首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The way herbivores select what to eat is of considerable practical and theoretical interest, and has given rise to different theories and hypotheses. The plant vigour hypothesis predicts that herbivores feed preferentially on vigorous, i.e., large and/or fast-growing plants or plant parts. These predictions have previously primarily been tested on variation within plant species. Here we test whether differences in vigour among plant species in the same environment can explain differences in herbivore attack. We studied variation in browsing pressure by a guild of large herbivores on different woody species in an African savanna ecosystem. Shoot growth rate, annual shoot length, basal shoot diameter and annual shoot volume of 14 woody plant species were measured in the field. Plant species’ shoot vigour represented by the first PCA axis scores generated from the four shoot variables were then related to browsing pressure (% utilisation) on each of the species by native ungulates and elephant. Nutrient and fibre concentrations and tannin activity were also determined for the 14 woody plant species. We found ungulate browsing pressure to show a unimodal relationship with plant species’ shoot vigour. The heaviest browsing pressure was on plant species with shoots of intermediate vigour. We suggest that species with less vigorous shoots had low nutrient and high fibre concentrations and offered small bite sizes, whereas species with vigorous shoots had high nutrient concentrations but larger shoot diameters than the bite diameters of browsing ungulates. Elephant browsing pressure was not related to plant species’ shoot vigour.  相似文献   

2.
Resprouting is an efficient life history strategy by which woody savanna species can recover their aboveground biomass after fire. However, resprouting dynamics after fire and the time it takes to start producing flowers and fruits are still poorly understood, especially for the Brazilian savanna (Cerrado biome), where fire is an important driver of vegetation structure and ecosystem functioning. We investigated the resprouting dynamics and production of flowers and fruits of 26 woody species (20 tree and 6 shrub species for a total of 485 individuals) that were burned and the production of flowers and fruits for a subset of 12 species (139 individuals) in an unburned area in a Brazilian savanna. We classified the species’ resprouting strategies as hypogeal (at the soil level, with main stem death), epigeal (on the main stem or crown), and hypogeal + epigeal. We used generalized linear mixed-effect models to identify the post-fire recovery patterns for five years. Individuals with basal resprouts (hypogeal and hypogeal + epigeal resprouting) produced an average of 6 basal resprouts, but only 33% of resprouts survived after five years. Individuals in burned areas produced fewer flowers and fruits than individuals in unburned areas. At least a subset of individuals in all the resprouting strategies started to produce flowers and fruits in the first-year post-fire. About 68% of the species with hypogeal resprouts produced flowers and fruits in the first-year post-fire, but the intensity of flowering and fruiting was lower compared to individuals with other resprouting strategies over time. Although woody species have invested in post-fire growth and sexual reproduction in all resprouting strategies, the long time needed to recover these processes can make these species more vulnerable to frequent fires.  相似文献   

3.
The actual mechanism which causes plant death after having been burned has been poorly studied. One possibility is that fire causes direct, or indirect, fatal damage to plant hydraulic systems. If true, this suggests that burned plants ultimately die of drought. This hypothesis was tested on the post-fire response of a “fire-resister” species of the Cape Proteaceae, as well as by analysing its morphology. Fire-resisters are plants which are incapable of resprouting, but nevertheless survive some fires. Mortality of the studied fire-resister appears to be compatible with a hydraulic death hypothesis because i) most post-fire mortality occurred within days, ii) it occurred from the base-upwards and iii) correlated negatively with stem diameter rather than plant height. Higher levels of survival of the fire-resister is probably due to absolutely thicker bark than co-occurring re-seeder species of the same age. Since this bark has not evolved to protect buds, it has probably evolved to protect stem hydraulic systems.  相似文献   

4.
Summary Laurel Sumac (Rhus laurina) is a dominant member of the coastal chaparral community of southern California that survives periodic burning by wildfires by resprouting from a lignotuber (root crown). We investigated the physiological basis for resprouting by comparing shoot elongation, leaf nitrogen content, tissue water status, leaf conductance to water vapor diffusion, and photosynthetic rates of post-fire R. laurina to those of adjacent unburned shrubs. Resprouts had higher rates of shoot elongation, leaf conductance, and photosynthesis than mature, unburned shrubs. Leaf nitrogen contents were elevated in burned shrubs even though their leaves developed interveinal chlorosis. A comparison of soil water potential to predawn water potential indicated that roots of R. laurina remain active below 2 m during the first summer drought after wildfire. Our results support the hypothesis that lignotubers not only contain dormant buds that develop into aerial shoots after wildfire but they also supply nutrient resources that enhance shoot elongation. Because R. laurina is relatively sensitive to drought, yet very successful in its rapid recovery after fire, maintaining an active root system after shoot removal may be the primary function of the massive lignotuber formed by this species.  相似文献   

5.
Herbivores are attracted to young shoots and leaves because of their tender tissues. However, in extrafloral nectaried plants, young leaves also attract patrolling ants, which may chase or prey on herbivores. We examined this scenario in extrafloral nectaried shrubs of Banisteriopsis malifolia resprouting after fire, which promoted both the aseasonal production of leaves and the activity of extrafloral nectaries (EFNs). Results were compared between resprouting (burned) and unburned control plants. The aggressive ant species Camponotus crassus and the herbivorous thrips Pseudophilothrips obscuricornis were respectively rapidly attracted to resprouting plants because of the active EFNs and their less sclerophyllous leaves. The abundance of these insects was almost negligible in the control (unburned) shrubs. Ants failed to protect B. malifolia, as no thrips were preyed upon or injured by ants in resprouting plants. Consequently, on average, 37 % of leaves from resprouting shrubs had necrosis marks. Upon contact with ants, thrips released small liquid droplets from their abdomen, which rapidly displaced ants from the surroundings. This study shows that P. obscuricornis disrupted the facultative mutualism between C. crassus and B. malifolia, since ants received extrafloral nectar from plants, but were unable to deter herbivore thrips.  相似文献   

6.
The resprouting response of different sized Banksia oblongifolia lignotubers (genets) was followed in two field experiments. In the first, the density and speed of resprouting, and the growth in length of the leading shoot from each lignotuber in response to fire and to the time elapsed since the last fire was monitored for 18 months after fire and clipping treatments. In the second, sizes of bud banks were estimated by repeatedly clipping new shoots from individual lignotubers. Density of resprouting (shoots dm?2 lignotuber) decreased with increasing lignotuber size, and the length of the leading shoot increased. The direct effect of fire was to reduce shoot density by about 75%. The speed of resprouting (time taken by a cohort of shoots to reach 50% of their peak density) was similar after fire and clipping, but leading shoots grew significantly longer after fire. The elapsed time since lignotubers were last burnt did not influence their density of resprouting, but it did influence the speed of resprouting. Shoots from clipped lignotubers that had burnt 3 years earlier took about 90 days to each 50% of their peak density while shoots on lignotubers last burnt 5 and 17 years earlier took about 40 days. Death of shoots was unrelated to crowding in any stand. More lignotubers from the oldest unburnt stand were grazed by herbivores. The number of buds converted into shoots after successive clippings was surprisingly small; for most lignotubers this reserve was less than three times the size of their standing crop of shoots. In general, the smaller lignotubers carried a higher proportion of dormant buds in relation to their standing crop of shoots. About 30% of buds remained dormant after the first clipping and about 10% after the second and third clippings. Evidence suggests that buds are replaced within 6 months of fire. No lignotubers survived four clippings over 15 months.  相似文献   

7.
Aims Fires play a crucial role mediating species interactions in the Mediterranean Basin, with one prominent example being the nursing effect of post-fire resprouting shrubs on tree recruits, which then outcompete their benefactors throughout succession. Yet, the community structuring role of resprouting shrubs as potential facilitators of post-fire recruiting subshrub species, which are commonly outcompeted in late post-fire stages, has been overlooked. The aims of this work were to investigate (i) whether proximity to resprouting shrubs increased the demographic performance of a fire-adapted carnivorous subshrub and (ii) whether mature shrubs negatively affected the performance of established plants through interference with prey capture.Methods To evaluate the facilitative effects of resprouting shrubs, we sowed seeds of Drosophyllum lusitanicum, a carnivorous, seeder pyrophyte, into two microhabitats in recently burned heathland patches defined by proximity to resprouting shrubs. We monitored key demographic rates of emerged seedlings for 2 years. To test for competitive effects of shrubs on plant performance at a later habitat regeneration stage, we placed greenhouse-reared, potted plants into distinct microhabitats in neighboring burned and unburned heathland patches and monitored prey capture. Both experiments were performed in the Aljibe Mountains at the Northern Strait of Gibraltar and were replicated in 2 years.Important findings Resprouting shrubs significantly improved survival, juvenile size and flowering probability compared with open microhabitats, and had no significantly negative effects on the growth of recruits. Prey capture was significantly lower in unburned heathland patches compared with burned ones, thus partly explaining the decrease in survival of Drosophyllum individuals in mature heathlands. However, microhabitat did not affect prey capture. Our findings suggest that not only periodic fires, removing biomass in mature stands, but also resprouting neighbors, increasing establishment success after fire, may be important for the viability of early successional pyrophytes.  相似文献   

8.
Many woody plant species in fire disturbed communities survive disturbance events by resprouting. The resprouting life history is predicted to be costly to plants as resources are diverted into storage for post-fire regrowth rather than allocated to current growth, and resprouting species typically grow more slowly than seeder species (species that do not resprout after disturbance events). Differences in allocation to current growth are also predicted to make resprouter species poorer competitors compared to seeder species. We tested the predictions that the evolution of a resprouter life history is associated with slow growth, increased allocation to storage, and low competitive ability in woody plant seedlings. We grew eight phylogenetically independent pairs of seeder and resprouter species in competition and no competition treatments in a field experiment near Sydney, Australia. The presence of competitors reduced plant growth rates across taxa and fire response life histories. However, relative to seeder species, resprouter species were not slower growing, they did not allocate more resources to storage, and they did not have lower competitive abilities. We propose that differences in resource allocation to storage are not responsible for differences in growth rate and competitive ability. Rather, growth rate and competitive ability in seedlings are associated with key aspects of plant life history such as life-span and body size at maturity. These traits that are sometimes, but not always, related to fire response life histories.  相似文献   

9.
Disturbances can alter persistence trajectories of restored ecosystems. Resprouting is a common response of plants to disturbances such as fire or herbivory. Therefore, understanding a plant's resprouting response can inform successful restoration. We investigated patterns and drivers of resprouting following fire in fire-prone Banksia woodlands restored after sand mining in the Mediterranean-climate region of Western Australia. We applied experimental fire to samples of nine species with different resprouting types (rhizome, root crown, root sucker and lignotuber) across a 4- to 27-year-old restoration chronosequence. We investigated the influence of pre-fire plant size, restoration age and soil conditions on resprouting success, defined by: (i) the probability of resprouting (measured ~5 months after fire), (ii) the probability of surviving the first summer and, (iii) vigour (both measured ~12 months post-fire). We found that the probability of initial resprouting was high across most species, but summer survival was lower but comparable to that in other post-mining restored ecosystems following fire. Generally, pre-fire plant size did not influence probability of resprouting, while size and soil conditions were important for two species survival. Pre-fire plant size was a significant predictor of vigour for all species with soil conditions influencing four species. Restoration age significantly influenced survival of three species. However, as our models explained low amounts of variation in probabilities of resprouting and survival (R2 = <0.11), other factors influencing resprouting success remain unidentified. Resprouting response to fire disturbance in restored Banksia woodlands are species and resprouter type specific, with plant size and soil conditions potentially more informative for understanding responses to disturbances than restoration age alone.  相似文献   

10.
The study of plant functional types (PFTs) has been widely emphasized when analysing plant community changes in relation to variations in climate and disturbance regime. In this study, we search for PFTs of woody species near forest–grassland boundaries in South Brazil where, due to climate, forests tend to expand over grassland but are being restricted by frequent fires. We aimed at answering the questions: (i) which plant functional types of forest woody species can establish in adjacent grassland subject to fire disturbance and (ii) which plant functional types of forest and grassland woody species are related to short-term community dynamics in frequently burned grassland. Traits were assessed in woody plants in 156 plots (6.75 m2) arranged in 12 transects across forest–grassland boundaries with different fire history in their grassland part. The analysis used a recursive algorithm to search for traits and PFTs maximally associated to spatial distance from forest limit in one analysis, and elapsed time since last fire in another. As a result, nine PFTs of forest woody species were identified that best described community patterns associated to distance from forest. Resprouting ability characterized forest plants able to colonize grasslands. PFT diversity was higher in border plots than inside forest or grassland. Four PFTs of forest and grassland woody species best described woody species community patterns in the grassland associated to elapsed time since fire. Taller individuals of single-stemmed shrubs predominated in late post-fire recovery (3–4 years), while shorter multi-stemmed shrubs in recently burned areas (3 months to 1 year). PFTs of forest trees occurred in border plots or, as established adults, in grassland, remaining unaffected by fire. We conclude that easily measurable structural plant traits, such as those used in our study, are sufficient to evaluate post-fire community dynamics. Forest PFTs in burned grassland are restricted to those with resprouting ability to survive recurrent fire events. Establishment success is highest on protected sites with lesser or low-intensity fire.  相似文献   

11.
The severity of fire impacts on fire-prone vegetation is often spatially heterogeneous, and may lead to small-scale patchiness in the structure of plant populations by affecting mortality, topkill, and reproduction. This patchiness, however, is not usually taken into account in fire ecology studies. We show that a dry-season fire may result in small-scale patchiness in the population structure of the common shrub Miconia albicans, mostly by differential topkill and resprouting. We related fire severity to population structure parameters of the study species and assessed the effects of fire on its soil seed bank. Basal area of non-woody live stems and of dead stems increased with fire severity, whereas that of woody live stems decreased, indicating topkill and resprouting. However, there was no relationship between fire severity and the total number of live or dead plants, showing that mortality in the fire was low. We found very few seedlings, indicating that resprouting, not germination from the soil seed bank, is the main recovery strategy of this species. The fire also affected the soil seed bank, as there were fewer seedlings emerging from soil collected in burned patches. Although this study was performed with a single species, it is likely that other species, especially those with basal resprouting, will show similar patterns of post-fire patchiness in population structure. This patchiness, in turn, may affect the spatial distribution of future fires, and should be taken into account in studies of fire ecology.  相似文献   

12.
Abstract. In periodically burned ecosystems, fire frequency may be an important selective pressure for the evolution of plant reproductive allocation patterns. We evaluated this hypothesis for Florida (USA) scrub plants by developing three models of reproductive effort with time since last fire given assumptions concerning seed dormancy and seedling establishment. We then examined reproductive effort of five woody, resprouting shrubs at sites representing nine times since last fire (ranging from 0–64 yr). All species showed significant patterns with time since fire in percentage of stems reproductive and fruit production. Stems of all species needed to attain a minimum size before flowering. Four species had the greatest level of reproductive effort (fruit biomass/above-ground biomass) within 5 yr post-fire and best fit the Early Peak Model of reproductive effort (i.e. between-fire seedling recruitment or seed dormancy). A fifth species best fit the Broad Peak Model (i.e. immediate post-fire seedling establishment), peaking in reproductive effort at 7 yr post-fire. Both of these models are based on somewhat variable fire-return intervals, suggesting that the frequency of scrub fires may have been too unpredictable to select for reproductive allocation patterns precisely reflecting particular fire-return intervals. Early peaks in post-fire reproductive effort may be a bet-hedging strategy to allow for greater chances of seedling establishment and survival.  相似文献   

13.
Browsing by exotic mule deer on Santa Catalina Island (SCI) off the coast of southern California may diminish the post-fire resilience of native shrublands. To assess this, deer exclosures were established following a wildfire to monitor post-fire recovery of three dominant, native shrub species (Heteromeles arbutifolia, Rhus integrifolia, and Rhamnus pirifolia). Post-fire resprout growth, mortality, and tissue water status as well as pre- and post-fire shrub density and cover were measured inside and outside of deer exclosures. We found that deer browsing significantly limited post-fire resprout growth and led to increased mortality of resprouting H. arbutifolia shrubs (88 % mortality outside compared to 11 % inside exclosures). Post-fire resprouts maintained favorable water status during the study despite drought conditions, indicating that water stress was not a proximate cause of resprout mortality. Deer browsing resulted in a >93 % reduction in canopy coverage of dominant shrub species. The dramatic reduction of native shrubs at this site may create opportunities for displacement by exotic species, resulting in eventual vegetation-type conversion. The observed link between intense browsing and post-fire shrub mortality provides much needed information concerning the environmental impact of exotic deer on SCI and illustrates the interaction between exotic herbivores and fire on an island system.  相似文献   

14.
《Acta Oecologica》2004,25(3):137-142
We studied patterns of small mammal abundance and species richness in post-fire habitats by sampling 33 plots (225 m2 each) representing different stages of vegetation recovery after fire. Small mammal abundance was estimated by live trapping during early spring 1999 and vegetation structure was sampled by visual estimation at the same plots. Recently–burnt areas were characterised by shrubby and herbaceous vegetation with low structural variability, and unburnt areas were characterised by well developed forest cover with high structural complexity. Small mammal abundance and species richness decreased with time elapsed since the last fire (from 5 to at least 50 years), and these differences were associated to the decreasing cover of short shrubs as the post-fire succession of plant communities advanced. However, relationships between vegetation structure and small mammals differed among areas burned in different times, with weak or negative relationship in recently burnt areas and positive and stronger relationship in unburnt areas. Furthermore, the abundance of small mammals was larger than expected from vegetation structure in plots burned recently whereas the contrary pattern was found in unburned areas. We hypothesised that the pattern observed could be related to the responses of small mammal predators to changes in vegetation and landscape structure promoted by fire. Fire-related fragmentation could have promoted the isolation of forest predators (owls and carnivores) in unburned forest patches, a fact that could have produced a higher predation pressure for small mammals. Conversely, small mammal populations would have been enhanced in early post-fire stages by lower predator numbers combined with better predator protection in areas covered by resprouting woody vegetation.  相似文献   

15.
Impacts of large herbivores (>5 kg) on woody plants in African savannas are potentially most severe among plants shorter than 1.6 m. It is well established that severe browsing leads to longer shoots, yet prevents saplings from recruiting into adult size‐classes in African savannas. Increased shoot length, indicating faster shoot growth, is often associated with reduced concentrations of tannins and increased nutrient concentrations, suggesting carbon limitation. We hypothesized that, on average, large herbivores suppress stem height or circumference, but increase shoot length. We also hypothesized that if there were concomitant positive effects on nutrients, or negative effects on tannin concentrations, they would be greatest early in the wet season. We sampled saplings of four deciduous woody species (Acacia grandicornuta, Dichrostachys cinerea, Combretum apiculatum and Grewia flavescens) at different stages of the wet season in a large‐scale, long‐term herbivore exclusion experiment in Kruger National Park, South Africa. Plant height, shoot length and stem circumference were generally not adversely affected by large herbivores, suggesting C limitation is rarely present among deciduous saplings in semi‐arid African savannas, allowing them to tolerate browsing. Time since first rainfall emerged as a predominant factor consistently affecting nutrient and tannin concentrations, rather than large herbivores. Nitrogen and phosphorus generally decreased (by 20–50%), while condensed tannin concentration increased (150–350%) during the wet season, except for one species. We postulate that A. grandicornuta is less prone than other species to accumulating tannins during the wet season because of high investment of C in spines. Although nutrient and tannin concentrations were generally not affected by large herbivores, species‐specific responses were evident very early in the wet season, which is when herbivore populations are most likely to be affected by differential forage quality among plants.  相似文献   

16.
Abstract. Plant defense theories suggest that chemical or structural defences should be maximized when and where browsing is most likely to occur. We tested this hypothesis on four evergreen woody species growing in a Mediterranean area with a high density of ungulates. In this system, levels of browsing are more intense in the winter (due to the lack of annual plants) and young foliage is often preferred. Therefore we predicted that the chemical defences of these species, namely their phenolic content, would vary with leaf age, season and damage intensity. In addition, we tested whether ungulates preferentially selected species containing lower phenolic levels, and also whether browsing induced either chemical or morphological changes in damaged plants. Phenolic levels varied greatly between plant species; ungulates browsed preferentially on the species with the lowest phenolic levels. No difference in phenolic content was found between browsed and unbrowsed trees. Morphological changes in heavily browsed trees included an increase in shoot and leaf density and a net decrease in leaf size. We suggest that for Mediterranean plants, which have evolved under high browsing pressure from large mammals, the production of small leaves and dense shoots in response to browsing might decrease ungulate foraging efficiency and hence reduce the rate of further damage as effectively as high levels of chemical defence.  相似文献   

17.
J. Rost  P. Pons  J.M. Bas 《Acta Oecologica》2009,35(5):763-768
The recovery of vegetation in Mediterranean ecosystems after wildfire is mostly a result of direct regeneration, since the same species existing before the fire regenerate on-site by seeding or resprouting. However, the possibility of plant colonization by dispersal of seeds from unburned areas remains poorly studied. We addressed the role of the frugivorous, bird-dependent seed dispersal (seed rain) of fleshy-fruited plants in a burned and managed forest in the second winter after a fire, before on-site fruit production had begun. We also assessed the effect on seed rain of different microhabitats resulting from salvage logging (erosion barriers, standing snags, open areas), as well as the microhabitats of unlogged patches and an unburned control forest, taking account of the importance of perches as seed rain sites. We found considerable seed rain by birds in the burned area. Seeds, mostly from Olive trees Olea europaea and Evergreen pistaches Pistacia lentiscus, belonged to plants fruiting only in surrounding unburned areas. Seed rain was heterogeneous, and depended on microhabitat, with the highest seed density in the unburned control forest but closely followed by the wood piles of erosion barriers. In contrast, very low densities were found under perches of standing snags. Furthermore, frugivorous bird richness seemed to be higher in the erosion barriers than elsewhere. Our results highlight the importance of this specific post-fire management in bird-dependent seed rain and also may suggest a consequent heterogeneous distribution of fleshy-fruited plants in burned and managed areas. However, there needs to be more study of the establishment success of dispersed seeds before an accurate assessment can be made of the role of bird-mediated seed dispersal in post-fire regeneration.  相似文献   

18.
Changes in land management and reductions in fire frequency have enabled woody species to increase in grasslands worldwide. Nevertheless, fire is rarely eliminated from grasslands, and for shrubs to survive, they must be able cope with fire and replace aboveground structures. Because new shoots may have more available solar radiation, greater root?:?shoot ratios, and thus more resources available belowground after fire compared to undisturbed shrub communities, we hypothesized that carbon, nutrient, and water relations may be enhanced in stems compared to those in an undisturbed grassland. However, this same post-fire resource pulse stimulates the grasses and may intensify competitive interactions between shrubs and grasses. To test these predictions, we measured seasonal patterns in net photosynthesis (A), predawn xylem pressure potentials (XPP), leaf nitrogen (N) content, and productivity of Cornus drummondii shoots from shrub patches (islands) of different sizes in mesic grasslands burned annually, burned infrequently, and protected from fire. Seasonal average A was 20% higher (P = 0.016) in burned than in unburned shrubs, regardless of island size. Shrubs in burned sites also produced shoots with higher leaf N than unburned shrubs, and N content was higher in leaves from small islands compared to large islands (P < 0.0001). Burning caused a decrease in late summer predawn XPP in small islands (-3.1 MPa), whereas burned large islands did not differ from unburned shrubs. Post-fire productivity of new shoots was significantly greater compared to shoots in unburned sites. These results indicate that a transient period of high resource availability after fire allows for increased growth and rapid recovery of grassland shrubs. Thus, although fire has a negative effect on aboveground biomass of shrubs, the post-fire increases in resource availability, which enhance growth in the dominant grasses, are also important for recovery of woody species.  相似文献   

19.
Wildfires are a typical event in many Australian plant communities. Vesicular-arbuscular mycorrhizal (VAM) fungi are important for plant growth in many communities, especially on infertile soils, yet few studies have examined the impact of wildfire on the infectivity of VAM fungi. This study took the opportunity offered by a wildfire to compare the infectivity and abundance of spores of VAM fungi from: (i) pre-fire and post-fire sites, and (ii) post-fire burned and unburned sites. Pre-fire samples had been taken in May 1990 and mid-December 1990 as part of another study. A wildfire of moderate intensity burned the site in late December 1990. Post-fire samples were taken from burned and unburned areas immediately after the fire and 6 months after the fire. A bioassay was used to examine the infectivity of VAM fungi. The post-fire soil produced significantly less VAM infection than the pre-fire soil. However, no difference was observed between colonization of plant roots by VAM fungi in soil taken from post-fire burned and adjacent unburned plots. Soil samples taken 6 months after the fire produced significantly more VAM than corresponding soil samples taken one year earlier. Spore numbers were quantified be wet-sieving and decanting of 100-g, air-dried soil subsamples and microscopic examination. For the most abundant spore type, spore numbers were significantly lower immediately post-fire. However, no significant difference in spore numbers was observed between post-fire burned and unburned plots. Six months after the fire, spore numbers were the same as the corresponding samples taken 1 year earlier. All plants appearing in the burned site resprouted from underground organs. All post-fire plant species recorded to have mycorrhizal associations before the fire had the same associations after the fire, except for species of Conospermum (Proteaceae), which lacked internal vesicles in cortical cells in the post-fire samples.  相似文献   

20.
Vegetative resprouting, soil or canopy-stored seed banks, post-fire seed dispersal and germination are the major strategies by which plants regenerate after fires. Post-fire regeneration modes of plants are commonly based on the presence or absence of post-fire recruitment as well as the presence or absence of post-fire resprouting. High temperatures, smoke and ash are characteristics of fire and the post-fire environment. We hypothesized that heat, smoke, ash and pH will have differential effects on seed germination depending on species’ post-fire regeneration strategies: serotinous vs. nonserotinous (which may have soil seed banks) and resprouters vs. nonresprouters (which may be obligate seeders). Here we examined the effects of these factors on the germination of 27 common east Australian species. Most serotinous species supported our hypothesis by showing no effect or reduced germination in response to heat. However, contrary to our prediction, all nonserotinous nonresprouting species also showed no effect or reduced germination in response to heat. Smoke, contrary to our hypothesis, had a negative or no effect on all serotinous and nonresprouting species, but no clear directional effect on serotinous and resprouting species. Supporting our hypotheses, ash and high pH showed positive or nonsignificant effects on the germination of all serotinous resprouting species, and a negative or no effect on nonserotinous resprouting species. However, contrary to our prediction, it had a negative or no effect on the serotinous nonresprouting species and no clear effect on nonserotinous nonresprouting species. We also discovered large differences in germination responses between conspecific populations that varied in their degree of resprouting. Although our data confirmed several of our predictions, the overall conclusion is that the responses of seeds to heat, smoke, ash and pH are not tightly associated with post-fire regeneration functional types. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号