首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives were to evaluate the effects of equine chorionic gonadotropin (eCG) supplementation (with or without eCG) and type of ovulatory stimulus (GnRH or ECP) on ovarian follicular dynamics, luteal function, and pregnancies per AI (P/AI) in Holstein cows receiving timed artificial insemination (TAI). On Day 0, 742 cows in a total of 782 breedings, received 2 mg of estradiol benzoate (EB) and one intravaginal progesterone (P4) insert (CIDR). On Day 8, the CIDR was removed, and all cows were given PGF2α and assigned to one of four treatments in a 2 × 2 factorial arrangement: (1) CG: GnRH 48 h later; (2) CE: ECP; (3) EG: eCG + GnRH 48 h later; (4) EE: eCG + ECP. There were significant interactions for eCG × ovulatory stimulus and eCG × BCS. Cows in the CG group were less likely (28.9% vs. 33.8%; P < 0.05) to become pregnant compared with those in the EG group (odds ratio [OR] = 0.28). There were no differences in P/AI between CE and EE cows (30.9% vs. 29.1%; OR = 0.85; P = 0.56), respectively. Thinner cows not receiving eCG had lower P/AI than thinner cows receiving eCG (15.2% vs. 38.0%; OR = 0.20; P < 0.01). Treatment with eCG tended to increase serum progestesterone concentrations during the diestrus following synchronized ovulation (P < 0.10). However, the treatment used to induce ovulation did not affect CL volume or serum progesterone concentrations. In conclusion, both ECP and GnRH yielded comparable P/AI. However, eCG treatment at CIDR removal increased pregnancy rate in cows induced to ovulate with GnRH and in cows with lower BCS.  相似文献   

2.
The objective was to compare reproductive performance of Angus-cross beef cows synchronized with GnRH, a progesterone-based intravaginal insert (Controlled Internal Drug Release, CIDR) for 5-d, and one dose of either dinoprost (PGF) or cloprostenol (CLP, a PGF analogue) or two doses of PGF on the day of CIDR withdrawal. All cows (N = 830) at six locations received 100 μg of GnRH and a CIDR on Day 0. Within farm, cows were randomly allocated to receive 25 mg of PGF at the time of CIDR insert removal on Day 5 (1 × PGF; N = 277), two 25 mg doses of PGF, the first given on Day 5 at the time of CIDR removal and the second 7 h later (2 × PGF; N = 282), or 500 μg of CLP at the time of CIDR removal on Day 5 (1 × CLP; N = 271). All cows were given 100 μg of GnRH on Day 8 (72 h after CIDR removal) and concurrently inseminated (5-d CO-Synch + CIDR). Cows were fitted with a pressure-sensitive estrus detection device at the time of CIDR withdrawal. Timed-AI pregnancy rates were greater (P < 0.0001) in the 2 × PGF (69.0%) than the 1 × PGF (52.0%) and 1 × CLP (54.3%) treatments. However, breeding-season pregnancy rates were not different among treatments (87.0% for 1 × PGF, 92.9% for 2 × PGF and 87.5% for 1 × CLP; P > 0.1). In conclusion, cows that received two doses of PGF on the day of CIDR removal in a 5-d CO-Synch + CIDR synchronization protocol had excellent timed-AI pregnancy rates that were greater than in cows receiving a single treatment with either PGF or CLP.  相似文献   

3.
《Small Ruminant Research》2007,73(2-3):227-231
The aim of the experiment was to evaluate the effects of GnRH and/or eCG and progestin type (implant versus CIDR) on the induction of estrus and pregnancy rate following laparoscopic AI (LAI) with frozen semen. In the first trial, ewes (n = 129) were treated with norgestomet implants for 14 days. At implant removal ewes received eCG (400 IU) and/or GnRH (25 μg) 36 h after removal, resulting in control, eCG, GnRH, and eCG/GnRH groups (n = 30–34/group). In trial 2, ewes (n = 36) were treated with intravaginal fluorogestone acetate sponges (FGA) or CIDR for 12 days. After withdrawal, half of the ewes from each progestin group received eCG (400 IU), resulting in sponge, sponge/eCG, CIDR and CIDR/eCG groups (n = 8–10/group). In both trials, estrous activity was assessed using a vasectomized ram from the time of progestin removal to laparoscopic AI with frozen semen 58–60 h (trial 1) or 54–56 h (trial 2) following cessation of treatment. In trial 1, GnRH decreased (P < 0.05) the percentage of ewes in estrus (GnRH, 75.8% versus control, 93.8% versus eCG/GnRH, 94.1%), however pregnancy rates were similar in all groups (control, 53.1%; eCG, 70.0%; GnRH, 51.5%; eCG/GnRH, 55.9%, respectively). In trial 2, neither the type of progestin nor eCG treatment effected the percentage of ewes in estrus (sponge, 75.0%; sponge/eCG, 100.0%; CIDR, 100.0%; CIDR/eCG, 90.0%). However, pregnancy rates following LAI were higher (P < 0.05) when ewes were treated with eCG (progestin + eCG, 73.7% versus progestin alone, 41.2%). Results demonstrate that the source of progestin does not influence the expression of estrus or the proportion of ewes pregnant following LAI. When progestin treatment protocols are used in combination with eCG, pregnancy rates can be increased. A dose of GnRH near the end of progestin treatment may decrease the estrous response, by inducing ovulation before normal expression of estrus.  相似文献   

4.
Treatment with GnRH at the onset of standing estrus increased pregnancy percentages and circulating concentrations of progesterone in repeat breeder dairy cows. The objective of this study was to determine the effect of treatment with GnRH at AI on concentrations of progesterone and conception rates in beef cattle that exhibited estrus. Two hundred ninety-three heifers at four locations were synchronized with the Select Synch plus CIDR protocol (given GnRH and a CIDR was placed into the vagina, and 7 d later, given PGF and CIDR removed; n = 253) or the 14-19 melengestrol acetate (MGA) protocol (MGA fed at 0.5 mg/head/d for 14 d, with PGF 19 d after MGA withdrawal n = 40) and AI was done after detection of estrus. At Location 1, blood samples were collected on Day 2, 4, 6, 10, 15, and 18 after AI (Day 0 = AI). Two hundred and fifty postpartum cows at two locations were synchronized with the Select Synch plus CIDR protocol, and AI was performed after detection of estrus. At AI, cattle were alternately assigned to one of two treatments: (1) treatment with GnRH (100 μg) at AI (n = 127 heifers and n = 108 cows); or (2) non-treated control (n = 120 heifers and n = 119 cows). Concentrations of progesterone tended to be greater in control heifers compared to GnRH-treated heifers on Days 6 (P = 0.08), 10 (P = 0.07), and 15 (P = 0.11). Overall conception rates were 68% and 66% for GnRH treated and control, respectively, and were not different between treatments (= 0.72). In summary, treatment with GnRH at time of AI had no influence on conception rates in cattle that had exhibited estrus.  相似文献   

5.
Two experiments were conducted to investigate the effects of equine chorionic gonadotropin (eCG) at progestin removal and gonadotropin-releasing hormone (GnRH) at timed artificial insemination (TAI) on ovarian follicular dynamics (Experiment 1) and pregnancy rates (Experiment 2) in suckled Nelore (Bos indicus) cows. Both experiments were 2 × 2 factorials (eCG or No eCG, and GnRH or No GnRH), with identical treatments. In Experiment 1, 50 anestrous cows, 134.5 ± 2.3 d postpartum, received a 3 mg norgestomet ear implant sc, plus 3 mg norgestomet and 5 mg estradiol valerate im on Day 0. The implant was removed on Day 9, with TAI 54 h later. Cows received 400 IU eCG or no further treatment on Day 9 and GnRH (100 μg gonadorelin) or no further treatment at TAI. Treatment with eCG increased the growth rate of the largest follicle from Days 9 to 11 (means ± SEM, 1.53 ± 0.1 vs. 0.48 ± 0.1 mm/d; P < 0.0001), its diameter on Day 11 (11.4 ± 0.6 vs. 9.3 ± 0.7 mm; P = 0.03), as well as ovulation rate (80.8% vs. 50.0%, P = 0.02), whereas GnRH improved the synchrony of ovulation (72.0 ± 1.1 vs. 71.1 ± 2.0 h). In Experiment 2 (n = 599 cows, 40 to 120 d postpartum), pregnancy rates differed (P = 0.004) among groups (27.6%, 40.1%, 47.7%, and 55.7% for Control, GnRH, eCG, and eCG + GnRH groups). Both eCG and GnRH improved pregnancy rates (51.7% vs. 33.8%, P = 0.002; and 48.0% vs 37.6%, P = 0.02, respectively), although their effects were not additive (no significant interaction). In conclusion, eCG at norgestomet implant removal increased the growth rate of the largest follicle (LF) from implant removal to TAI, the diameter of the LF at TAI, and rates of ovulation and pregnancy rates. Furthermore, GnRH at TAI improved the synchrony of ovulations and pregnancy rates in postpartum Nelore cows treated with a norgestomet-based TAI protocol.  相似文献   

6.
Three experiments were conducted to determine the effects of low-dose progesterone presynchronization and eCG on pregnancy rates to GnRH-based, timed-AI (TAI) in beef cattle (GnRH on Day 0, PGF on Day 7, with GnRH and TAI on Day 9, 54-56 h after PGF). Experiments 1 and 2 were 2 × 2 factorials with presynchronization (with or without a once-used CIDR; Days −15 to 0 in Experiment 1 and Days −7 to 0, with PGF at insertion, in Experiment 2), and with or without 400 IU eCG on Day 7 in suckled cows. In Experiment 3, suckled cows and nulliparous heifers were either presynchronized with a twice-used CIDR (Days −5 to 0) and PGF at insertion, or no treatment prior to insertion of a new CIDR (Days 0-7). Presynchronization increased (P < 0.05) ovulation rate to GnRH on Day 0 (75.0% vs 48.7%, 76.7% vs 55.0%, and 60.0% vs 36.1% for Experiments 1, 2, and 3, respectively), increased the diameter of the preovulatory follicle in Experiments 1 and 2, and increased the response to PGF (regardless of parity) in Experiment 1 (P < 0.01), and in primiparous cows in Experiment 2 (P < 0.01). Effects of presynchronization on pregnancy rates (53.4% vs 54.1%, 57.7% vs 45.3%, and 54.3% vs 44.4% for Experiments 1, 2, and 3, respectively) were influenced by parity and eCG (P < 0.05). Treatment with eCG had no effect (P > 0.05) on the diameter of the preovulatory follicle (Experiment 1), or the response to PGF (Experiments 1 and 2), but tended (P = 0.08) to improve pregnancy rates, especially in primiparous cows that were not presynchronized (P < 0.01). However, the effects of eCG and presynchronization were not additive.  相似文献   

7.
The objective of this study was to compare fixed-time AI pregnancy rate in Angus crossbred beef cows inseminated with frozen-thawed or fresh-extended semen. Two ejaculates from each of two Angus bulls were collected by artificial vagina and pooled for each bull. The pooled semen from each bull was divided into two aliquots; Aliquot 1 was extended using Caprogen® (LIC, Hamilton, New Zealand) to a concentration of 3 × 106 sperm/straw and Aliquot 2 was extended using egg-yolk-glycerol extender to a concentration of 20 × 106 sperm/straw. Semen extended with Caprogen® was maintained at ambient temperature and semen extended with egg-yolk-glycerol extender was frozen and maintained at −196 °C until insemination. In each of two breeding seasons (Fall 2007 and Spring 2008), Angus-crossbeef cows (N = 1455) at 12 locations were randomly assigned within location to semen type [Fresh (N = 736) vs. Frozen (N = 719)] and sire [1 (N = 731) vs. 2 (N = 724)]. All cows were synchronized with 100 μg of GnRH im and a progesterone Controlled Internal Drug Release insert (CIDR) on Day 0, and on Day 7, 25 mg of PGF2α im and CIDR removal. All cows received 100 μg of GnRH im and were inseminated at a fixed-time on Day 10, 66 h after CIDR removal. Timed-AI pregnancy rates were influenced by season (P < 0.05), cows detected in estrus prior to and at AI (P < 0.001), and dam age (P < 0.01). Pregnancy rates were not affected by semen type (Fresh = 51.5% vs. Frozen = 50.4%; P = 0.66) and there were no significant interactions of semen type by estrus expression, semen type by sire, or semen type by season (P > 0.1). In conclusion, commercial beef cows inseminated with fresh-extended semen (3 × 106 sperm/straw) yielded comparable pregnancy rates to conventional frozen-thawed semen in a progesterone supplemented, CO-Synch fixed-time AI synchronization protocol and may provide an alternate to frozen semen for more efficient utilization of superior genetics.  相似文献   

8.
Our objective was to determine the optimal time to artificially inseminate lactating beef cows (Bos taurus typicus) after using the standard CO-Synch protocol that also included a progesterone-releasing, intravaginal controlled internal drug release (CIDR) insert. Cows (N = 605) at three locations were inseminated at four different times after CIDR insert removal and the prostaglandin F administration of the CO-Synch + CIDR protocol: 48, 56, 64, or 72 h. Blood samples were collected 9 to 10 d before and on the day of CIDR insertion. Based on elevated (>1 ng/mL) serum progesterone concentrations, 60% of 605 cows had previously ovulated (were cycling) at the initiation of the study, with a range of 39.6% to 67.9% among locations (P < 0.05). Age of cow, body condition score, and days postpartum affected (P ≤ 0.05) cycling status before ovulation was synchronized. Averaged across treatments, pregnancy rate to artificial insemination (AI) at Day 32 was affected (P ≤ 0.05) by pretreatment cycling status and body condition. Younger cows (≤3 yr) tended to have greater AI pregnancy rates when inseminated at 56 h, whereas older cows had similar pregnancy rates when inseminated at 56 h or later (timing of AI by age interaction; P = 0.085). Pregnancy loss between Days 32 and 63 was greatest (quadratic effect; P < 0.05) when cows were inseminated at 48 and 72 h. In summary, insemination times at or after 56 h improved AI pregnancy rates when using the CO-Synch + CIDR program. Further work is warranted to examine age effects on timing of AI in the CO-Synch + CIDR program.  相似文献   

9.
We hypothesized that: (i) repeated GnRH treatments would increase the magnitude and duration of the LH surge and would increase progesterone (P4) concentrations after ovulation; and (ii) the release of pituitary LH would be greater in response to larger doses of GnRH. In Experiment 1, ovary-intact cows were given an intravaginal P4 (1.9 g) insert (CIDR) for 10 d and 500 μg cloprostenol (PGF) at CIDR removal to synchronize estrus. On Days 7 or 8 after estrus, cows received two PGF treatments (12 h apart) and 100 μg GnRH at 36 (Control), 36 and 38 (GnRH38), or 36 and 40 h (GnRH40) after the first PGF. Mean plasma LH concentration (ng/mL) was greater (P < 0.05) in GnRH38 (8.8 ± 1.1) than in Control (5.1 ± 1.3), with that in GnRH40 (5.8 ± 1.3) being intermediate. Although the duration (h) of the LH surge was longer in GnRH40 (8.0 ± 0.4) than in either GnRH38 (P < 0.05; 7.0 ± 0.3) or Control (P < 0.09; 7.1 ± 0.4), mean postovulatory P4 (ng/mL) was greater (P < 0.01) in Control (4.2 ± 0.7) than in GnRH38 (2.9 ± 0.6) or GnRH40 (3.0 ± 0.7) cows. In Experiment 2, ovariectomized cows were given a CIDR for 10 d and 2 mg of estradiol cypionate im at CIDR insertion. Thirty-six hours after CIDR removal, cows received, 50, 100, or 250 μg of GnRH. Cows given 250 μg GnRH released more LH (9.4 ± 1.4 ng/mL) than those given 50 or 100 μg (6.1 ± 1.3 and 5.4 ± 1.4 ng/mL, respectively), and had an LH surge of longer duration than those given 50 μg (6.8 ± 0.4 vs. 5.1 ± 0.3 h). In summary, ovary-intact cows in the GnRH38 group had greater mean and peak LH concentrations, but subsequent plasma P4 concentrations were lower than in Control cows. Ovariectomized cows given 250 μg GnRH had a greater pituitary release of LH.  相似文献   

10.
The objective of this study was to compare the effectiveness of the Ovsynch and controlled internal drug releasing (CIDR) protocols under commercial conditions for the treatment of cystic ovarian disease in dairy cattle. A total of 401 lactating dairy cows with ovarian cysts were alternatively allocated to two treatment groups on the day of diagnosis. Cows in the Ovsynch group were treated with GnRH on Day 0, PGF2alpha on Day 7, GnRH on Day 9, with timed insemination 16-20 h later. Cows in the CIDR group were treated with a CIDR insert on Day 0 for 7 days; on Day 7, the CIDR was removed, and cows were treated with PGF2alpha. All cows in the CIDR group were observed for estrus and cows exhibiting estrus within 7 days following removal of the CIDR and PGF2alpha administration were inseminated. The outcomes of interest for this experiment were the likelihood to be inseminated, return to cyclicity (determined by a CL on Day 21), conception and pregnancy rates. Data for these variables were analyzed using logistic regression. The percentage of cows inseminated in the Ovsynch and CIDR groups were 82 and 44%, respectively. Cows in the Ovsynch group were 5.8 times more likely to be inseminated than cows in the CIDR group. Cows with a low BCS were 0.48 times less likely to be inseminated than cows with a high BCS. The percentage of cows with a CL on Day 21 for the Ovsynch and CIDR groups was 83 and 79%, respectively (P > 0.05). Cows with a low BCS were 0.49 times less likely to have CL on Day 21 than cows with a high BCS. Conception and pregnancy rates for cows in the Ovsynch group were 18.3 and 14.4%, respectively. Conception and pregnancy rates for cows in the CIDR group were 23.1 and 9.5%, respectively. There was no significant differences between conception or pregnancy rates in cows in both groups. Primiparous cows were 2.6 times more likely to conceive than multiparous cows. In conclusion, the results of this study suggested that fertility was not different between cows with ovarian cysts treated with either the Ovsynch or the CIDR protocols in this dairy herd. In addition, primiparous cows had an increased likelihood for conception compared to multiparous cows, and cows with a low BCS were less likely to be inseminated or have a CL on Day 21, regardless of treatment.  相似文献   

11.
We first determined a dose of human chorionic gonadotropin (hCG) sufficient to induce ovulation in lactating Holstein cows. Ovaries of 85 previously inseminated cows were mapped using transrectal ultrasonography 7 d before pregnancy diagnosis and assigned randomly to treatments of saline, 100 μg gonadotropin-releasing hormone (GnRH), or 500, 1000, 2000, or 3000 IU hCG. Appearance of new corpus luteum (CL) in response to ≥1000 IU hCG was similar to that for GnRH but greater (P < 0.001) than that for saline. Ovarian structures and serum progesterone then were monitored in 334 previously inseminated Holstein cows 0 and 7 d after treatment with GnRH, hCG (1000 IU), or saline. The incidence of ovulation was greater (P = 0.01) after GnRH than after saline in cows having pretreatment progesterone < 1 ng/mL, whereas in cows having progesterone ≥1 ng/mL, GnRH or hCG was more (P = 0.01) effective than saline, and hCG also differed from GnRH. Holstein cows of unknown pregnancy status in three herds were treated with either GnRH, hCG, or as controls to initiate an ovulation-resynchronization procedure 7 d before pregnancy diagnosis. In 1109 treated pregnant cows, pregnancy loss during 4 wk after treatment tended (P = 0.06) to be greater in those treated with hCG. Treated cows (n = 1343) diagnosed not pregnant were then given prostaglandin F and inseminated and received GnRH 72 h later. A treatment by herd interaction (P = 0.06) resulted in more pregnancies after GnRH in two herds and after hCG in one herd compared with saline. We concluded that (1) ≥ 1000 IU hCG resulted in more CL than did treatment with saline, and the incidence of new CL after either GnRH or hCG depended on pretreatment progesterone status; (2) hCG tended to increase pregnancy loss in pregnant cows; and (3) pregnancies per artificial insemination after initiating resynchronization with either hCG or GnRH produced ambiguous results.  相似文献   

12.
Two experiments evaluated long-term controlled internal drug release (CIDR) insert-based protocols to synchronize estrus and compare differences in their potential ability to facilitate fixed-time artificial insemination (FTAI) in beef heifers. In Experiment 1 estrous cycling heifers (n = 85) were assigned to one of two treatments by age and body weight (BW). Heifers with T1 received a CIDR from days 0 to 14, gonadotropin releasing hormone (GnRH) on day 23, and prostaglandin F (PG) on day 30. Heifers with T2 received a CIDR from days 2 to 16, GnRH on day 23, and PG on day 30. Ovaries were evaluated by ultrasonography on days 23 and 25 to determine ovulatory response to GnRH. In Experiment 2 heifers (n = 353) were assigned within reproductive tract scores by age and BW to one of four treatments. Heifers in T1 and T2 received the same treatments described in Experiment 1. Heifers in T3 and T4 received the same treatments as T1 and T2, respectively, minus the addition of GnRH. In Experiments 1 and 2, heifers were fitted with HeatWatch transmitters for estrous detection and AI was performed 12 h after estrus. In Experiment 1 heifers assigned to T1 had larger dominant follicles at GnRH compared to T2 (P < 0.01) but response to GnRH, estrous response after PG, mean interval to estrus, and variance for interval to estrus after PG did not differ (P > 0.10). AI conception and final pregnancy rate were similar (P > 0.50). In Experiment 2 estrous response after PG did not differ (P > 0.70). Differences in mean interval to estrus and variance for interval to estrus (P < 0.05) differed based on the three-way interaction of treatment length, GnRH, and estrous cyclicity status. AI conception and final pregnancy rates were similar (P > 0.10). In summary, the greater estrous response following PG and resulting AI conception and final pregnancy rates reported for heifers assigned to the two treatments in Experiment 1 and among the four treatments in Experiment 2 suggest that each of these long-term CIDR-based protocols was effective in synchronizing estrus in prepubertal and estrous cycling beef heifers. However, the three-way interaction involving treatment length, GnRH, and estrous cyclicity status in Experiment 2 clearly suggests that further evaluation of long-term CIDR-based protocols is required with and without the addition of GnRH and on the basis of estrous cyclicity status to determine the efficacy of these protocols for use in facilitating FTAI.  相似文献   

13.
The objective was to compare the timed AI pregnancy rate of Angus-cross beef cows synchronized with a 5-d CO-Synch + CIDR (a progesterone-releasing intravaginal insert) protocol and given two doses of PGF (PGF), with the first dose in conjunction with CIDR withdrawal on Day 5, and the second dose given either early or late relative to the first dose. All cows (N = 1782) at 16 locations received 100 μg of GnRH + CIDR on Day 0. Cows received 25 mg of PGF concurrent with removal of the CIDR on Day 5, and were randomly allocated within locations to receive a second PGF either early (N = 881; from 0.5 to 3.9 h) or late (N = 901; from 4.5 to 8.15 h) relative to the first PGF treatment. On Day 8 (72 h after CIDR removal), all cows were inseminated and concurrently given 100 μg of GnRH. Cows were fitted with a pressure-sensitive mount detection device (Kamar) at CIDR removal. Cows were observed twice daily through Day 7 and at the time of AI on Day 8 for estrus and Kamar status (estrus - red, partial and lost Kamar versus no estrus - white Kamar) was recorded. Accounting for location, season, AI sire, cow observed in estrus or not at or before timed AI, and treatment by cows observed in estrus interaction, timed AI pregnancy rates were greater for the late (6.45 ± 0.03 h) than the early (2.25 ± 0.05 h) interval, 57.2 vs. 52.7%, respectively (P < 0.05). In conclusion, cows that received the second PGF late after the first PGF on the day of CIDR removal in a 5 d CO-Synch + CIDR synchronization protocol had significantly higher timed AI pregnancy rates than those receiving the second PGF early after the first PGF.  相似文献   

14.
The aim of this study was to test the effect of progesterone supplementation to Ovsynch protocol in cyclic and non-cyclic Mediterranean Italian buffaloes on conception rate after fixed time artificial insemination. From 169 pluriparous buffaloes, 2 groups were identified and subjected to: (1) Ovsynch protocol (OV; n=83) and (2) Ovsynch protocol with the supplementation of progesterone from days 0 to 7 (OV+PROG.; n=86). All cows were inseminated 16-20 h after the second GnRH administration. Within each group, non-cyclic buffaloes were identified (OV=21 and OV+PROG.=20). Overall conception rate was significantly higher in cyclic compared to non-cyclic buffaloes: 43.7% versus 17.0%, respectively, P=0.001. A significant effect of progesterone supplementation on conception rate was observed in non-cyclic buffaloes (30% versus 4.7%, P=0.04) but not in cyclic buffaloes (51.5% versus 35.7%, P=0.077). Collectively, the presence of a large follicle (>or=10 mm) detected at the beginning of the Ovsynch protocol by ultrasound significantly affected conception rate (44% versus 8%, P=0.01). The findings of the present study suggest that (i) progesterone supplementation to the Ovsynch protocol in buffaloes increases conception rate in non-cyclic animals, (ii) the presence of a large follicle at the beginning of the Ovsynch protocol is a determining factor for a successful synchronization of ovulation and high conception rates and (iii) ultrasound monitoring can improve the overall efficiency by selectively identifying more suitable cycling animals carrying a responsive follicle at the time of first GnRH administration.  相似文献   

15.
The aim in this study was to compare two estrus synchronization protocols in buffaloes. Animals were divided into two groups: Group A (n=111) received 100 microg GnRH on Day 0, 375 microg PGF(2alpha) on Day 7 and 100 microg GnRH on Day 9 (Ovsynch); Group B (n=117) received an intravaginal drug release device (PRID) containing 1.55 g progesterone and a capsule with 10mg estradiol benzoate for 10 days and were treated with a luteolytic dose of PGF(2alpha) and 1000 IU PMSG at the time of PRID withdrawal. Animals were inseminated twice 18 and 42 h after the second injection of GnRH (Group A) and 60 and 84 h after PGF(2alpha) and PMSG injections (Group B). Progesterone (P(4)) concentrations in milk samples collected 12 and 2 days before treatments were used to determine cyclic and non-cyclic buffaloes, and milk P(4) concentrations 10 days after Artificial insemination (AI) were used as an index of a functional corpus luteum. Cows were palpated per rectum at 40 and 90 days after AI to determine pregnancies. All previously non-cyclic animals in Group B had elevated P(4) (>120 pg/ml milk whey) on Day 10 after AI. Accordingly, a greater (P<0.01) relative percentage of animals with elevated P(4) 10 days after AI were observed in Group B (93.2%) than in Group A (81.1%). However, there was no difference in overall pregnancy rates between the two estrus synchronization protocols (Group A, 36.0%; Group B 28.2%). When only animals with elevated P(4) on Day 10 after AI were considered, pregnancy rate was higher (P<0.05) for animals in Group A (44.4%) than Group B (30.3%). The findings indicated that treatment with PRID can induce ovulation in non-cyclic buffalo cows. However, synchronization of estrus with Ovsynch resulted in a higher pregnancy rate compared with synchronization with PRID, particularly in cyclic buffalo.  相似文献   

16.
C.C. Dias  M.L. Day 《Theriogenology》2009,72(3):378-385
Two experiments were performed to test the hypothesis that elevated progesterone concentrations impair pregnancy rate to timed artificial insemination (TAI) in postpuberal Nelore heifers. In Experiment 1, postpuberal Nelore heifers (n = 398) received 2 mg estradiol benzoate (EB) and either a new progesterone-releasing intravaginal device containing 1.9 g of progesterone (CIDR) (first use) or a CIDR previously used for 9 d (second use) or for 18 d (third use) on Day 0, 12.5 mg prostaglandin F (PGF) on Day 7, 0.5 mg estradiol cypionate (ECP) and CIDR withdrawal on Day 9, and TAI on Day 11. Largest ovarian follicle diameter was determined on Day 11. The third-use CIDR treatment increased largest ovarian follicle diameter and pregnancy rate. Conception to TAI was reduced in heifers with smaller follicles in the first- and second-use CIDR treatments, but not in the third-use CIDR treatment. In Experiment 2, postpuberal Nelore heifers received the synchronization treatment described in Experiment 1 or received 12.5 mg PGF on Day 9 rather than Day 7. In addition, 50% of heifers received 300 IU equine chorionic gonadotropin (eCG) on Day 9. Heifers were either TAI (Experiment 2a; n = 199) or AI after detection of estrus (Experiment 2b; n = 125 of 202). In Experiment 2a, treatment with eCG increased pregnancy rate to TAI in heifers that received PGF on Day 9 but not on Day 7 and in heifers that received a first-use CIDR but not in heifers that received a third-use CIDR. Treatments did not influence reproductive performance in Experiment 2b. In summary, pregnancy rate to TAI in postpuberal Nelore heifers was optimized when lower concentrations of exogenous progesterone were administered, and eCG treatment was beneficial in heifers expected to have greater progesterone concentrations.  相似文献   

17.
Objectives were to determine progesterone concentration (P4) from days 4 to 28 relative to presumptive estrus necessary for maintenance of pregnancy in lactating Holstein cows. Cows were assigned to the low P4 (LowP4, n = 28) or control (n = 153) treatments. All cows were presynchronized with two injections of PGF (14 d apart) and an ovulation synchronization protocol (11 d later; GnRH on day −10, PGF on day −3; and GnRH on day 0 = presumptive estrus). Cows in the Low P4 treatment received 2 injections of prostaglandin F on days 4 and 5 (day 0 = presumptive estrus) and a new CIDR insert on day 5 that was replaced every 7 d until day 28. Blood was sampled on days −9, −2, 0, 4, 7,14, 21, and 28. Ovaries were examined with ultrasound on days −9, −3, and 7 and cows bearing a corpus luteum ≥20 mm on day 7 received an embryo. On days 0, 4 and 7 P4 did not differ (P ≥ 0.27) but control cows had greater (P < 0.01) P4 on days 14, 21, and 28. Progesterone concentration fold change from day 0 to 7 was not (P = 0.14) affected by treatment, but P4 concentration fold change from day 7 to 14 was (P < 0.01) greater for control cows compared with LowP4 cows. No LowP4 cows became pregnant after embryo transfer, whereas 35.7, 25.5, and 21.4% of control cows were pregnant on day 28, 42, and 63, respectively. Progesterone concentration fold changes from day 0 to 7 (P = 0.03) and from day 7 to 14 (P = 0.05) were associated with pregnancy outcomes on day 63. Among cows that were pregnant on day 63, the minimum P4 concentration fold changes from day 0 to 7 and from day 7 to 14 were 2.71 and 1.48, respectively. Interestingly, cows with P4 concentration <5 ng/mL on day 14 were (P = 0.01) and tended to be (P = 0.07) more likely to lose pregnancy from day 28 to 42 and from day 28 and 63, respectively. Faster rise in P4 concentration during the metestrus and early diestrus are associated with pregnancy establishment following embryo transfer, which suggests that early rise in P4 concentration has an indirect effect on embryo development through modulation of uterine environment and secretion of histotroph. Furthermore, the positive effects of early rise in P4 concentration appear to go beyond the phase of maternal recognition of pregnancy through adhesion and placentation stages.  相似文献   

18.
Two experiments were conducted to compare pregnancy rates when GnRH or estradiol were given to synchronize ovarian follicular wave emergence and ovulation in an MGA-based estrus synchronization program. Crossbred beef cattle were fed melengestrol acetate (MGA, 0.5 mg per day) for 7 days (designated days 0-6, without regard to stage of the estrous cycle) and given cloprostenol (PGF; 500 microg intramuscular (im)) on day 7. In Experiment 1, lactating beef cows (n=140) and pubertal heifers (n=40) were randomly allocated to three groups to receive 100 microg gonadorelin (GnRH), 5 mg estradiol-17beta and 100 mg progesterone (E+P) in canola oil or no treatment (control) on day 0. All cattle were observed for estrus every 12 h from 36 to 96 h after PGF. Cattle in the GnRH group that were detected in estrus 36 or 48 h after PGF were inseminated 12 h later; the remainder were given 100 microg GnRH im 72 h after PGF and concurrently inseminated. Cattle in the E+P group were randomly assigned to receive either 0.5 or 1.0 mg estradiol benzoate (EB) in 2 ml canola oil im 24 h after PGF and were inseminated 30 h later. Cattle in the control group were inseminated 12 h after the first detection of estrus; if not in estrus by 72 h after PGF, they were given 100 microg GnRH im and concurrently inseminated. In the absence of significant differences, all data for heifers and for cows were combined and the 0.5 and 1.0 mg EB groups were combined into a single estradiol group. Estrus rates were 57.6, 57.4 and 60.0% for the GnRH, E+P and control groups, respectively (P=0.95). The mean (+/-S.D.) interval from PGF treatment to estrus was shorter (P<0.001) and less variable (P<0.001) in the E+P group (49.0+/-6.1 h) than in either the GnRH (64.2+/-15.9 h) or control (66.3+/-13.3 h) groups. Overall pregnancy rates were higher (P<0.005) in the GnRH (57.6%) and E+P (55.7%) groups than in the control group (30.0%) as were pregnancy rates to fixed-time AI (47.5, 55.7 and 28.3%, respectively). In Experiment 2, 122 crossbred beef heifers were given either 100 microg GnRH or 2 mg EB and 50 mg progesterone in oil on day 0 and subsequently received either 100 microg GnRH 36 h after PGF and inseminated 14 h later or 1 mg EB im 24 h after PGF and inseminated 28 h later in a 2 x 2 factorial design. Pregnancy rates were not significantly different among groups (41.9, 32.2, 33.3 and 36.7% in GnRH/GnRH, GnRH/EB, EB/GnRH and EB/EB groups, respectively). In conclusion, GnRH or estradiol given to synchronize ovarian follicular wave emergence and ovulation in an MGA-based synchronization regimen resulted in acceptable pregnancy rates to fixed-time insemination.  相似文献   

19.
Paul V  Prakash BS 《Theriogenology》2005,64(5):1049-1060
Two experiments were conducted to assess the timing and synchrony of ovulation, plasma LH concentrations, and pregnancy rate in Murrah buffaloes (Bubalus bubalis) treated with the Ovsynch (GnRH-PGF(2 alpha)-GnRH) protocol. In Experiment 1, 10 non-lactating cycling buffaloes received 10 microg of a GnRH analogue i.m. (buserelin acetate) without regard to the stage of the estrous cycle (day of treatment, day 0), followed by 25mg of PGF(2 alpha) i.m. (dinoprost thromethamine) 7 days later. A second-treatment of the same GnRH analogue (10 microg, i.m.) was given 48 h after PGF(2 alpha). Ovulation was confirmed by transrectal palpation (at 2-h intervals) from the second-GnRH treatment to detection of ovulation or up to 96 h after the second-GnRH treatment. Plasma LH concentrations were determined in blood samples collected at 15-min intervals for 6h, starting at the second-GnRH treatment, and thereafter at 2-h intervals until 2h after detection of ovulation. Ovulation occurred in 9/10 buffalo (90%) 23.3+/-1.3h (mean+/-S.E.M.; range 20--32 h) after the second-GnRH treatment. Peak LH concentrations 13.5+/-3.5 ng/mL (range 3.9--40.0 ng/mL) occurred 2.1+/-0.1h (range 1.2-3.0 h) after the second-GnRH treatment. In Experiment 2, 15 lactating, cycling buffaloes were subjected to the Ovsynch protocol, with fixed-time AI 12 and 24h after the second-GnRH treatment and 75 lactating buffaloes were inseminated, approximately 12h after detection of spontaneous estrus. Pregnancy rates were 33.3% for TAI and were 30.7% for buffaloes inseminated following spontaneous estrus (P=0.84). In conclusion, the Ovsynch protocol effectively synchronized ovulation in Murrah buffaloes and resulted in conception rates (to two fixed-time inseminations) that were comparable to those achieved with a single AI after detection of spontaneous estrus.  相似文献   

20.
Poor estrus expression and a prolonged intercalving interval compromise the reproductive efficiency of female buffaloes. These limitations are exacerbated during the hot season, when fertility decreases dramatically. Pregnancy rate decrease further because difficulties in detecting estrus. To improve reproductive efficiency, several protocols of estrus and ovulation synchronization have been developed. These procedures are based on manipulating the CL, either to induce premature luteolysis using prostaglandins or to prolong the luteal phase using progestagens. However, it has recently emerged that a more precise manipulation of follicular development may be needed to achieve better synchrony of ovulation and improve fertility. Researchers have therefore turned their attention to evaluating programs in which hormones such as GnRH, FSH, LH, eCG, hCG, prostaglandins, progesterone and estradiol are administered. This review considers the impacts of estrus and ovulation synchronization protocols on fertility in the buffalo. In general, it may be stated that buffaloes respond well to the exogenous administration of hormones, and artificial insemination is possible at a pre-established time after synchronizing ovulation. Most combined hormone protocols give satisfactory pregnancy rates, comparable to those achieved in animals inseminated at natural estrus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号