首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
A total of 585 repeat-breeder dairy cows was used to study the effect of GnRH treatment, either at or prior to insemination, on the pregnancy rate. The cows were divided into 6 treatment groups. Cows in Group 1 (n = 142) were observed in estrus, and 11 +/- 0.42 hours (mean +/- SEM) later they were given 100 ug, i.m. gonadotropin releasing hormone (GnRH) and were inseminated. Cows in Group 2 (n = 139) were observed in estrus and were inseminated 11.4 +/- 0.43 hours later. Cows in Group 3 (n = 33) were monitored for estrus with an activated heatmount detector but were not observed in estrus; they were inseminated 1.5 +/- 0.87 hours later and were given 100 ug, i.m. GnRH. Cows in Group 4 (n = 35) were not observed in estrus, but they did activate the heatmount detector and were inseminated 2.2 +/- 0.87 hours later. Cows in Group 5 (n = 107) were observed in estrus, given 100 ug, i.m. GnRH 2.0 +/- 0.40 hours later, and were inseminated 9 +/- 0.60 hours after GnRH treatment. Cows in Group 6 (n = 129) were observed in estrus and were inseminated 10 +/- 0.50 hours later. Pregnancy rates were analyzed by Chi-square. Interactions between pregnancy rate, treatment and time of insemination were evaluated using ANOVA and LSM (P < 0.05). There was no effect on pregnancy rate when GnRH was given at or prior to insemination. Cows inseminated on the basis of observed estrus had a higher pregnancy rate (P < 0.05) than cows inseminated on the observation of an activated heatmount detector. From the results of this study, it is concluded that treatment with GnRH at or prior to insemination did not improve the pregnancy rate of repeat-breeder dairy cows.  相似文献   

2.
The induction of optimal synchrony of estrus in cows requires synchronization of luteolysis and of the waves of follicular growth (follicular waves). The aim of this study was to determine whether hormonal treatments aimed at synchronizing follicular waves improved the synchrony of prostaglandin (PG)-induced estrus. In Experiment 1, cows were treated on Day 5 of the estrous cycle with saline in Group 1 (n = 25; 16 ml, i.v., 12 h apart), with hCG in Group 2 (n = 27; 3000 IU, i.v.), or with hCG and bovine follicular fluid (bFF) in Group 3 (n = 21; 16 ml, i.v., 12 h apart). On Day 12, all cows were treated with prostaglandin (PG; 500 micrograms cloprostenol, i.m.). In Experiment 2, cows were treated on Day 5 of the estrous cycle with saline (3 ml, i.m.) in Group 1 (n = 22) or with hCG (3000 IU, i.v.) in Group 2 (n = 20) and Group 3 (n = 22). On Day 12, the cows were treated with PG (500 micrograms in Groups 1 and 2; 1000 micrograms in Group 3). Blood samples for progesterone (P4) determination were collected on Day 12 (Experiment 1) or on Days 12 and 14 (Experiment 2). Cows were fitted with heat mount detectors and observed twice a day for signs of estrus. Four cows in Experiment 1 (1 cow each from Groups 1 and 2; 2 cows from Group 3) had plasma P4 concentrations below 1 ng/ml on Day 12 and were excluded from the analyses. In Experiment 1, cows treated with hCG or hCG + bFF had a more variable (P = 0.0007, P = 0.0005) day of occurrence of and a longer interval to estrus (5.9 +/- 0.7 d, P = 0.003 and 6.2 +/- 0.8 d, P = 0.005) than saline-treated cows (3.4 +/- 0.4 d). The plasma P4 concentrations on Day 12 were higher (P < 0.0001) in hCG- and in hCG + bFF-treated cows than in saline-treated cows (9.4 +/- 0.75 and 8.5 +/- 0.75 vs 4.1 +/- 0.27 ng/ml), but there was no correlation (P > 0.05) between plasma P4 concentrations and the interval to estrus. In Experiment 2, cows treated with hCG/500PG and hCG/1000PG had a more variable (P = 0.0007, P = 0.002) day of occurrence of and a longer interval to estrus (4.2 +/- 0.4 d, P = 0.04; 4.1 +/- 0.4 d, P = 0.03) than saline/500PG-treated cows (3.2 +/- 0.1 d). The concentrations of plasma P4 on Days 12 and 14 of both hCG/500PG- and hCG/1000PG-treated cows were higher (P < 0.05) than in saline/500PG-treated cows (7.3 +/- 0.64, 0.7 +/- 0.08 and 7.7 +/- 0.49, 0.7 +/- 0.06 vs 5.3 +/- 0.37, 0.5 +/- 0.03 ng/ml). The concentrations of plasma P4 on Days 12 or 14 and the interval to estrus were not correlated (P > 0.05) in any treatment group. The concentrations of plasma P4 on Days 12 and 14 of hCG/500PG- or hCG/1000PG-treated cows were correlated (r = 0.65, P < 0.05; r = 0.50, P < 0.05). This study indicated that treatment of cows with hCG on Day 5 of the estrous cycle reduced the synchrony of PG-induced estrus and that this reduction was not due to the failure of luteal regression.  相似文献   

3.
Poor estrus expression and anestrus decrease the reproductive efficiency of buffaloes. The objective of this study was to determine whether the addition of equine chorionic gonadotropin (eCG) to an estrous synchronization protocol and timed insemination could improve ovulation and pregnancy rates of anestrous buffalo cows under tropical conditions. The study population comprised 65 lactating Murrah buffalo cows which were assigned to CIDR (n = 33) or CIDR + eCG (n = 32) treatment groups. Cows in the CIDR group were fitted for 8 d with a controlled intravaginal drug release (CIDR) device containing 1.38 g progesterone, received GnRH (10 μg i.m.) on D 0, PGF (750 μg i.m.) on D 7, and GnRH (10 μg i.m.) on D 9; whereas cows in the CIDR + eCG group received the same treatment plus eCG (500 IU, i.m.) at the time of PGF treatment. All cows were inseminated 16-20 h after the second GnRH treatment. Blood samples were obtained 10 d before the start of synchronization treatment (Day -10) and at the onset of treatment (Day 0). Cows with plasma progesterone concentrations <1 ng/mL recorded in both samples (Low-Low levels of P4) were classified as non-cyclic cows. Similarly, when either one or both of the sample pair contained concentrations of serum progesterone ≥1 ng/mL (High-High, Low-High, or High-Low levels of P4), the buffaloes were classified as cyclic cows. Ovulation rate, defined as the number of buffaloes with at least one corpus luteum 10 days after insemination, was significantly higher (P = 0.018) in the CIDR + eCG (84.4%) cows than in the CIDR cows (57.6%). Pregnancy rate was numerically lower in CIDR (27.3%) than CIDR + eCG (40.6%) cows, though differences were not significant (P = 0.25). Pregnancy rates for CIDR + eCG cows were similar to that of cows inseminated after natural estrus (40.9%; 29/71). In the non-cyclic animals, higher ovulation rates (P = 0.026) were recorded for the CIDR + eCG (81%) than for the CIDR cows (47.4%). Our results indicate that the addition of eCG to a progesterone-based estrous synchronization regimen substantially improves the ovulation rate in non-cyclic buffaloes. When this treatment is followed by timed AI, pregnancy rates achieved in anestrous buffaloes, whether cyclic and non-cyclic, may approach the rates observed in cows inseminated at natural estrus.  相似文献   

4.
This is the very first report that suggests high pregnancy rates can be obtained with use of the Doublesynch protocol in anestrous dairy cows. Recently, a new synchronization method has been developed (Doublesynch) that resulted in synchronized ovulations both after the first and second gonadotropin-releasing hormone (GnRH) treatments. It was suggested that this protocol has the potential to increase the pregnancy rates in primiparous dairy cows. The aim of the current study was to confirm the success of the Doublesynch protocol and further to investigate the effect of this method on pregnancy rates in anestrous cows. Lactating primiparous Holstein (Bos taurus) cows (n = 165) between 60 and 172 d postpartum were monitored twice with 10-d intervals (on Days -10 and 0) by ultrasonography, and blood samples were collected. Cows were classified as anestrous if both blood samples had progesterone (P4) concentration <1 ng/mL and as cyclic if at least one of the two samples had P4 concentration ≥1 ng/mL. Cyclic cows were classified again as cyclic-high P4 (having an active corpus luteum) if the second blood samples had P4 concentrations ≥1 ng/mL and as cyclic-low P4 if P4 concentrations were <1 ng/mL on Day 0. Then, the cows classified as anestrous (n = 51), cyclic-high P4 (n = 63), or cyclic-low P4 (n = 51) were put into two treatment groups (Ovsynch or Doublesynch) randomly to establish six groups. Cows in the Ovsynch group were administered a GnRH (lecirelin 50 μg, im) on Day 0, PGF (Prostaglandin F2 alpha, D-cloprostenol 0.150 mg, im) on Day 7, and a second dose of GnRH 48 h later. Cows in the Doublesynch group were administered a PGF on Day 0, GnRH on Day 2, a second PGF on Day 9, and a second GnRH on Day 11. Timed artificial insemination (TAI) was performed 16 to 20 h after the second GnRH in both treatment groups. Pregnancy diagnosis was conducted (by ultrasonography) 45 ± 5 d after TAI. In anestrous cows and those with high and low progesterone concentration at treatment onset, Doublesynch treatment led to markedly increased pregnancy rates with respect to Ovsynch treatment (P < 0.05). On the overall analysis of data, it was revealed that the Doublesynch method increased pregnancy rates by 43 percentage units (29.8% vs. 72.8%, P < 0.0001) in relation to Ovsynch. Pregnancy rates of cows having small, medium, or large follicles at the day of second GnRH administration were similar in the Doublesynch group (70.4%, 85.2%, and 63.0%, respectively; P > 0.05), whereas pregnancy rates reduced dramatically as follicle size increased in the Ovsynch group, particularly in cows with follicles greater than 16 mm (45.5%, 28.1%, and 5.3%, respectively; P < 0.05). Our results confirm and support observations that the Doublesynch protocol increases the pregnancy rates in postpartum primiparous cows as reported previously. Our data also demonstrate that the Doublesynch method increases the pregnancy rates in anestrous cows. Thus, these data suggest that the Doublesynch protocol can be used to obtain satisfactory pregnancy rates after TAI in both anestrous and cycling primiparous dairy cows regardless of stage of estrous cycle.  相似文献   

5.
The objective of this study was to determine the reproductive performance of lactating dairy cows treated with GnRH and/or PGF2a for synchronization of estrus and ovulation. Between Days 43 and 57 post partum, a total of 374 dairy cows was divided into 4 groups. Cows in Group 1 (n = 62) were treated with 25 mg, i.m. PGF2a on Days 43 and 57; cows in Group 2 (n = 65) were not treated at this time; cows in Group 3 (n = 118) were treated with 100 ug, i.m. GnRH on Day 50, 25 mg, i.m. PGF2a on Day 57, 100 ug, i.m. GnRH on Day 59, and time-inseminated 16 h later; cows in Group 4 (n = 129) were treated with 25 mg, i.m. PGF2a once on Day 57. Cows in Groups 1 and 4 were inseminated at an induced estrus within 7 d after the last PGF2a treatment, and cows in Group 2 were inseminated at a noninduced estrus within a corresponding period of time. Conception rate, estrus detection rate and pregnancy rate were analyzed using logistic regression, and controlled for lactation number, body condition score and time of year. Days from calving to conception were analyzed using the GLM procedures of SAS, and the model included group, body condition score, lactation number, time of year, and their interactions. Cows in Group 3 had a significantly higher pregnancy rate than cows in Groups 1, 2 and 4. Orthogonal contrasts of mean days from calving to conception showed that cows in Group 3 had significantly (P < 0.01) less days from calving to conception than cows in Group 1 and Group 4. There was a significant effect of time of year on pregnancy rate and days from calving to conception, but there was no interaction between time of year and these reproductive characteristics. There was no effect of body condition score and lactation number on the reproductive characteristics evaluated. From the results of this study, it was concluded that better reproductive performance was observed in cows inseminated at a synchronized ovulation than in those inseminated at a synchronized estrous period.  相似文献   

6.
Two experiments were designed to evaluate models for generation of low circulating progesterone concentrations during early pregnancy in cattle. In Experiment 1, 17 crossbred heifers (Bos taurus) were assigned to either prostaglandin F (PGF) administration on Days 3, 3.5, and 4 (PG3; n = 9) or to control (n = 8). Blood samples were collected from heifers from Days 1 to 9 for progesterone assay. Progesterone concentrations were decreased (P < 0.03) between 18 and 48 h after first PGF treatment in heifers assigned to PG3 compared with that of controls. In Experiment 2, 39 crossbred heifers detected in estrus were inseminated (Day 0) and assigned to either (1) PGF administration on Days 3, 3.5, and 4 (PG3; n = 10), (2) PGF administration on Days 3, 3.5, 4, and 4.5 (PG4; n = 10), (3) Progesterone Releasing Intravaginal Device (PRID) insertion on Day 4.5 with PGF administration on Days 5 and 6 (PRID + PGF; n = 10), or (4) control (n = 9). Blood samples were collected daily until Day 15, and conceptus survival rate was determined at slaughter on Day 16. Progesterone concentrations during the sampling period in the PG3 and PG4 groups did not differ but were less than that of controls (P < 0.01). After an initial peak, progesterone concentrations in the PRID + PGF group were similar to that of controls. More heifers in the PG4 group (6 of 10) had complete luteal regression than did those in the PG3 group (3 of 10). Conceptus survival rate on Day 16 did not differ between groups. There was a significant correlation between progesterone concentration on Days 5 and 6 and conceptus size on Day 16. In summary, treatment with PGF on Days 3, 3.5, and 4 postestrus appeared to provide the best model to induce reduced circulating progesterone concentrations during the early luteal phase in cattle.  相似文献   

7.
This study was designed to determine conception rates in dairy cows after timed-insemination and simultaneous treatment with gonadotrophin releasing hormone (GnRH) and/or prostaglandin F2 alpha (PGF2alpha). A total of 2352 cows was randomly assigned to six groups. Cows in Groups 1 to 5 were palpated per rectum to determine the presence of a corpus luteum (CL) on the ovary, and blood samples were obtained for the determination of plasma progesterone (P4) concentrations. Cows with a CL and P4 concentrations >1 ng/ml were treated (Day 0) with PGF2alpha (25 mg, i.m.) and were observed for estrus. Cows in estrus prior to 72 hours after treatment (Group 5, n = 106) were bred, but were not treated. Cows not observed in estrus by 72 hours were divided into four remaining groups, were bred between 72 and 80 hours and were assigned as follows: Cows in Group 1 (n = 203) were not treated; Cows in Group 2 (n = 200) were treated with GnRH (100 ug, i.m.); Cows in Group 3 (n = 201) were treated with PGF2alpha (25 mg, i.m.); and cows in Group 4 (n = 202) were treated with both GnRH and PGF2alpha. Cows in Group 6 (n = 1440) were not treated with PGF2alpha on Day 0 and were estrual cows that were bred on days when cows in Groups 1 to 5 were time-inseminated. The percentage of cows in all groups pregnant at 45 to 50 days after one insemination was compared using analysis of variance (P<0.05). The conception rate of cows in Group 2 was significantly higher than that of cows in Groups 1 to 4. There was a significant group-by-season interaction. Cows treated with GnRH during the spring had a higher conception rate than at other times of the year. Conception rates of cows in Groups 1 to 4 that were inseminated during the summer were low and not significantly different from each other. Conception rates of cows in Groups 5 and 6 inseminated during the summer were not significantly different from each other, but were significantly higher than that of cows in Groups 1 to 4 that were inseminated during the summer.  相似文献   

8.
Daily plasma progesterone (P(4)) was determined during one estrous cycle of 19 cows and 18 heifers of four different breeds: Holstein (H), Brahman (B), Carora-type (C) and crossbred (CB) females. Estrus detection was made by visual observation and using a teaser bull with a chin-ball marker. The P(4) profiles showed no differences among groups. In Group 1 (H), P(4) levels ranged from 0.5 ng/ml plasma on the day of estrus (Day 0) to 5.1 ng/ml at the luteal phase peak (Day 13). In Group 2 (B), P(4) levels ranged from 0.5 ng/ml on Day 0 to 9.2 ng/ml on Day 13. In Groups 3 (C) and 4 (CB), P(4) levels ranged from 0.5 ng/ml, on Day 0, to 13.7 ng/ml on Day 12 and 8.8 ng/ml on Day 13. These last two groups were moved to the same location and then compared. It was found that P(4) concentrations were significantly higher (P < 0.025) in Group 3 between Days 7 and 14 of the estrous cycle. In all groups, P(4) levels were lower than 1 ng/ml one day before the next estrus, and levels of 0.4, 0.5, 0.4 and 0.4 ng/ml were obtained the day of estrus in Groups 1 to 4, respectively. Results indicated that the pattern of P(4) for each one of the groups was similar to those reported by other investigators.  相似文献   

9.
This study was conducted to evaluate the use of prostaglandin F2alpha (PGF2alpha) in the initial treatment of ovarian cysts in dairy cattle. Two hundred and sixty three cows diagnosed cystic on palpation per rectum were randomly assigned to one of three treatment groups (A, B or C). Cows in Groups A and B were treated with 25 mg i.m.of PGF2alpha at the time of diagnosis (Day 0), while cows in Group C received 100 mug of GnRH. Seven days following initial treatment (Day 7), cows from Group A that were not observed in estrus were treated with GnRH. Cows from Groups B and C were not treated. On Day 14, all cows that had not been inseminated received PGF2alpha. A blood sample was obtained from all cows on Days 0, 7 and 14 and was analyzed for progesterone (P4) using radioimmunoassay. Incidences of estrus were recorded and cows that were more than 60 d in milk at the time of diagnosis were bred when observed in estrus. The incidence of follicular cysts on Day 0 (as defined as P4 <0.5 ng/ml) was similar between groups and constituted about 40% of all cysts. There were significantly more cows pregnant to insemination within 7 d of initial treatment in Group B than in Groups A and C (P<0.05). After Day 14, the pregnancy rate was not statistically different between Group B and C, but Groups B and C had a statistically higher pregnancy rate than Group A from Day 21 to Day 35. At the end of the study, there was no statistical difference for the pregnancy rate between groups. We concluded that treatment of ovarian cysts diagnosed by per rectum examination with prostaglandin (at time of diagnosis and 14 d later for cows that were not inseminated) was as effective as initial treatment with GnRH followed by prostaglandins 14 d later for cows that were not inseminated previously. Cows that were initially treated with prostaglandins also tended to become pregnant sooner.  相似文献   

10.
This study evaluated whether the four gonadorelin products that are commercially available in the United States produce comparable ovulation responses in lactating cows. Dairy cows at 7 d after last gonadotropin-releasing hormone (GnRH) treatment of Ovsynch (Day 7), with a corpus luteum (CL) ≥15 mm and at least one follicle ≥10 mm, were evaluated for response to GnRH treatment. Selected cows were randomized to receive (100 μg; im): (1) Cystorelin (n = 146); (2) Factrel (n = 132); (3) Fertagyl (n = 140); or (4) Ovacyst (n = 140). On Day 14, cows were examined for ovulation by detection of an accessory CL. Circulating luteinizing hormone (LH) concentrations were also evaluated in some cows after treatment with 100 μg (n = 10 per group) or 50 μg (n = 5 per group) GnRH. Statistical analyses were performed with the procedures MIXED and GLIMMIX of the SAS program. Percentage of cows ovulating differed (P < 0.01) among groups, with that for Factrel being lower (55.3%) than that for Cystorelin (76.7%), Fertagyl (73.6%), or Ovacyst (85.0%). There was no effect of batch, parity, or follicle size on ovulation response, but increasing body condition score decreased ovulation response. There was a much greater LH release in cows treated with 100 μg than in those treated with 50 μg, but there were no detectable differences among products in time to LH peak, peak LH concentration, or area under the LH curve and no treatment effects nor treatment by time interactions on circulating LH profile. Thus, ovulation response to Factrel on Day 7 of the cycle was lower than that for other commercial GnRH products, although a definitive mechanism for this difference between products was not demonstrated.  相似文献   

11.
Multiparous lactating beef cows were observed for estrus and randomly assigned to one of four Luprostiol (13, thia-PG-F(2)alpha analog) treatment groups receiving 3.8 (LI), 7.5 (LII), 15 (LIII) or 30 (LIV) mg Luprostiol, respectively, or to an untreated control group (C), or to a positive control group (E) receiving 500 mcg Estrumate. Cows received their respective treatments in a single dosage on Day 7, 8 or 9 of the estrous cycle (estrus = Day 0) and were artificially inseminated 12 h following the subsequent estrus. Blood samples were collected from all groups immediately prior to treatment and at 12-h intervals to 48 h post treatment and analyzed for progesterone (P(4)). Blood samples were collected at 3-h intervals from 24 to 72 h post treatment for animals in Group LIII and for 48 h (or observed estrus) starting on Day 19 of the estrous cycle for animals in Group C. These samples were analyzed for estradiol-17beta(E(2)), follicle stimulating hormone (FSH) and luteinizing hormone (LH). Treatment with Luprostiol at doses >/= 7.5 mg resulted in a synchronous estrous response during the first 5 d post treatment in 75 to 95% of cows treated. Luteal function, as evaluated by systemic P(4) concentration, paralleled results observed for estrous response. Treatment with a 15 or 30 mg dose of Luprostiol resulted in greater overall pregnancy rate at synchronized estrus. No biologically significant differences were found in blood levels of E(2), FSH or LH around the time of estrus between cows in Groups C and LIII. Results from these studies indicate treatment with Luprostiol at doses >/= 7.5 mg resulted in a synchronous estrus during the first 5 d after treatment. Pregnancy rates and endocrine changes were similar to those observed in control and Estrumate-treated cows.  相似文献   

12.
This work was designed to determine whether melatonin treatment at the spring equinox can induce reproductive activity in goats without separation from males (separation being the normal practice in Spanish farming systems) and whether this treatment modifies the onset of the natural breeding season. Twenty-nine entire does were distributed into two groups (Group M, n = 14; Group C, n = 15). A third group of ovariectomized, estradiol-treated goats (OVX group, n = 5) was used to study the effect of melatonin on reproductive activity. On March 18, Groups M and OVX received a subcutaneous melatonin implant. In entire females, estrus was tested daily using entire aproned males, and ovulation rate was assessed after identification of estrus. Plasma progesterone in entire goats, plasma luteinizing hormone (LH) in the OVX group, and live weight and body condition score for all animals were recorded once a week. In entire goats, a clear treatment by time interaction was observed for progesterone concentrations (P < 0.001), with a period of high progesterone concentrations during the natural seasonal anestrus in Group M. A similar period of high LH concentrations was observed in the OVX group. Whereas all females of Group M presented ovarian activity during this period, no female of Group C did. The resumption of the natural breeding season was retarded in Group M in comparison with that in Group C (P < 0.05). We can conclude that in Mediterranean goats, melatonin implants can induce reproductive activity without separation from males, and it causes a small retardation in the reactivation of reproductive activity in the natural breeding season.  相似文献   

13.
Pregnancy per artificial insemination (AI) was evaluated in dairy cows (Bos taurus) subjected to synchronization and resynchronization for timed AI (TAI). Cows (n = 718) received prostaglandin F (PGF) on Days –38 and –24 (Days 39 and 53 postpartum), gonadotropin-releasing hormone (GnRH) on Day –10, PGF on Day –3, and GnRH and TAI on Day 0. Between Days –10 and –3, cows received a progesterone intravaginal insert (CIDR group) or no CIDR (Control group). Between Days 14 and 23, cows received a CIDR (Resynch CIDR group) or no CIDR (Resynch control group), GnRH on Day 23, with pregnancy diagnosis on Day 30. Cows in estrus (between Days 0 and 30) were re-inseminated at detected estrus (RIDE). Nonpregnant cows received PGF on Day 30 and GnRH and TAI on Day 33. Plasma progesterone was determined to be low or high on Days –24 and –10. Pregnancy rates were evaluated 30 and 55 d after AI. The CIDR insert included in the Presynch-Ovsynch protocol did not increase overall pregnancy per AI for first service (36.1% and 33.6% for CIDR; 34.1% and 28.8% for Control) but did decrease pregnancy loss (7.0% for CIDR and 15.6% for Control). The CIDR insert increased pregnancy per AI in cows with high progesterone at the time the CIDR insert was applied. Administration of a CIDR insert between Days 14 and 23 of the estrous cycle after first service did not increase overall pregnancy per AI to second service (24.7% and 22.7% for Resynch CIDR; 28.6% and 25.3% for Resynch control). For second service, RIDE cows had lower pregnancy rates in the Resynch CIDR group than in the Resynch control group. Cows with a CL (corpus luteum) at Day 30 had higher pregnancy rates in the Resynch CIDR group than those in the Resynch control group.  相似文献   

14.
The objective of this study was to evaluate superovulatory programs based on synchronization of follicular waves with GnRH at 2 different stages of the estrous cycle. Sixteen Holstein cows were randomly assigned to 1 of 3 groups and administered GnRH (Cystorelin, 4 ml i.m.) between Days 4 and 7 (Groups 1 and 3) or between Days 15 and 18 (Group 2) of the estrous cycle (estrus = Day 0). Four days after GnRH treatment, > or = 7-mm follicles were punctured in Groups 1 (n = 6) and 2 (n = 6) or were left intact in Group 3 (n = 4). All cows were superstimulated 2 d later (i.e., from Days 6 to 10 after GnRH treatment) with a total of 400 mg NIH-FSH (Folltropin-V) given twice daily in decreasing doses. The GnRH treatment caused a rapid disappearance of large follicles (P < 0.005), rapid decrease in estradiol concentrations (P < 0.003), and increase in the number of recruitable follicles (4 to 6 mm; P < 0.04), indicative of the emergence of a new follicular wave within 3 to 4 d of treatment. Between 4 and 6 d after GnRH treatment, the mean number of 4- to 6-mm follicles decreased (4.7 +/- 1.8 to 1.5 +/- 3.3) in the nonpunctured group but increased (3.9 +/- 1.0 to 7.3 +/- 1.9) in the punctured group of cows (P < 0.05). In response to FSH treatment, the increase in the number of > or = 7-mm follicles was delayed by approximately 2 d in the nonpunctured group (P < 0.006). Moreover, the mean number of > or = 7-mm follicles at estrus was higher (16.9 +/- 1.7 vs 11.5 +/- 3.0; P < 0.1) in the punctured than the nonpunctured group. The increase in progesterone concentration after estrus was delayed in the nonpunctured group (P < 0.1) compared with the punctured follicles. Mean numbers of CL as well as freezable (Grade 1 and 2) and transferable (Grade 1, 2 and 3) embryos were similar (P > 0.1) in punctured and nonpunctured groups. Spontaneous estrus did not occur prior to cloprostenol-induced luteolysis in any group, and stage of the estrous cycle during which GnRH was given did not affect (P > 0.1) hormonal and follicular responses in the punctured groups. In conclusion, GnRH given at different stages of the estrous cycle promotes the emergence of a follicular wave at a predictable time. Puncture of the newly formed dominant follicle increases the number of recruitable follicles (4 to 6 mm) 2 d later and, in response to superstimulation with FSH, causes a greater number and faster entry of recruitable follicles into larger classes (> or = 7 mm) and a faster postovulatory increase in progesterone concentrations.  相似文献   

15.
Treatment with GnRH at the onset of standing estrus increased pregnancy percentages and circulating concentrations of progesterone in repeat breeder dairy cows. The objective of this study was to determine the effect of treatment with GnRH at AI on concentrations of progesterone and conception rates in beef cattle that exhibited estrus. Two hundred ninety-three heifers at four locations were synchronized with the Select Synch plus CIDR protocol (given GnRH and a CIDR was placed into the vagina, and 7 d later, given PGF and CIDR removed; n = 253) or the 14-19 melengestrol acetate (MGA) protocol (MGA fed at 0.5 mg/head/d for 14 d, with PGF 19 d after MGA withdrawal n = 40) and AI was done after detection of estrus. At Location 1, blood samples were collected on Day 2, 4, 6, 10, 15, and 18 after AI (Day 0 = AI). Two hundred and fifty postpartum cows at two locations were synchronized with the Select Synch plus CIDR protocol, and AI was performed after detection of estrus. At AI, cattle were alternately assigned to one of two treatments: (1) treatment with GnRH (100 μg) at AI (n = 127 heifers and n = 108 cows); or (2) non-treated control (n = 120 heifers and n = 119 cows). Concentrations of progesterone tended to be greater in control heifers compared to GnRH-treated heifers on Days 6 (P = 0.08), 10 (P = 0.07), and 15 (P = 0.11). Overall conception rates were 68% and 66% for GnRH treated and control, respectively, and were not different between treatments (= 0.72). In summary, treatment with GnRH at time of AI had no influence on conception rates in cattle that had exhibited estrus.  相似文献   

16.
The benefit of using timed-insemination in lactating dairy cows for the treatment of ovarian cysts lies in the fact that cows do not have to be detected in estrus for insemination and achieving pregnancy. We compared the effectiveness of synchronization of ovulation with timed-insemination and induction of estrus with insemination at estrus in the treatment of bovine ovarian cysts in lactating dairy cows. After Day 65 post partum, a total of 368 lactating dairy cows was divided into 3 groups. Cows in Group 1 (n = 209, normal, noncystic) were treated with 100 ug, i.m. GnRH on Day 0; 25 mg, i.m. PGF2 alpha on Day 7; and 100 ug, i.m. GnRH on Day 9 and then were time-inseminated 16 h later. Cows in Group 2 (n = 76, abnormal, cystic) were treated with 100 ug, i.m. GnRH on Day 0; 25 mg, i.m. PGF2 alpha on Day 7; and 100 ug, i.m. GnRH on Day 9 and time-inseminated 16 h later. Cows in Group 3 (n = 83, abnormal, cystic) were treated with 100 ug, i.m. GnRH on Day 0; 25 mg, i.m. PGF2 alpha on Day 7; and inseminated at induced estrus within 7 d after treatment with PGF2 alpha. Day 0 was the day of initiation of the study. Conception and pregnancy rates among groups were compared using logistic regression and adjusted for parity, time of year and days in milk. Conception and pregnancy rates of Group 1 cows (31.5%) were not significantly different from those of Group 2 cows (23.6%). However, the pregnancy rate in normal cows (Group 1) was higher (P < 0.01) than in cystic cows (Groups 2 and 3). Cows in Group 3 had a higher conception rate than cows in Group 2 (51.7% > 23.6%; P < 0.01). However, pregnancy rates for cows in Groups 2 (23.6%) and 3 (18%) were not significantly different. The finding indicated that synchronization of ovulation and timed-insemination resulted in pregnancy rates similar to those of synchronization of estrus and insemination at an induced estrus within 7 d for the treatment of ovarian cysts in lactating dairy cows.  相似文献   

17.
Using two PGF treatments 14 days apart as a way to enhance estrus detection rate following the 2nd treatment is a reproductive management tool that continues to be used on large dairy farms. In one study, in cows with a functional CL and a dominant follicle, treatment with cloprostenol vs. dinoprost resulted in greater peripheral estradiol concentrations. The objective of the present study was to determine if cloprostenol could enhance pregnancy rates of cows in a large dairy herd using a PGF program for 1st artificial insemination (AI). Lactating dairy cows (n = 4549) were randomly assigned to receive two treatments of either 500 μg cloprostenol or 25 mg dinoprost 14 days apart, with the 2nd treatment on the 1st day of the voluntary waiting period (57 DIM). Cows detected in estrus within 5 days after the 2nd treatment were inseminated. There was no effect of treatment on day of estrus detection, with 78% of cows inseminated on Days 3 or 4 following treatment. Cloprostenol increased (P < 0.01) estrus detection rates in 1st parity cows compared to dinoprost, 42.4 vs. 34.0%. In cows inseminated on Days 3 or 4 after treatment, cloprostenol increased (P = 0.05) conception rates compared to dinoprost, 38.3 vs. 34.4%. When treatments and parities were combined, conception rates increased (P < 0.02) with interval after treatment (27.0, 36.4, and 44.5% for Days 1 or 2, Days 3 or 4, and Day 5, respectively). Cloprostenol increased (P = 0.02) overall pregnancy rate compared to dinoprost, 14.4 vs. 12.2%. In summary, cloprostenol increased fertility in 1st parity cows inseminated on Days 3 or 4 following treatment and subsequently enhanced pregnancy rates of 1st parity lactating dairy cows compared to dinoprost. Fertility appeared greater in cows expected to have had a young antral ovarian follicle at treatment.  相似文献   

18.
19.
The effects of the presence or absence of vasectomized male buffaloes on the reproductive efficiency of buffalo cows (n = 396) undergoing artificial insemination (AI) was studied on six farms owned and operated by a single consortium. Lactating animals were separated into two groups of various sizes on each farm and kept under semi-range conditions. Vasectomized bulls were present in one group at a bull/empty-cow ratio of 1:30. No bulls were present in the other group. Reproductive efficiency between the two groups over a period of 3.5 months was compared and evaluated on the basis of: 1) the number of spontaneous overt estruses associated with either feeble or intense signs of estrous behaviour; 2) the number of functional estrous cycles, i.e. estrous cycles with luteal phases defined as normal, based on specified progesterone concentrations in milk or blood plasma 8–10 days after estrus; 3) the number of consecutive functional estrous cycles in cases of induced estrus; and 4) pregnancy rate.Groups with bulls present demonstrated a significantly higher reproductive efficiency than groups without them. There was a higher incidence of spontaneous estrus (92 versus 69%; P < 0.01); spontaneous estrus of high intensity (62.2 versus 31.1%; P < 0.01); and higher incidence of functional estrous cycles following both spontaneous (65.8 versus 57.1%) and induced (77.0 versus 59.5%; P < 0.05) estrus. Exposure to vasectomised bulls also increased the incidence of consecutive functional estrous cycles (90.5 versus 68.1%; P < 0.01), and the pregnancy rate in cows inseminated at spontaneous (42.5 versus 18.9%; P < 0.01) or induced (51.1 versus 33.3%; P < 0.05) estrus. Overall pregnancy rate did not differ significantly between cows inseminated at induced or spontaneous estrus, although in the absence of bulls, pregnancy rate per AI was higher in cows inseminated at induced than at spontaneous estrus (33.3 versus 18.9%).  相似文献   

20.
Two experiments evaluated long-term controlled internal drug release (CIDR) insert-based protocols to synchronize estrus and compare differences in their potential ability to facilitate fixed-time artificial insemination (FTAI) in beef heifers. In Experiment 1 estrous cycling heifers (n = 85) were assigned to one of two treatments by age and body weight (BW). Heifers with T1 received a CIDR from days 0 to 14, gonadotropin releasing hormone (GnRH) on day 23, and prostaglandin F (PG) on day 30. Heifers with T2 received a CIDR from days 2 to 16, GnRH on day 23, and PG on day 30. Ovaries were evaluated by ultrasonography on days 23 and 25 to determine ovulatory response to GnRH. In Experiment 2 heifers (n = 353) were assigned within reproductive tract scores by age and BW to one of four treatments. Heifers in T1 and T2 received the same treatments described in Experiment 1. Heifers in T3 and T4 received the same treatments as T1 and T2, respectively, minus the addition of GnRH. In Experiments 1 and 2, heifers were fitted with HeatWatch transmitters for estrous detection and AI was performed 12 h after estrus. In Experiment 1 heifers assigned to T1 had larger dominant follicles at GnRH compared to T2 (P < 0.01) but response to GnRH, estrous response after PG, mean interval to estrus, and variance for interval to estrus after PG did not differ (P > 0.10). AI conception and final pregnancy rate were similar (P > 0.50). In Experiment 2 estrous response after PG did not differ (P > 0.70). Differences in mean interval to estrus and variance for interval to estrus (P < 0.05) differed based on the three-way interaction of treatment length, GnRH, and estrous cyclicity status. AI conception and final pregnancy rates were similar (P > 0.10). In summary, the greater estrous response following PG and resulting AI conception and final pregnancy rates reported for heifers assigned to the two treatments in Experiment 1 and among the four treatments in Experiment 2 suggest that each of these long-term CIDR-based protocols was effective in synchronizing estrus in prepubertal and estrous cycling beef heifers. However, the three-way interaction involving treatment length, GnRH, and estrous cyclicity status in Experiment 2 clearly suggests that further evaluation of long-term CIDR-based protocols is required with and without the addition of GnRH and on the basis of estrous cyclicity status to determine the efficacy of these protocols for use in facilitating FTAI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号