首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cotyledons of sunflower seedlings ( Helianthus annuus L. cv. Giant gray stripe) expand and their protein content first rises then begins to decrease during the first three days of growth. Storage protein structures, which are visible with scanning electron microscopy, undergo modification that leads to storage protein disappearance by day 4 post-imbibition. Expansion of cotyledons detached from seeds prior to imbibition is greatly reduced, total protein levels remain high, and storage protein structures remain visible in cells of these cotyledons. Incubation of excised cotyledons in 1.0 μM benzyladenine or kinetin increases the rates of cotyledon expansion and storage protein loss to levels higher than in intact seedling cotyledons, Incubation in 10 μM indole-3-acetic acid inhibits cotyledon expansion and protein mobilization. More rapid hydrolysis of storage proteins in cotyledons of intact seedlings or detached cotyledons treated with cytokinin is further indicated in day 2 specimens by SDS-polyacrylamide gel electrophoresis. These results suggest a possible mechanism for regulation of cotyledon development by interactions of the promotive effects of cytokinin and inhibitory effects of auxin.  相似文献   

2.
Eight cytokinins detected in germinated chick-pea (Cicer arietinum L. var. Castellana) seeds were first present in the embryonic axes but appeared in the cotyledons after 12h of germination. The cytokinins detected in the cotyledons originate in the embryonic axes, but no passage of these substances from the cotyledons to the axes was detected, except when the seeds were treated with red light.It is concluded that the role played by the embryonic axis in mobilizating the main reserves of the cotyledons is mainly effected through these cytokinins. Both natural and synthetic cytokinins exert an important regulatory role in the hydrolysis of reserve proteins and calcium could be involved as an intermediate.Abbreviations BA benzyladenine - cot. cotyledon - (diH)Z dihydrozeatin - (diH)ZR dihydrozeatin riboside - GZR glycosyl zeatin riboside - 2iP 277-1 - iPA 277-2 riboside - Kin kinetin - Z zeatin - ZG zeatin glucoside - ZR zeatin riboside  相似文献   

3.
alpha-Amylase is expressed in cotyledons of germinated Vigna mungo seeds and is responsible for the degradation of starch that is stored in the starch granule (SG). Immunocytochemical analysis of the cotyledon cells with anti-alpha-amylase antibody showed that alpha-amylase is transported to protein storage vacuole (PSV) and lytic vacuole (LV), which is converted from PSV by hydrolysis of storage proteins. To observe the insertion/degradation processes of SG into/in the inside of vacuoles, ultrastructural analyses of the cotyledon cells were conducted. The results revealed that SG is inserted into LV through autophagic function of LV and subsequently degraded by vacuolar alpha-amylase. The autophagy for SG was structurally similar to micropexophagy detected in yeast cells. In addition to the autophagic process for SG, autophagosome-mediated autophagy for cytoplasm and mitochondria was detected in the cotyledon cells. When the embryo axes were removed from seeds and the detached cotyledons were incubated, the autophagosome-mediated autophagy was observed, but the autophagic process for the degradation of SG was not detected, suggesting that these two autophagic processes were mediated by different cellular mechanisms. The two distinct autophagic processes were thought to be involved in the breakdown of SG and cell components in the cells of germinated cotyledon.  相似文献   

4.
Apple seeds (Malus domestica Borkh. cv Golden Delicious) were stratified at 5 and 15°C for various lengths, weighed, and soluble protein of axis and cotyledon tissue was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Only seeds treated at 5°C germinated; seeds treated at 15°C did not germinate. Optimal germination required 63 days of stratification. Excised embryos required less stratification time for germination than intact seeds. When stratification was less than 35 days, the resulting seedlings from 5°C stratified embryos were dwarfed and epinastic. After 63 days of stratification, axes from 5 and 15°C treated intact seeds had increased in fresh weight by 72 and 28% (w/w), respectively. The dry weights of the axes did not change significantly and both fresh and dry weights of cotyledons remained unchanged during stratification. Total soluble protein in axes and cotyledons changed very little during stratification. However, axis polypeptide profiles changed. Most obvious was the occurrence of a new polypeptide and the increase of four other clearly identifiable polypeptides during 5°C treatment. The levels of the five most predominant axis proteins decreased at the same time. We observed no changes in the profiles of soluble cotyledon proteins. Control seeds kept at −10°C showed none of the reported changes.  相似文献   

5.
Endogenous gibberellin-like activity was determined in dry pea seeds (Pisum sativum cv. Bördi), in cotyledons and axes of germinating pea seeds and also in excised cotyledons and axes. During the first two days of pea seed germination, neither the embryonic axes nor the cotyledons show a mutual influence on gibberellin activity, but this appears after 72–96 h of germination. The gibberellin-like activity m cotyledons and axes of germinating seeds increased during the same period, but it decreased in isolated axes and excised cotyledons.  相似文献   

6.
Embryos isolated from dormant seeds of apple (Malus domestica Borb., cv. Antonówka) were treated by gaseous HCN (1 mM) for 6 h and then cultured in the light for 9 d in parallel to control non-treated embryos. Soluble sugars were quantified, and oligosaccharide hydrolysing enzyme activities were determined in axes and in cotyledons of such embryos during culture. HCN pre-treatment stimulated germination and hydrolysis of oligosaccharides in embryonic axes. Hydrolysis of sucrose in the lower cotyledon (in contact with wet medium and therefore growing and greening faster) was affected by HCN to a small extent. On the other hand, growth, greening and sucrose hydrolysis in the upper cotyledon were stimulated by HCN pre-treatment to the levels observed in lower cotyledon. It is postulated that endogenous HCN in apple seeds controls the removal of embryonic dormancy in parallel to the earlier described control by light and gibberellin. Gibberellin was demonstrated to act on the hydrolysis and further transformations of storage lipids, including gluconeogenesis, but not β-oxidation of fatty acids. It appears that hydrolysis of oligosaccharides and their catabolism is the target for cyanide.  相似文献   

7.
Phaseolus mungo seeds were allowed to germinate in the dark at 27 C, and time-sequence changes of mobilization of protein and starch reserves in cotyledons were observed by histochemical techniques. The distributions of amylase and protease activities in cotyledon sections were also examined during germination by use of the starch-polyacrylamide gel film and India ink-gelatin film methods, respectively. Amylolytic and proteolytic processes occurred more or less simultaneously during the germination. At the day 2 stage, low levels of hydrolytic enzyme activities were observed throughout cotyledon sections. At day 4, both amylase and protease activities appeared to increase in tissue areas farthest from vascular bundles, and the mobilization of starch and protein reserves also proceeded in these areas. At day 6, the reserves were found to remain only in the cells around vascular bundles. When cotyledons were detached from axis organs, allowed to imbibe water and incubated for 4 days at 27 C, the breakdown of reserves was markedly retarded and the patterns of enzyme localization in cotyledon sections appeared not as conspicuous as those in the sections from intact cotyledons. These histochemical results are discussed with reference to the previous results ofin vitro experiments.  相似文献   

8.
Acid phosphatase activity was detected in peanut (Arachis hypogaea) cotyledons during germination. Four (4) to six (6) days of germination was the meantime corresponding to maximum hydrolytic activity of this enzyme. The understanding of the role of acid phosphatase activity during germination led to purify this enzyme by successive chromatography separations on DEAE-Sepharose CL-6B, Sephacryl S-100 HR and Phenyl-Sepharose HP to apparent homogeneity from germinated peanut cotyledon five days old. This enzyme designated peanut cotyledon acid phosphatase (AP) had native molecular weight of 24 kDa by gel permeation. SDS-PAGE of the purified acid phosphatase resolved a single protein band that migrated to approximately 21.5 kDa. Thus, this acid phosphatase likely functions as a monomer. The enzyme had optimum pH (5.0) and temperature (55 degrees C), and appeared to be stable in the presence of anionic, cationic and non-ionic detergents. Substrate specificity indicated that the purified acid phosphatase hydrolyzed a broad range of phosphorylated substrates. However, natural substrates such as ADP and ATP were the compounds with highest rate of hydrolysis for the enzyme. Moreover, the purified acid phosphatase exhibited phytase activity. These results showed that this enzyme played a peculiar role during germination, notably in reducing the rate of phytic acid, an antinutritional substance contained in peanut seed.  相似文献   

9.
Though endopeptidases and carboxypeptidases are present in protein bodies of dry quiescent seeds the function of these proteases during germination is still a matter of debate. In some plants it was demonstrated that endopeptidases of dry protein bodies degrade storage proteins of these organelles. Other studies describe cases where this did not happen. The role that stored proteinases play in the initiation of storage protein breakdown in germinating seeds thus remains unclear. Numerous reviews state that the initiation of reserve protein mobilization is attributed to de novo formed endopeptidases which together with stored carboxypeptidases degrade the bulk of proteins in storage organs and tissues after seeds have germinated. The evidence that the small amounts of endopeptidases in protein bodies of embryonic axes and cotyledons of dry seeds from dicotyledonous plants play an important role in the initiation of storage protein mobilization during early germination is summarized here.  相似文献   

10.
The activity of cysteine endopeptidase (EP) in the cotyledons of mung bean seeds increased with time after germination. When cotyledons were excised from the embryonic axis in the course of seedling growth, the activity of EP in the excised cotyledon markedly dropped during the following incubation of 1 d. However, the level of EP protein in excised cotyledons, as examined by immunoblotting, was similar to that in axis-attached cotyledons at the corresponding stage. Thus, it seems that the low activity of EP in excised cotyledons is not due to a decrease in the content of EP protein, but due to a loss of the activity of existing EP. Treatment of attached cotyledons with polyamines (PAs; putrescine and spermidine [Spd]) resulted in a decrease in EP activity, while the same PA-treatment brought about little alteration in the level of EP protein. This indicates that PAs somehow produce an inhibitory effect on the activity of EP. Axis-removal resulted in an accumulation of Spd in the cotyledon. The possibility is suggested that PA, especially Spd, is involved in the inhibition of EP activity in excised mung bean cotyledons.  相似文献   

11.
Ethanolic extracts from the cotyledons of mature dry Phaseolusvulgaris L. seed yielded cytokinin-like activity which co-chromatographedwith zeatin and ribosylzeatin. Under conditions which stimulatedgermination and cotyledon expansion, the level of these cytokininsdecreased rapidly in both intact embryos and excised cotyledons.In the excised cotyledons the decrease was continuous, resultingin very low levels of cytokinin being detected after 4 daysof incubation. With the embryonic axis present, however, theinitial decrease was arrested and reversed after 3 days. Thissuggests that the cotyledons do not synthesize cytokinins butthat these hormones are imported from the embryonic axis, particularlyonce radicle growth is well under way. Phaseolus vulgaris, bean, cotyledons, cytokinins, germination  相似文献   

12.
The composition of the free amino acid pool in embryonic cotton (Gossypium hirsutum) cotyledons is quite distinct from that of endosperm, and that of germinated, greened cotyledons is quite distinct from that of leaves. During germination (including the precocious germination of immature seeds), the pool expands considerably showing a pronounced accumulation of asparagine. The high level of asparagine found in seedling roots and in the cotyledon vascular exudate indicates that this is the major transported amino acid in germination. There is no pool expansion in the presence of abscisic acid. In the presence of actinomycin D, the pool expands, but an enormous accumulation of glutamine takes place. The composition of the pool at any stage is not related to the composition of the isoacceptor transfer RNA pool, nor to the composition of the storage protein. Anaerobiosis leads to an accumulation of aspartate, alanine, and glycine at the expense of asparagine; however, desiccation does not result in an accumulation of proline. Conspicuously high levels of arginine are maintained through embryogenesis and germination. The levels of individual amino acids are presented as nanomol per cotyledon pair and as per cent of total pool.  相似文献   

13.
Phaseolus mungo seeds were allowed to germinate in the dark, and time-course changes in contents of protein fractions, starch, soluble α-amino nitrogen and reducing sugars and in hydrolytic enzyme activities in cotyledons were investigated. In cotyledons of germinated seeds, marked increases in proteolytic (caseolytic, globulytic and gelatin-hydrolyzing) activities and amylolytic activity occurred with concurrent mobilization of storage proteins and starch. Removal of axis organs from seeds at very early stages of germination caused the deteriorated breakdown of storage components and decreased development of proteolytic enzymes in the cotyledons, but this treatment did not significantly affect the appearance of amylolytic activity. The experimental results are discussed in comparison with the hydrolytic enzyme activities of germinating seeds of other leguminous species.  相似文献   

14.
Embryos isolated from dormant seeds of apple (Malus domestica Borb., cv. Antonówka) were cultured in darkness in the presence of jasmonic acid (JA, 20 μM) for 7 d in parallel to control non-treated ones. Soluble sugars were quantified and some sugar-catabolysing enzyme activities were determined in axes and in cotyledons of the embryos during the culture. JA treatment stimulated growth of the axis and sucrose hydrolysis in this organ. In contrast, JA inhibited the growth of isolated cotyledons. In intact embryos, JA treatment inhibited the growth of the lower cotyledon (being in contact with wet medium) thus alleviating the growth asymmetry of cotyledons. In both cotyledons JA stimulated hydrolysis of sucrose during the period preceding growth. The effect persisted in the upper cotyledon for the whole experimental period, whereas in the lower one the treatment provoked a sharp rise in soluble sugar levels observed relatively late during the experiment. The later effect correlated with the stimulation of isocitrate lyase activity in the lower cotyledon by JA. The results suggest the induction of the gluconeogenetic pathway by JA in the lower cotyledon of cultured dormant apple embryos. They also provide evidence for the site of JA action in the regulatory complex controlling embryonic dormancy in apple.  相似文献   

15.
The initiation of radicle growth during seed germination may be driven by solute accumulation and increased turgor pressure, by cell wall relaxation, or by weakening of tissues surrounding the embryo. To investigate these possibilities, imbibition kinetics, water contents, and water (Ψ) and solute (ψs) potentials of intact muskmelon (Cucumis melo L.) seeds, decoated seeds (testa removed, but a thin perisperm/endosperm envelope remains around the embryo), and isolated cotyledons and embryonic axes were measured. Cotyledons and embryonic axes excised and imbibed as isolated tissues attained water contents 25 and 50% greater, respectively, than the same tissues hydrated within intact seeds. The effect of the testa and perisperm on embryo water content was due to mechanical restriction of embryo swelling and not to impermeability to water. The Ψ and ψs of embryo tissues were measured by psychrometry after excision from imbibed intact seeds. For intact or decoated seeds and excised cotyledons, Ψ values were >−0.2 MPa just prior to radicle emergence. The Ψ of excised embryonic axes, however, averaged only −0.6 MPa over the same period. The embryonic axis apparently is mechanically constrained within the testa/perisperm, increasing its total pressure potential until axis Ψ is in equilibrium with cotyledon Ψ, but reducing its water content and resulting in a low Ψ when the constraint is removed. There was no evidence of decreasing ψs or increasing turgor pressure (Ψ-ψs) prior to radicle growth for either intact seeds or excised tissues. Given the low relative water content of the axes within intact seeds, cell wall relaxation would be ineffective in creating a Ψ gradient for water uptake. Rather, axis growth may be initiated by weakening of the perisperm, thus releasing the external pressure and creating a Ψ gradient for water uptake into the axis. The perisperm envelope contains a cap of small, thin-walled endosperm cells adjacent to the radicle tip. We hypothesize that weakening or separation of cells in this region could initiate radicle expansion.  相似文献   

16.
In embryo axes excised from mature horse chestnut (Aesculus hippocastanum L.) seeds, both freshly-fallen and subjected to cold stratification, the ability for growth was studied. While excised axes were kept on water at 28°C for 3 days, their fresh weight and length increased, the polypeptide composition of soluble proteins changed, the content of some heat-stable polypeptides decreased, and the capacity for protein synthesis in vivo retained. All these processes were similar to those in the axes of intact seeds during stratification until radicle protrusion. Growth of excised axes accelerated with the increasing duration of stratification. Cycloheximide (50 mg/l) and -amanitin (7 mg/l) inhibited axis growth, but an inhibitor of ABA synthesis fluridone (5 mg/l) and a natural cytokinin dihydrozeatin (10–5 M) did not influence the growth rate. The growth capacity of axes excised from dormant and germinating horse chestnut seeds indicates the absence of dormancy in the axes of mature seeds. ABA (10–5 M) suppressed completely the growth of axes detached from seeds experiencing cold stratification but still not germinating, although protein synthesis was not inhibited. The axes excised from the seeds after radicle emergence were insensitive to ABA and grew actively in its presence. ABA-induced growth inhibition might be related to the suppressed synthesis of minor polypeptides required for growth or to the activated synthesis of some growth-retarding proteins. The conclusion was drawn that the excised axes could be used as a model for studying the processes preceding visible germination of recalcitrant seeds.  相似文献   

17.
Families of papain- and legumain-like cysteine proteinases (CPR) were found in Vicia seeds. cDNAs and antibodies were used to follow organ specificity and the developmental course of CPR-specific mRNAs and polypeptides. Four papain-like cysteine proteinases (CPR1, CPR2, proteinase A and CPR4) from vetch seeds (Vicia sativa L.) were analysed. CPR2 and its mRNA were already found in dry embryonic axes. CPR1 was only detected there during early germination. Both CPR1 and CPR2 strongly increased later during germination. In cotyledons, both CPR1 and CPR2 were only observed one to two days later than in the axis. Proteinase A was not found in axes. In cotyledons it could only be detected several days after seeds had germinated. CPR4 mRNA and polypeptide were already present in embryonic axes and cotyledons during seed maturation and decreased in both organs during germination. Purified CPR1, CPR2 and proteinase A exhibited partially different patterns of globulin degradation products in vitro. Although the cDNA-deduced amino acid sequence of the precursor of proteinase A has an N-terminal signal peptide, the enzyme was not found in vacuoles whereas the other papain-like CPRs showed vacuolar localization. Four different legumain-like cysteine proteinases (VsPB2, proteinase B, VnPB1 and VnPB2) of Vicia species were analysed. Proteinase B and VnPB1 mRNAs were detected in cotyledons and seedling organs after seeds had germinated. Proteinase B degraded globulins isolated from mature vetch seeds in vitro. VsPB2 and proteinase B are localized to protein bodies of maturing seeds and seedlings, respectively, of V. sativa. Like VsPB2 from V. sativa, also VnPB2 of V. narbonensis corresponds to vacuolar processing enzymes (VPE). Based on these results different functions in molecular maturation and mobilization of storage proteins could be attributed to the various members of the CPR families.  相似文献   

18.
The influence of the embryonic axis and cytokinins (CKs) onreserve mobilization has been examined in yellow lupin (Lupinusluteus L. cv. JSG 6167) seed during germination and during earlygrowth for up to 9 d in the dark. The study included determinationof starch, soluble sugars, proteins, and amino acid content.Amylolytic and proteolytic enzyme activity was also measuredin untreated cotyledons with intact embryo (attached) or detachedcotyledons (embryo removed), and in detached cotyledons followingtreatment with CKs namely, dihydrozeatin, (diH)Z, and 6-benzylaminopurine,BAP. Generally, the detached cotyledons showed reduced mobilizationand decreased enzymatic activity in comparison to attached cotyledons,indicating the importance of the embryonic axis in this process.However, a rise in protease activity and free amino acid contentwas detected in 9-d-old detached cotyledons suggesting thatthe end products do not necessarily inhibit enzyme activity.While (diH)Z was partially effective in inducing reserve mobilizationand enzymatic activity in detached cotyledons, the effect ofBAP was more pronounced and appeared to replace the embryonicaxis. The embryonic axis of this species has recently been shownto synthesize CKs which are transported to the cotyledons, arehighly stabe and induce cotyledon expansion and chlorophyllsynthesis. The results of the present investigation and previousstudies from this laboratory collectively indicate that theregulation of reserve mobilization in yellow lupin seeds appearsto be mediated, at least in part, by a stimulus, probably aCK, emanating from the embryonic axis. Key words: Lupinus luteus, cytokinins, benzylaminopurine, dihydrozeatin, embryonic axis, lupin seeds, reserve mobilization  相似文献   

19.
The fraction of heat-stable dehydrins cytosolic proteins from mature recalcitrant seeds of horse chestnut (Aesculus hippocastanum L.) was studied in the period of their dormancy and germination in order to identify and characterize stress-induced dehydrin-like polypeptides. In our experiments, in tissues of dormant seeds, dehydrin was identifies by immunoblotting as a single bright band with a mol wt of about 50 kD. Low-molecular-weight heat-stable proteins with mol wts of 25 kD and below 16 kD, which were abundant in this fraction, did not cross-react with the antibody. Dehydrin was detected in all parts of the embryo: in the cells of axial organs, cotyledon storage parenchyma, and petioles of cotyledonary leaves. This indicates the absence of tissue-specificity in distribution of these proteins in the horse chestnut seeds. Dehydrins were detected among heat-stable proteins during the entire period of stratification and also radicle emersion. During radicle emergence, not only the fraction of heat-stable proteins was reduced but also the proportion of dehydrins in it decreased. In vitro germination of axes excised at different terms of stratification also resulted in dehydrin disappearance. When growth of excised axes was retarded by treatments with ABA, cycloheximide, or α-amanitin, dehydrins did not disappeared from the fraction of heat-stable proteins. When excised axes were germinated in vitro in the presence of compounds, which did not affect their growth or stimulated it (dehydrozeatin, glucose), this resulted in dehydrin disappearance. This means that dehydrin metabolism is closely related to the process of germination. Dehydrin in the horse chestnut seeds could cross-react with the antibody against ubiquitin, which can indicate the involvement of ubiquitination in the process of dehydrin degradation during germination via the proteasome system. The analysis of total proteins of the homogenate from horse chestnut seeds revealed, along with a 50-kD heat-stable dehydrin, one more component with a mol wt of 80 kD, which was located in the fraction of heat-sensitive proteins and was named as a dehydrin-like protein. It was demonstrated that dehydrins in horse chestnut seeds represented only a very small fraction of heat-stable cytosolic proteins. The role and function of major heat-stable proteins in horse chestnut seeds are yet to be studied.  相似文献   

20.
The peanut (Arachis hypogaea L.) seeds harvested at the last stage of maturation were divided into five grades by size. The content of total protein, salt-soluble protein, arachin, conarachin I and 2s globulin in these seeds were measured. No obvious differences in germination percentage and the length of radicle and hypocotyl within 3d germination in dark were observed among the five grades of seeds. But there were significant differences in the seedling growth after two weeks of germination in light. There was a very close correlation between the storage protein in cotyledons and the seedling growth. When seeds germinated in light, the efficiency of mobilization of the salt-soluble protein in the cotyledons was higher than that in the cotyledons of the seeds germinating in dark. All of the salt-soluble protein in cotyledons was used up after 14d seedling growth in light. SDS-PAGE of salt-soluble protein showed that 23.5, 38.5 and 41 kD subunits of arachin were first mobilized during germination. The 18 kD subunits of arachin were not mobilized until the above-mentioned subunits were used up. The 60.5 kD subunit of conarachin I and 2s globulin were degradated within 2 to 3 days during germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号