首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 167 毫秒
1.
Nitrate dissimilation in chemostat grown cultures ofClostridium butyricum SS6 has been investigated. Sucrose limited cultures grown on nitrate produced nitrite as the principal end-product of nitrate reduction whilst under nitrate-limiting conditions ammonia accumulated in the spent media. Nitrate reduction was accompanied by the synthesis of a soluble nitrate reductase (123 nmol·NADH oxidised · min-1 · mg protein-1) and in addition, under N-limiting conditions, a soluble nitrite reductase (56 nmol NADH oxidised min-1 · mg protein-1). Corresponding ammonia grown cultures synthesised neither enzyme. Concurrent with the dissimilation of nitrate to nitrite and ammonia cell population densities increased by 18% (C-limitation) and 32% (N-limitation). Spent media analyses of the fermentation products from ammonia and nitrate grown cells showed the accumulation of acetate in nitrate dissimilating cultures. Molar ratios of acetate/butyrate increased by a factor of 5 (C-limitation) to 12 (N-limitation) upon adding nitrate to the growth medium. In C-limited cultures, grown on nitrate, hydrogenase activity was 340 nmol · min-1 · mg protein-1 and under N-limitation this increased to 906 nmol · min-1 · mg protein-1. Since N-limited cultures are electron acceptor limited, the increase in hydrogenase activity enables excess electrons to be spilled by this route.  相似文献   

2.
Filamentous sulfur bacteria of the genus Thioploca occur as dense mats on the continental shelf off the coast of Chile and Peru. Since little is known about their nitrogen, sulfur, and carbon metabolism, this study was undertaken to investigate their (eco)physiology. Thioploca is able to store internally high concentrations of sulfur globules and nitrate. It has been previously hypothesized that these large vacuolated bacteria can oxidize sulfide by reducing their internally stored nitrate. We examined this nitrate reduction by incubation experiments of washed Thioploca sheaths with trichomes in combination with 15N compounds and mass spectrometry and found that these Thioploca samples produce ammonium at a rate of 1 nmol min−1 mg of protein−1. Controls showed no significant activity. Sulfate was shown to be the end product of sulfide oxidation and was observed at a rate of 2 to 3 nmol min−1 mg of protein−1. The ammonium and sulfate production rates were not influenced by the addition of sulfide, suggesting that sulfide is first oxidized to elemental sulfur, and in a second independent step elemental sulfur is oxidized to sulfate. The average sulfide oxidation rate measured was 5 nmol min−1 mg of protein−1 and could be increased to 10.7 nmol min−1 mg of protein−1 after the trichomes were starved for 45 h. Incorporation of 14CO2 was at a rate of 0.4 to 0.8 nmol min−1 mg of protein−1, which is half the rate calculated from sulfide oxidation. [2-14C]acetate incorporation was 0.4 nmol min−1 mg of protein−1, which is equal to the CO2 fixation rate, and no 14CO2 production was detected. These results suggest that Thioploca species are facultative chemolithoautotrophs capable of mixotrophic growth. Microautoradiography confirmed that Thioploca cells assimilated the majority of the radiocarbon from [2-14C]acetate, with only a minor contribution by epibiontic bacteria present in the samples.  相似文献   

3.
Glycolate can be measured in the supernatant fraction after incubation of butyrate-grown cells of Rhodospirillum rubrum either colorimetrically by the Calkins method or enzymatically using glycolate oxidase. Under optimal conditions, half-maximal excretion occurs at 11% O2 and the maximal rate is 6.9 nmol of glycolate min-1 mg protein-1 at 30°C. The pH and temperature optima are 7.6 and 30°C and light intensity is saturating in the range of 2–10×104 lux. Carbon dioxide inhibits glycolate excretion and exogenous butyrate stimulates. Glycolate excretion is maximal by butyrate-light grown cells harvested in the early stationary phase and under all conditions is proportional to the cellular content of ribulose 1,5-bisphosphate carboxylase/oxygenase.Non-Standard Abbreviations Bicine (N,N-bis[2-hydroxyethyl]glycine) - RuBP d-ribulose-1,5-bisphosphate - HPMS 2-pyridylhydroxymethanesulfonate  相似文献   

4.
Karni  Leah  Moss  Stephen J.  Tel-Or  Elisha 《Archives of microbiology》1984,140(2-3):215-217
Glutathione reductase activity was detected and characterized in heterocysts and vegetative cells of the cyanobacterium Nostoc muscorum. The activity of the enzyme varied between 50 and 150 nmol reduced glutathione· min-1·mg protein-1, and the apparent Km for NADPH was 0.125 and 0.200 mM for heterocysts and vegetative cells, respectively. The enzyme was found to be sensitive to Zn+2 ions, however, preincubation with oxidized glutathione rendered its resistance to Zn+2 inhibition. Nostoc muscorum filaments were found to contain 0.6–0.7mM glutathione, and it is suggested that glutathione reductase can regenerate reduced glutathione in both cell types. The combined activity of glutathione reductase and isocitrate dehydrogenase in heterocysts was as high as 18 nmol reduced glutathione·min-1·mg protein-1. A relatively high superoxide dismutase activity was found in the two cell types; 34.2 and 64.3 enzyme units·min-1·mg protein-1 in heterocysts and vegetative cells, respectively.We suggest that glutathione reductase plays a role in the protection mechanism which removes oxygen radicals in the N2-fixing cyanobacterium Nostoc muscorum.Abbreviations DTNB 5-5-dithiobis-(2-nitrobenzoic acid) - EDTA ethylenediaminetetra-acetic acid - GR glutathione reductase (EC1.6.4.2) - GSH reduced glutathione - GSSG oxidized glutathione - OPT O-phtaldialdehyde - SOD superoxide dismutase (EC 1.15.1.1)  相似文献   

5.
Cell suspension cultures of Taxus chinensis, supplemented with 25 g sucrose l–1, produced 11 mg cephalomanine l–1, 21 g biomass l–1 and 19 nkat geranylgeranyl diphosphate (GGPP) synthase activity g protein–1. Supplementation of the cultures with 100 M methyl jasmonate (MJA) produced 17 mg cephalomanine l–1, 6 g biomass l–1 and 78 nkat GGPP synthase activity g protein–1. Addition of sucrose and MJA together produced 24 mg cephalomanine l–1, 18 g biomass l–1 and 55 nkat GGPP synthase activity g protein–1.  相似文献   

6.
Anaerobic degradation of hydroquinone was studied with the fermenting bacterium strain HQGö1. The rate of hydroquinone degradation by dense cell suspensions was dramatically accelerated by addition of NaHCO3. During fermentation of hydroquinone in the presence of 14C-Na2CO3 benzoate was formed as a labelled product, indicating an initial ortho-carboxylation of hydroquinone to gentisate. Gentisate was activated to the corresponding CoA-ester in a CoA ligase reaction at a specific activity of 0.15 mol x min–1 x mg protein–1. Gentisyl-CoA was reduced to benzoyl-CoA with reduced methyl viologen as electron donor by simultaneous reductive elimination of both the ortho and meta hydroxyl group. The specific activity of this novel gentisyl-CoA reductase was 17 nmol x min–1 x mg protein–1. Further degradation to acetate was catalyzed by enzymes which occur also in other bacteria degrading aromatic compounds via benzoyl-CoA.  相似文献   

7.
The tolerance of sol-gel immobilised and free Saccharomyces cerevisiae to ethanol was studied. The effects of ethanol preincubation time showed that the specific death velocity decreased from 2×105 c.f.u. min–1 for free cells to 2×104 c.f.u. min–1 for immobilised cells thus indicating that immobilised yeast was far less sensitive to the ethanol damage. The specific glucose consumption of immobilised and free cells on a per cell basis was 3×10–12 g cell–1 h–1 and 9×10–12 g cell–1 h–1, respectively.  相似文献   

8.
We have recently reported the existence of ATPase activity capable of hydrolyzing extracellular ATP and localized at the external cell membrane of goldfish hepatocytes [Am. J. Physiol. (1998) 274 R1031]. In the present study, we investigated whether one or more enzymes of the ATP diphosphohydrolase family (called E-NTPDases) are responsible for the hydrolysis of extracellular ATP and other nucleotides. Using soluble extracts from goldfish liver, enzyme activity was detected in the presence of ATP (32.1±4.0 nmol Pi liberated mg protein−1 min−1), ADP (20.7±3.3 nmol Pi liberated mg protein−1 min−1) and UTP (20.7±1.2 nmol Pi liberated mg protein−1 min−1). In line with the presence of this hydrolytic activity, liver samples separated by non-denaturing gel electrophoresis and subsequently exposed to either ATP, ADP or UTP yielded a single band with enzyme activity and similar electrophoretic mobility. Subsequent SDS-PAGE electrophoresis of the active bands resulted in the appearance of two protein bands with molecular masses of 70 and 64 kDa. Inmunoblotting of soluble extracts and microsomes obtained from goldfish liver, using a monoclonal antibody against CD39 (a well-known E-NTPDase), detected a single 97-kDa protein. The enzyme activity measured in solution and in native gels, together with structural information from denaturing gels plus immunoblots, points to the existence, in goldfish liver, of at least two different E-NTPDases.  相似文献   

9.
High concentrations of acetylene (10 to 50% [vol/vol] gas phase) were required to inhibit the growth of Burkholderia cepacia G4 on toluene, while 1% (vol/vol) (gas phase) propyne or 1-butyne completely inhibited growth. Low concentrations of longer-chain alkynes (C5 to C10) were also effective inhibitors of toluene-dependent growth, and 2- and 3-alkynes were more potent inhibitors than their 1-alkyne counterparts. Exposure of toluene-grown B. cepacia G4 to alkynes resulted in the irreversible loss of toluene- and o-cresol-dependent O2 uptake activities, while acetate- and 3-methylcatechol-dependent O2 uptake activities were unaffected. Toluene-dependent O2 uptake decreased upon the addition of 1-butyne in a concentration- and time-dependent manner. The loss of activity followed first-order kinetics, with apparent rate constants ranging from 0.25 min−1 to 2.45 min−1. Increasing concentrations of toluene afforded protection from the inhibitory effects of 1-butyne. Furthermore, oxygen, supplied as H2O2, was required for inhibition by 1-butyne. These results suggest that alkynes are specific, mechanism-based inactivators of toluene 2-monooxygenase in B. cepacia G4, although the simplest alkyne, acetylene, was relatively ineffective compared to longer alkynes. Alkene analogs of acetylene and propyne—ethylene and propylene—were not inactivators of toluene 2-monooxygenase activity in B. cepacia G4 but were oxidized to their respective epoxides, with apparent Ks and Vmax values of 39.7 μM and 112.3 nmol min−1 mg of protein−1 for ethylene and 32.3 μM and 89.2 nmol min−1 mg of protein−1 for propylene.  相似文献   

10.
Clostridium acetobutylicum P262 cells that were growing on lactate and acetate had an NAD-independent lactate dehydrogenase (iLDH) activity of 200 nmol mg protein−1 min−1. Ammonium sulfate precipitation and DEAE cellulose caused a 35-fold purification. Gel filtration indicated that the iLDH had a molecular weight of approximately 55 kDa, but two bands were always observed. Phenyl sepharose could not separate the two proteins, and hydroxyapatite caused a complete loss of activity. The semi-purified iLDH had a Vmax of 13,000 nmol mg protein−1 min−1 and a K m value of 3.5 mM for D-lactate. The Vmax and K m values for L-lactate were 300 nmol mg protein−1 min−1 and 0.7 mM. The iLDH had a pH optimum of 7.5, was not activated by fructose-1,6-bisphosphate (FDP), and could be coupled to either 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) or dichlorophenol-indophenol (DCPIP), but not methyl viologen (MV) or benzyl viologen (BV). The iLDH did not have strong absorbance between 500 and 300 nm, and trichloroacetic acid or acid ammonium sulfate extracts had virtually no fluorescence at 450 nm. The crude extracts also had MTT-linked butyryl-CoA dehydrogenase activity (60 nmol mg protein−1 min−1). The NAD-independent butyryl-CoA dehydrogenase eluted from DEAE-cellulose as two fractions. The yellow fraction was extremely unstable, but the green fraction could be stored for short periods of time at 5°C. The green-colored butyryl-CoA dehydrogenase had strong absorption at 450 nm, and gel filtration indicated that it had a molecular weight of 90 kDa. The NAD-independent butyryl-CoA dehydrogenase could be coupled to MTT, DCPIP, or MV, but not BV. Because the NAD-independent lactate and butyryl-CoA dehydrogenase could both be linked to low potential carriers, these two enzymes may function as oxidation-reduction system in vivo. Received: 24 July 1996 / Accepted: 10 September 1996  相似文献   

11.
Freshly isolated gonococci upon subculture are readily lysed by normal human serum although a few strains remain inherently resistant to the complement activity. The sensitive gonococci can be converted to serum resistance by incubation with a host derived factor referred to as cytidine 5-monophospho-N-acetylneuraminic acid (CMP-NANA). These gonococci resist complement mediated killing due to their sialylation of an epitope structure on a component of lipo-oligosaccharide (LOS). In the present study, the kinetics of conversion to serum resistance by the action of sialyltransferase (STase) inNeisseria gonorrhoeae was followed with very low concentrations of CMP-NANA. This conversion could not be perceived at 2×10–3 nmol.ml–1 but was fully attainable from 8×10–3 to 2×10–2 nmol.ml–1 CMP-NANA. When pretreated up to 100 min in presence of the very low concentration of 2×10–3 nmol.ml–1, a potentiating effect on the conversion of gonococci by 2×10–2 nmol.ml–1 was observed in relation to the time of preincubation. This action was abolished after exposure to a subinhibitory concentration of chloramphenicol (0.5 µg.ml–1). The gonococci recovered their ability to convert to serum resistance following adequate washing. The potential for increase in STase activity should be of interest for understanding the conversion from a serum sensitive to a serum resistance state.  相似文献   

12.
The demethylation of the algal osmolyte dimethylsulfoniopropionate (DMSP) to methylthiopropionate (MTPA) by (homo)acetogenic bacteria was studied. Five Eubacterium limosum strains (including the type strain), Sporomusa ovata DSM 2662T, Sporomusa sphaeroides DSM 2875T, and Acetobacterium woodii DSM 1030T were shown to demethylate DMSP stoichiometrically to MTPA. The (homo)acetogenic fermentation based on this demethylation did not result in any significant increase in biomass. The analogous demethylation of glycine betaine to dimethylglycine does support growth of acetogens. In batch cultures of E. limosum PM31 DMSP and glycine betaine were demethylated simultaneously. In mixed substrates experiments with fructose-DMSP or methanol-DMSP, DMSP was used rapidly but only after exhaustion of the fructose or the methanol. In steady-state fructose-limited chemostat cultures (at a dilution rate of 0.03 h−1) with DMSP as a second reservoir substrate, DMSP was biotransformed to MTPA but this did not result in higher biomass values than in cultures without DMSP; cells from such cultures demethylated DMSP at rates of approximately 50 nmol min−1 mg of protein−1, both after growth in the presence of DMSP and after growth in its absence. In cell extracts of glycine betaine-grown strain PM31, DMSP demethylation activities of 21 to 24 nmol min−1 mg of protein−1 were detected with tetrahydrofolate as a methyl acceptor; the activities seen with glycine betaine were approximately 10-fold lower. A speculative explanation for the demethylation of DMSP without an obvious benefit for the organism is that the DMSP-demethylating activity is catalyzed by the glycine betaine-demethylating enzyme and that a transport-related factor, in particular a higher energy demand for DMSP transport across the cytoplasmic membrane than for glycine betaine transport, may reduce the overall ATP yield of the fermentation to virtually zero.  相似文献   

13.
Using a highly sensitive fluorimetric assay, significant levels of angiotensin I -converting enzyme-like activity (ACELA) were detected in a range of tissues (branchial heart, gill, kidney with associated vasculature and archinephric duct, liver, whole brain and gut) from the Atlantic hagfish (Myxine glutinosa). The highest ACELA occurred in heart and gill (1.8 and 1.5 nmol His–Leu min−1 mg protein−1, respectively). The mammalian angiotensin I-converting enzyme (ACE) inhibitor, captopril, at 10−5 M was a potent inhibitor of the ACELA found in all hagfish tissues. Radioimmunoassay showed that immunoreactive angiotensins (251.8±11.8 pM) were detectable in hagfish plasma. The validity of the assay for measurement of hagfish angiotensins was indicated by the parallelism of the angiotensin II standard curve against serially diluted hagfish plasma. Measurement of immunoreactive plasma angiotensins and detection of significant levels of ACELA in a wide range of tissues gives indirect evidence for the presence of a renin–angiotensin system in hagfishes, the earliest evolved group of craniates.  相似文献   

14.
Cummings  E.  Hundal  H.S.  Wackerhage  H.  Hope  M.  Belle  M.  Adeghate  E.  Singh  J. 《Molecular and cellular biochemistry》2004,261(1):99-104
The fruit of Momordica charantia (family: Cucurbitacea) is used widely as a hypoglycaemic agent to treat diabetes mellitus (DM). The mechanism of the hypoglycaemic action of M. charantia in vitro is not fully understood. This study investigated the effect of M. charantia juice on either 3H-2-deoxyglucose or N-methyl-amino-a-isobutyric acid (14C-Me-AIB) uptake in L6 rat muscle cells cultured to the myotube stage. The fresh juice was centrifuged at 5000 rpm and the supernatant lyophilised. L6 myotubes were incubated with either insulin (100 nM), different concentrations (1–10 g ml–1) of the juice or its chloroform extract or wortmannin (100 nM) over a period of 1–6 h. The results were expressed as pmol min–1 (mg cell protein)–1, n= 6–8 for each value. Basal 3H-deoxyglucose and 14C-Me-AIB uptakes by L6 myotubes after 1 h of incubation were (means ± S.E.M.) 32.14 ± 1.34 and 13.48 ± 1.86 pmol min–1 (mg cell protein)–1, respectively. Incubation of L6 myotubes with 100 nM insulin for 1 h resulted in significant (ANOVA, p < 0.05) increases in 3H-deoxyglucose and 14C-Me-AIB uptakes. Typically, 3H-deoxyglucose and 14C-Me-AIB uptakes in the presence of insulin were 58.57 ± 4.49 and 29.52 ± 3.41 pmol min–1 (mg cell protein–1), respectively. Incubation of L6 myotubes with three different concentrations (1, 5 and 10 g ml–1) of either the lyophilised juice or its chloroform extract resulted in time-dependent increases in 3H-deoxy-D-glucose and 14C-Me-AIB uptakes, with maximal uptakes occurring at a concentration of 5 g ml–1. Incubation of either insulin or the juice in the presence of wortmannin (a phosphatidylinositol 3-kinase inhibitor) resulted in a marked inhibition of 3H-deoxyglucose by L6 myotubes compared to the uptake obtained with either insulin or the juice alone. The results indicate that M. charantia fruit juice acts like insulin to exert its hypoglycaemic effect and moreover, it can stimulate amino acid uptake into skeletal muscle cells just like insulin. (Mol Cell Biochem 261: 99–104, 2004)  相似文献   

15.
C 1300 neuroblastoma cells were cultured and used to study the effect of sodium dependent taurine transport on the membrane potential. Measuring net accumulation of taurine and the depolarization caused by externally applied taurine, we found both processes become active at an external concentration of taurine of 1 mM or more. Net accumulation had Km of 13 mM and a Vmax of 126 nmol × mg of protein–1×min–1. The taurine induced depolarization of the neuroblastoma cell was parallelled by a 25 per cent decrease in its membrane impedance. The transport of taurine, the depolarization caused by taurine and the effect of taurine on the membrane impedance, all, had a similar dependence on the external sodium concentration. Our results on the depolarizing cotransport between taurine and sodium at the neuronal membrane, may illustrate an additional mechanism for the control of the electrical activity of neuronal cells.  相似文献   

16.
Summary Geotrichum candidum (isolate 1–9) pathogenic on citrus fruits, appears to lack siderophore production. Iron uptake byG. candidum is mediated by two distinct iron-regulated, energy-and temperature-dependent transport systems that require sulfhydryl groups. One system exhibits specificity for either ferric or ferrous iron, whereas the other exhibits specificity for ferrioxamine-B-mediated iron uptake and presumably other hydroxamate siderophores. Radioactive iron uptake from59FeCl3 showed an optimum at pH 6 and 35° C, and Michaelis-Menten kinetics (apparentK m = 3 m,V max = 0.054 nmol · mg–1 · min–1). The maximal rate of Fe2+ uptake was higher than Fe3+ (V max = 0.25 nmol · mg–1 · min–1) but theK m was identical. Reduction of ferric to ferrous iron prior to transport could not be detected. The ferrioxamine B system exhibits an optimum at pH 6 and 40° C and saturation kinetics (K m = 2 M,V max = 0.22 nmol · mg–1 · min–1). The two systems were distinguished as two separate entities by negative reciprocal competition, and on the basis of differential response to temperature and phenazine methosulfate. Mössbauer studies revealed that cells fed with either57FeCl3 or57FeCl2 accumulated unknown ferric and ferrous binding metabolites.  相似文献   

17.
Uptake of exogenous 14C-glycine betaine has been followed in the cyanobacterium Aphanothece halophytica and other species able to synthesise glycine betaine in response to osmotic stress. At 1 mmol dm–3 uptake was rapid (flux rate=29.50 nmol m–2 s–1), equilibrating at an internal concentration of 120 mmol dm–3 within 30 min. This rapid uptake, coupled with high internal accumulation, was characteristic of glycine betaine-synthesising cyanobacteria only. The 14C-glycine betaine transported was not catabolised. Kinetic studies indicated a Michaelis-Menten type relationship (K m=2.0 mol dm–3, V max=45 nmol min–1 mm–3 cell volume), with a pH optimum of 8.0–8.5. Darkness dramatically decreased the flux rate. Higher 14C-glycine betaine levels occurred in cells growth in medium of elevated osmotic strength, and glycine betaine uptake was sensitive to changes in external salinity. A relationship between Na+ availability and glycine betaine uptake was observed, with >80 mmol dm–3 Na+ required for optimal stimulation of uptake in seawater-grown cells. Severe hyperosmotic stress (1000 mmol dm–3 NaCl) reduced the rate of glycine betaine uptake but increased internal glycine betaine concentration at equilibrium. Hypo-osmotic stress caused a decline in the internal glycine betaine concentration due to an increased rate of loss, indicating that the efflux system was also sensitive to ambient salinity changes. It is envisaged that this active transport system may be an adaptive mechanism in halophilic glycine betaine-synthesising cyanobacteria.  相似文献   

18.
Aerobic denitrification in various heterotrophic nitrifiers   总被引:17,自引:0,他引:17  
Various heterotrophic nitrifiers have been tested and found to also be aerobic denitrifiers. The simultaneous use of two electron acceptors (oxygen and nitrate) permits these organisms to grow more rapidly than on either single electron acceptor, but generally results in a lower yield than is obtained on oxygen, alone. One strain, formerly known as Pseudomonas denitrificans, was grown in the chemostat and shown to achieve nitrification rates of up to 44 nmol NH3 min–1 mg protein–1 and denitrification rates up to 69 nmol NO inf3 sup–1 min–1 mg protein–1.Unlike Thiosphaera pantotropha, this strain needed to induce its nitrate reductase. However, the remainder of the denitrifying pathway was constitutive and, like T. pantotropha, Ps. denitrificans probably possesses the copper nitrite reductase.  相似文献   

19.
A wild-type Ni-sensitive (Nis) strain of Nostoc muscorum ISU spontaneously yielded mutants resistant to inhibition by 40 M Ni with a frequency of about 10-7. A Ni-resistant (Nir) mutant was deficient in the activities of urease and uptake hydrogenase. Cellular Ni uptake in the Nis strain was dependent on concentration (40 to 120 M) and time (0 to 30 min) (Vmax=0.51 nmol/g protein.min; Km=92 M). The Ni bioconcentration factor for such cells ranged between 0.95×103 and 1.89×103. Ni uptake in spheroplast preparations from Nis cells followed almost the same trend as intact cells except that the bioconcentration factor was slightly less [(0.82 to 1.39)×103]. In contrast, Ni uptake in the Nir intact cells was not concentration dependent and also the uptake was saturated, even at 40 M, within 10 min. Spheroplasts from the Nir strain showed a Ni bioconcentration factor of 1.19×103 compared with 4.41×103 for intact cells. The invariably lower Ni uptake by spheroplasts was attributed to altered membrane transport properties.R.K. Asthana, A.L. Singh and S.P. Singh are with the Algal Research Laboratory, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221 005, India.  相似文献   

20.
Summary Two different strains, An 1 and An 2, were obtained from root nodules ofAlnus nitida Endl., collected from one locality in the area of its natural habitat near Bahrin, District Swat, Pakistan. The light and electron microscopy of the isolates revealed the occurrence of septate and branched hyphae bearing sporangia and vesicles. The strains differed in their growth requirements, nitrogen-fixing ability and production of extracellular pigments, thus indicating the existence of more than oneFrankia strain in the same locality. In the absence of combined nitrogen in the medium strain An 1 formed vesicles and fixed N2 (up to 200 nmol C2H4. mg protein–1.h–1), while strain An 2 under the experimental conditions formed only few vesicles and fixed N2 at a very low rate (ca 10 nmol C2H4. mg protein–1 .h–1). The nitrogenase activity of strain An 1 was strongly affected by the O2 concentration.Frankia An 1 and An 2 were infective and effective onA. nitida andA. glutinosa but not onDatisca cannabina andElaeagnus umbellata. Both An 1 and An 2 strains were more infective and effective onA. glutinosa thanFrankia strains AvcIl and CpI1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号