptotic inner membrane space factors facilitates apoptotic progression. Here we describe the novel discovery that the nuclear encoded Class II human histone deacetylase HDAC7 localizes to the mitochondrial inner membrane space of prostate epithelial cells and exhibits cytoplasmic relocalization in response to initiation of the apoptotic cascade. These results highlight a previously unrecognized link between HDACs, mitochondria, and programmed cell death.  相似文献   

17.
组蛋白乙酰化修饰是基因起始转录的关键步骤. p300等组蛋白乙酰转移酶(HATs)催化组蛋白和非组蛋白的乙酰化. HATs具有多种细胞功能,而且乙酰化对底物蛋白的功能改变也具有重要功能. 组蛋白乙酰转移酶p300可乙酰化多种细胞内蛋白,某些病毒蛋白与p300有相互作用并促进病毒复制. 因此, p300是细胞内具有广泛功能的转录激活因子. 组蛋白乙酰转移酶结构域(HAT区)是p300乙酰化酶活性的最小中心功能域,在p300乙酰化底物中具有重要功能. 本文重组表达了对应p300 HAT区的GST-p300 HAT蛋白,对其乙酰化酶的活性进行检测. 结果证实,p300 HAT蛋白在体外可高效乙酰化组蛋白H3. 随后,对体外乙酰化反应的条件进行优化. 总之,本文构建了一种简单高效、非放射性体外乙酰化体系,适用于对潜在底物蛋白的乙酰化水平和机制进行分析,以及乙酰化蛋白的相关功能的研究.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号