首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
beta-Lapachone (beta-lap) effectively killed MCF-7 and T47D cell lines via apoptosis in a cell-cycle-independent manner. However, the mechanism by which this compound activated downstream proteolytic execution processes were studied. At low concentrations, beta-lap activated the caspase-mediated pathway, similar to the topoisomerase I poison, topotecan; apoptotic reactions caused by both agents at these doses were inhibited by zVAD-fmk. However at higher doses of beta-lap, a novel non-caspase-mediated "atypical" cleavage of PARP (i.e., an approximately 60-kDa cleavage fragment) was observed. Atypical PARP cleavage directly correlated with apoptosis in MCF-7 cells and was inhibited by the global cysteine protease inhibitors iodoacetamide and N-ethylmaleimide. This cleavage was insensitive to inhibitors of caspases, granzyme B, cathepsins B and L, trypsin, and chymotrypsin-like proteases. The protease responsible appears to be calcium-dependent and the concomitant cleavage of PARP and p53 was consistent with a beta-lap-mediated activation of calpain. beta-Lap exposure also stimulated the cleavage of lamin B, a putative caspase 6 substrate. Reexpression of procaspase-3 into caspase-3-null MCF-7 cells did not affect this atypical PARP proteolytic pathway. These findings demonstrate that beta-lap kills cells through the cell-cycle-independent activation of a noncaspase proteolytic pathway.  相似文献   

2.
Identification of the processing/activation of multiple interleukin-1β converting enzyme (ICE)–like proteases and their target substrates in the intact cell is critical to our understanding of the apoptotic process. In this study we demonstrate processing/activation of at least four ICE-like proteases during the execution phase of apoptosis in human monocytic tumor THP.1 cells. Apoptosis was accompanied by processing of Ich-1, CPP32, and Mch3α to their catalytically active subunits, and lysates from these cells displayed a proteolytic activity with kinetics, characteristic of CPP32/Mch3α but not of ICE. Fluorescence-activated cell sorting was used to obtain pure populations of normal and apoptotic cells. In apoptotic cells, extensive cleavage of Ich-1, CPP32, and Mch3α was observed together with proteolysis of the ICE-like protease substrates, poly (ADP-ribose) polymerase (PARP), the 70-kD protein component of U1 small nuclear ribonucleoprotein (U170K), and lamins A/B. In contrast, no cleavage of CPP32, Mch3α or the substrates was observed in normal cells. In cells exposed to an apoptotic stimulus, some processing of Ich-1 was detected in morphologically normal cells, suggesting that cleavage of Ich-1 may occur early in the apoptotic process. The ICE-like protease inhibitor, benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethyl ketone (Z-VAD.FMK), inhibited apoptosis and cleavage of Ich-1, CPP32, Mch3α, Mch2α, PARP, U1-70K, and lamins. These results suggest that Z-VAD.FMK inhibits apoptosis by inhibiting a key effector protease upstream of Ich-1, CPP32, Mch3α, and Mch2α. Together these observations demonstrate that processing/activation of Ich-1, CPP32, Mch3α, and Mch2α accompanies the execution phase of apoptosis in THP.1 cells. This is the first demonstration of the activation of at least four ICE-like proteases in apoptotic cells, providing further evidence for a requirement for the activation of multiple ICE-like proteases during apoptosis.  相似文献   

3.
Ceramide has been proposed to be an important signaling intermediate in tumor necrosis factor (TNF)-induced apoptosis in human MCF-7 breast adenocarcinoma cells. We compared cell death and signal transduction pathways induced by TNF and ceramide in TNF-sensitive, parental MCF-7 cells to those in TNF-resistant, MCF-7 cells (3E9). TNF caused proteolysis of the caspase substrate, polyADP-ribose polymerase (PARP) in parental cells, but not in 3E9 cells. Both apoptosis and PARP cleavage were strongly prevented by co-incubation with caspase inhibitors. In contrast, ceramide-induced cell death was neither affected by TNF resistance nor was it associated with PARP cleavage, and death could not be prevented by co-incubation with caspase inhibitors in either cell line. TNF was able to activate JNK/SAPK approximately 30-fold and approximately 5-fold in parental MCF-7 and 3E9 cells, respectively; in contrast, cell-permeable ceramide only weakly stimulated JNK/SAPK activity in either cell type. Although JNK was activated by TNF, pharmacological blockade of the JNK pathway did not inhibit TNF- or ceramide-mediated cell death. Using mass spectroscopic analysis for ceramide, no increase, rather, a decrease in total ceramide content in TNF-treated parental cells was observed. These results suggest that the cell death signaling and execution pathways utilized by ceramide are distinct from those activated by TNF in MCF-7 cells.  相似文献   

4.
Anticancer efficacy and the mechanism of action of α-santalol, a terpenoid isolated from sandalwood oil, were investigated in human breast cancer cells by using p53 wild-type MCF-7 cells as a model for estrogen receptor(ER)-positive and p53 mutated MDA-MB-231 cells as a model for ER-negative breast cancer. α-Santalol inhibited cell viability and proliferation in a concentration and time-dependent manner in both cells regardless of their ER and/or p53 status. However, α-santalol produced relatively less toxic effect on normal breast epithelial cell line, MCF-10A. It induced G2/M cell cycle arrest and apoptosis in both MCF-7 and MDA-MB-231 cells. Cell cycle arrest induced by α-santalol was associated with changes in the protein levels of BRCA1, Chk1, G2/M regulatory cyclins, Cyclin dependent kinases (CDKs), Cell division cycle 25B (Cdc25B), Cdc25C and Ser-216 phosphorylation of Cdc25C. An up-regulated expression of CDK inhibitor p21 along with suppressed expression of mutated p53 was observed in MDA-MB-231 cells treated with α-santalol. On the contrary, α-santalol did not increase the expression of wild-type p53 and p21 in MCF-7 cells. In addition, α-santalol induced extrinsic and intrinsic pathways of apoptosis in both cells with activation of caspase-8 and caspase-9. It led to the activation of the executioner caspase-6 and caspase-7 in α-santalol-treated MCF-7 cells and caspase-3 and caspase-6 in MDA-MB-231 cells along with strong cleavage of poly(ADP-ribose) polymerase (PARP) in both cells. Taken together, this study for the first time identified strong anti-neoplastic effects of α-santalol against both ER-positive and ER-negative breast cancer cells.  相似文献   

5.
ICE family proteases have been implicated as important effectors of the apoptotic pathway, perhaps acting hierarchically in a protease cascade. Using cleavage of endogenous protease substrates as probes, three distinct tiers of ICE-like activity were observed after Fas ligation in Jurkat cells. The earliest cleavage detected (30 min) was of fodrin, and produced a 150 kDa fragment. The second phase of cleavage (50 min) involved PARP, U1-70kDa and DNA-PKcs, all substrates of the CPP32-like proteases. Lamin B cleavage was observed during the third cleavage phase (90 min). Distinct inhibition profiles obtained using a panel of peptide-based inhibitors of ICE-like proteases clearly distinguished the three different cleavage phases. These studies provide evidence for a sequence of ICE-like proteolytic activity during apoptosis. The early fodrin cleavage, producing a 150 kDa fragment, identifies an ICE-like activity proximal to CPP32 in Fas-induced Jurkat cell apoptosis.  相似文献   

6.
β-lapachone (β-lap) is a novel anticancer agent that selectively induces cell death in human cancer cells, by activation of the NQO1 NAD(P)H dehydrogenase and radical oxygen species (ROS) generation. We characterized the gene expression profile of budding yeast cells treated with β-lap using cDNA microarrays. Genes involved in tolerance to oxidative stress were differentially expressed in β-lap treated cells. β-lap treatment generated reactive oxygen species (ROS), which were efficiently blocked by dicoumarol, an inhibitor of NADH dehydrogenases. A yeast mutant in the mitocondrial NADH dehydrogenase Nde2p was found to be resistant to β-lap treatment, despite inducing ROS production in a WT manner. Most interestingly, DNA damage responses triggered by β-lap were abolished in the nde2Δ mutant. Amino acid biosynthesis genes were also induced in β-lap treated cells, suggesting that β-lap exposure somehow triggered the General Control of Nutrients (GCN) pathway. Accordingly, β-lap treatment increased phosphorylation of eIF2α subunit in a manner dependent on the Gcn2p kinase. eIF2α phosphorylation required Gcn1p, Gcn20p and Nde2p. Gcn2p was also required for cell survival upon exposure to β-lap and to elicit checkpoint responses. Remarkably, β-lap treatment increased phosphorylation of eIF2α in breast tumor cells, in a manner dependent on the Nde2p ortholog AIF, and the eIF2 kinase PERK. These findings uncover a new target pathway of β-lap in yeast and human cells and highlight a previously unknown functional connection between Nde2p, Gcn2p and DNA damage responses.  相似文献   

7.
The importance of the mitochondria in UV-induced apoptosis has become increasingly apparent. Following DNA damage cytochrome c and other pro-apoptotic factors are released from the mitochondria, allowing for formation of the apoptosome and subsequent cleavage and activation of caspase-9. Active caspase-9 then activates downstream caspases-3 and/or -7, which in turn cleave poly(ADP)-ribose polymerase (PARP) and other down-stream targets, resulting in apoptosis. In an effort to understand the mechanisms of Akt-mediated cell survival in breast cancer, we studied the effects of insulin-like growth factor (IGF)-I treatment on UV-treated MCF-7 human breast cancer cells. Apoptosis was induced in MCF-7 cells after UV treatment, as measured by caspase-7 and PARP cleavage, and IGF-I co-treatment protected against this response. Surprisingly caspase-9 cleavage was unchanged with UV and/or IGF-I treatment. Using MCF-7 cells overexpressing caspase-3 we have shown that resistance of caspase-9 to cleavage was not altered by the expression of caspase-3. Furthermore, overexpression of caspase-9 did not enhance PARP or caspase-7 cleavage after UV treatment. Because caspase-8 was activated with UV treatment alone, we believe that UV-induced apoptosis in MCF-7 cells occurs independently of cytochrome c and caspase-9, supporting the existence of a cytoplasmic inhibitor of cytochrome c in MCF-7 cells. We anticipate that such inhibitors may be overexpressed in cancer cells, allowing for treatment resistance.  相似文献   

8.
Endocrine sensitivity, assessed by the expression of estrogen receptor (ER), has long been the predict factor to guide therapeutic decisions. Tamoxifen has been the most successful hormonal treatment in endocrine-sensitive breast cancer. However, in estrogen-insensitive cancer tamoxifen showed less effectiveness than in estrogen-sensitive cancer. It is interesting to develop new drugs against both hormone-sensitive and insensitive tumor. In this present study we examined anticancer effects of evodiamine extracted from the Chinese herb, Evodiae fructus, in estrogen-dependent and –independent human breast cancer cells, MCF-7 and MDA-MB-231 cells, respectively. Evodiamine inhibited the proliferation of MCF-7 and MDA-MB-231 cells in a concentration-dependent manner with concentration of 1×10−6 and 1×10−5 M. Evodiamine also induced apoptosis via up-regulation of caspase 7 activation, PARP cleavage (Bik and Bax expression). The expression of ER α and β in protein and mRNA levels was down-regulated by evodiamine according to data from immunoblotting and RT-PCR analysis. Overall, our results indicate that evodiamine mediates degradation of ER and induces caspase-dependent pathway leading to inhibit proliferation of breast cancer cell lines. It suggests that evodiamine may in part mediate through ER-inhibitory pathway to inhibit breast cancer cell proliferation.  相似文献   

9.
During metamorphosis of Manduca sexta, involution of labial glands follows an autophagic pathway towards programmed cell death (PCD). We looked for evidence of both caspase dependent and independent pathways of PCD by assaying for caspases -1, -2, -3, and -6, proteasomal protease, and cathepsins B & L, using fluorogenic substrates and aldehyde and chloromethylketone inhibitors. The substrates FR-AMC and RR-AMC, preferentially degraded by cathepsins B and L, were the most rapidly degraded, increasing in rate as the gland involuted. Digestion of YVAD-AMC (preferential substrate for caspase-1) and DEVD-AMC (substrate for caspases-3 & -7) was barely detectable, less than 0.02% (on a per-unit-protein basis) of that seen in vertebrate embryos induced to undergo apoptosis. Cleavage of VDVAD-AFC (substrate for caspase -2) and VEID-AFC (substrate for caspase -6) was also assessed, but activity was negligible. Mitochondrial membrane permeabilization (MMP) and cytochrome c release were not detected. Exogenous caspase substrate, polyadenosyl ribose phosphorylase (PARP), is cleaved by labial gland extracts, but only at an acidic pH of 5.5–6.0, and into fragments different from those generated by caspases (confirmed by N-terminal sequencing). The cysteine protease inhibitor leupeptin inhibits PARP cleavage, but the caspase inhibitor DEVD-CHO does not. However, potential caspase-derived fragments of PARP are seen when cytochrome c and dATP are added to cytosolic extracts. Although apoptotic machinery is conserved and functional in this tissue, cell death occurs independently of caspases in metamorphosis. We also postulate that lysosomal proteases play the major proteolytic role similar to the caspase cascade seen in apoptosis.  相似文献   

10.
Lee H  Park MT  Choi BH  Oh ET  Song MJ  Lee J  Kim C  Lim BU  Park HJ 《PloS one》2011,6(6):e21533

Background

β-lapachone (β-lap) is a bioreductive agent that is activated by the two-electron reductase NAD(P)H quinone oxidoreductase 1 (NQO1). Although β-lap has been reported to induce apoptosis in various cancer types in an NQO1-dependent manner, the signaling pathways by which β-lap causes apoptosis are poorly understood.

Methodology/Principal Findings

β-lap-induced apoptosis and related molecular signaling pathways in NQO1-negative and NQO1-overexpressing MDA-MB-231 cells were investigated. Pharmacological inhibitors or siRNAs against factors involved in β-lap-induced apoptosis were used to clarify the roles played by such factors in β-lap-activated apoptotic signaling pathways. β-lap leads to clonogenic cell death and apoptosis in an NQO1- dependent manner. Treatment of NQO1-overexpressing MDA-MB-231 cells with β-lap causes rapid disruption of mitochondrial membrane potential, nuclear translocation of AIF and Endo G from mitochondria, and subsequent caspase-independent apoptotic cell death. siRNAs targeting AIF and Endo G effectively attenuate β-lap-induced clonogenic and apoptotic cell death. Moreover, β-lap induces cleavage of Bax, which accumulates in mitochondria, coinciding with the observed changes in mitochondria membrane potential. Pretreatment with Salubrinal (Sal), an endoplasmic reticulum (ER) stress inhibitor, efficiently attenuates JNK activation caused by β-lap, and subsequent mitochondria-mediated cell death. In addition, β-lap-induced generation and mitochondrial translocation of cleaved Bax are efficiently blocked by JNK inhibition.

Conclusions/Significance

Our results indicate that β-lap triggers induction of endoplasmic reticulum (ER) stress, thereby leading to JNK activation and mitochondria-mediated apoptosis. The signaling pathways that we revealed in this study may significantly contribute to an improvement of NQO1-directed tumor therapies.  相似文献   

11.
Proteasome inhibitors have been described as an important target for cancer therapy due to their potential to regulate the ubiquitin-proteasome system in the degradation pathway of cellular proteins. Here, we reported the effects of a Bowman-Birk-type protease inhibitor, the Black-eyed pea Trypsin/Chymotrypsin Inhibitor (BTCI), on proteasome 20S in MCF-7 breast cancer cells and on catalytic activity of the purified 20S proteasome from horse erythrocytes, as well as the structural analysis of the BTCI-20S proteasome complex. In vitro experiments and confocal microscopy showed that BTCI readily crosses the membrane of the breast cancer cells and co-localizes with the proteasome in cytoplasm and mainly in nucleus. Indeed, as indicated by dynamic light scattering, BTCI and 20S proteasome form a stable complex at temperatures up to 55°C and at neutral and alkaline pHs. In complexed form, BTCI strongly inhibits the proteolytic chymotrypsin-, trypsin- and caspase-like activities of 20S proteasome, indicated by inhibition constants of 10−7 M magnitude order. Besides other mechanisms, this feature can be associated with previously reported cytostatic and cytotoxic effects of BTCI in MCF-7 breast cancer cells by means of apoptosis.  相似文献   

12.
Acquisition of resistance to docetaxel (Doc) is one of the most important problems in treatment of breast cancer patients, but the underlying mechanisms are still not fully understood. In present study, Doc-resistant MDA-MB-231 and MCF-7 breast cancer cell lines (MDA-MB-231/Doc and MCF-7/Doc) were successfully established in vitro by gradually increasing Doc concentration on the basis of parental MDA-MB-231 and MCF-7 cell lines (MDA-MB-231/S and MCF-7/S). The potential miRNAs relevant to the Doc resistance were screened by miRNA microarray. We selected 5 upregulated miRNAs (has-miR-3646, has-miR-3658, has-miR-4438, has-miR-1246, and has-miR-574-3p) from the results of microarray for RT-qPCR validation. The results showed that expression level of miR-3646 in MDA-MB-231/Doc cells was significantly higher than in MDA-MB-231/S cells. Compared to MCF-7/S cells, miR-3646 expression was up-regulated in MCF-7/Doc cells. Further studies revealed that transfection of miR-3646 mimics into MDA-MB-231/S or MCF-7/S cells remarkably increased their drug resistance, in contrast, transfection of miR-3646 inhibitors into MDA-MB-231/Doc or MCF-7/Doc cells resulted in significant reduction of the drug resistance. By the pathway enrichment analyses for miR-3646, we found that GSK-3β/β-catenin signaling pathway was a significant pathway, in which GSK-3β was an essential member. RT-qPCR and Western blot results demonstrated that miR-3646 could regulate GSK-3β mRNA and protein expressions. Furthermore, a marked increase of both nuclear and cytoplasmic β-catenin expressions (with phosphorylated-β-catenin decrease) was observed in MDA-MB-231/Doc cells compared with MDA-MB-231/S cells, and their expression were positively related to miR-3646 and negatively correlated with GSK-3β. Taken together, our results suggest that miR-3646-mediated Doc resistance of breast cancer cells maybe, at least in part, through suppressing expression of GSK-3β and resultantly activating GSK-3β/β-catenin signaling pathway.  相似文献   

13.
Nicotinamide phosphoribosyltransferase (NAMPT) inhibitors (e.g., FK866) target the most active pathway of NAD+ synthesis in tumor cells, but lack tumor-selectivity for use as a single agent. Reducing NAD+ pools by inhibiting NAMPT primed pancreatic ductal adenocarcinoma (PDA) cells for poly(ADP ribose) polymerase (PARP1)-dependent cell death induced by the targeted cancer therapeutic, β-lapachone (β-lap, ARQ761), independent of poly(ADP ribose) (PAR) accumulation. β-Lap is bioactivated by NADPH:quinone oxidoreductase 1 (NQO1) in a futile redox cycle that consumes oxygen and generates high levels of reactive oxygen species (ROS) that cause extensive DNA damage and rapid PARP1-mediated NAD+ consumption. Synergy with FK866+β-lap was tumor-selective, only occurring in NQO1-overexpressing cancer cells, which is noted in a majority (∼85%) of PDA cases. This treatment strategy simultaneously decreases NAD+ synthesis while increasing NAD+ consumption, reducing required doses and treatment times for both drugs and increasing potency. These complementary mechanisms caused profound NAD(P)+ depletion and inhibited glycolysis, driving down adenosine triphosphate levels and preventing recovery normally observed with either agent alone. Cancer cells died through an ROS-induced, μ-calpain-mediated programmed cell death process that kills independent of caspase activation and is not driven by PAR accumulation, which we call NAD+-Keresis. Non-overlapping specificities of FK866 for PDA tumors that rely heavily on NAMPT-catalyzed NAD+ synthesis and β-lap for cancer cells with elevated NQO1 levels affords high tumor-selectivity. The concept of reducing NAD+ pools in cancer cells to sensitize them to ROS-mediated cell death by β-lap is a novel strategy with potential application for pancreatic and other types of NQO1+ solid tumors.An emerging metabolic target for the treatment of recalcitrant cancers, such as pancreatic adenocarcinoma (PDA), is their reliance on NAD+ synthesis, particularly through the nicotinamide-recycling pathway.1, 2, 3 Rapid and efficient NAD+ synthesis is critical to sustain signaling processes, such as deacetylation by sirtuins and adenosine diphosphate (ADP) ribosylation by poly(ADP ribose) polymerase 1 (PARP1). NAD(P)+ pools are also necessary to support anabolic metabolism and proliferation of cancer cells. In an attempt to leverage increased tumor-cell reliance on NAD+ synthesis, small molecule inhibitors of nicotinamide phosphoribosyltransferase (NAMPT) were developed (e.g., FK866).4 NAMPT catalyzes the rate-limiting step of the most active pathway of NAD+ synthesis. Inhibitors of NAMPT, such as FK866, reduce NAD+ levels, induce canonical apoptosis preferentially in cancer cells in vitro, inhibit tumor growth, and increase overall survival in preclinical cancer models.1, 5, 6, 7 FK866 (APO866) was relatively well tolerated in humans and advanced to phase II clinical trials. However, owing to its short half-life in circulation, prolonged treatment regimens were required and toxicity to normal, rapidly proliferating hematopoietic cells was noted. Accordingly, FK866 and other NAMPT inhibitors did not demonstrate sufficient tumor-selectivity to achieve clinical success as single agents.8To increase the specificity and efficacy of NAMPT inhibition, we combined FK866 with β-lapachone (β-lap), a targeted cancer therapeutic that causes tumor-selective PARP1 hyperactivation and NAD+ depletion in an NADPH:quinone oxidoreductase 1 (NQO1)-specific manner.9 β-Lap is a substrate for two-electron oxidoreduction by NQO1, a Phase II quinone-detoxifying enzyme.9 The resulting hydroquinone form of β-lap is highly unstable and spontaneously reacts with oxygen to revert back to the parent compound, generating two moles of superoxide per mole of NAD(P)H used in the process. This results in a futile cycle that occurs rapidly in NQO1-overexpressing cells, causing marked NADH/NADPH oxidation. DNA damage in the form of base oxidation and DNA single-strand breaks results from H2O2 generated from the futile redox cycle. In an attempt to repair this damage, PARP1 becomes hyperactivated, generating extensive branched poly(ADP ribose) (PAR) polymer. Hyperactivated PARP1 substantially depletes NAD+ and ultimately adenosine triphosphate (ATP) levels, thereby inhibiting subsequent repair of β-lap-induced DNA lesions. The observed cell death is caspase-independent and driven by nuclear translocation of apoptosis-inducing factor (AIF), activation of μ-calpain, and post-translational modification of GAPDH.10, 11, 12, 13 NQO1 is highly expressed in many types of cancer, and the therapeutic window provided by NQO1 bioactivation of β-lap has advanced its use to phase I clinical trials (ARQ761).14 Elevated NQO1 expression (≥10-fold) has been identified in ~85% of patient tissue from pancreatic ductal adenocarcinoma (PDA), making pancreatic cancer an especially appealing target for therapy using NQO1 bioactivatable drugs, such as β-lap.15, 16, 17, 18 However, dose-limiting methemoglobinemia caused by nonspecific reactive oxygen species (ROS) generation at high β-lap doses may limit the efficacy of β-lap as monotherapy.19 Strategies for increasing cancer cell cytotoxicity while maintaining NQO1 specificity could enhance use of β-lap for therapy against PDAs, as well as other solid cancers that overexpress NQO1.We found that examining cell death pathways induced by β-lap, with or without FK866 treatment, is a novel means to elucidate general mechanisms of lethality mediated by NAD+ loss, as cell death by PARP1 hyperactivation occurs in other contexts. Notably, cell death induced by ischemia/reperfusion shares many of the same characteristics: ROS induction, PARP1 hyperactivation, calcium release, AIF translocation, and caspase-independence.20, 21 Similarly, treatment with methylnitronitrosoguanidine (MNNG; a DNA alkylating agent) or induction of neuronal excitotoxicty induces PARP1 hyperactivation and cell death, but without futile cycle-induced ROS production.22, 23, 24 Recent studies suggest an important role for accumulated free PAR polymer that can directly activate μ-calpain, activate and release AIF, and inhibit glycolysis.22, 25, 26, 27, 28 By combining β-lap and FK866, we uncouple NAD+ and ATP depletion from the robust formation of PAR noted with β-lap alone, allowing us to define the function of PAR formation in β-lap-induced cell death.β-Lap and FK866 have distinct, but highly complementary mechanisms of action. β-Lap induces tumor-selective NAD+ depletion specifically in cancer cells that express high levels of NQO1. FK866 primes cancer cells for cell death by lowering NAD+/NADH pools and prevents recovery by inhibiting NAD+ synthesis from nicotinamide liberated by activated PARP1. We show that the increased dependence of PDA cells on glycolysis is specifically targeted by ROS-induced, NAD+ depletion caused by exposure to both drugs. Glycolytic inhibition, ATP depletion, and cell death is independent of PAR formation, strongly suggesting that PAR accumulation is not directly involved. The use of β-lap with NAMPT inhibitors results in synergistic NQO1- and PARP1-dependent cancer cell death, allowing the use of lower doses and shorter treatment times for both therapeutics.  相似文献   

14.
Granzyme B (GrB), acting similar to an apical caspase, efficiently activates a proteolytic cascade after intracellular delivery by perforin. Studies here were designed to learn whether the physiologic effector, GrB-serglycin, initiates apoptosis primarily through caspase-3 or through BH3-only proteins with subsequent mitochondrial permeabilization and apoptosis. Using four separate cell lines that were either genetically lacking the zymogen or rendered deficient in active caspase-3, we measured apoptotic indices within whole cells (active caspase-3, mitochondrial depolarization [DeltaPsim] and TUNEL). Adhering to these conditions, the following were observed in targets after GrB delivery: (a) procaspase-3-deficient cells fail to display a reduced DeltaPsim and DNA fragmentation; (b) Bax/Bak is required for optimal DeltaPsim reduction, caspase-3 activation, and DNA fragmentation, whereas BID cleavage is undetected by immunoblot; (c) Bcl-2 inhibits GrB-mediated apoptosis (reduced DeltaPsim and TUNEL reactivity) by blocking oligomerization of caspase-3; and (d) in procaspase-3-deficient cells a mitochondrial-independent pathway was identified which involved procaspase-7 activation, PARP cleavage, and nuclear condensation. The data therefore support the existence of a fully implemented apoptotic pathway initiated by GrB, propagated by caspase-3, and perpetuated by a mitochondrial amplification loop but also emphasize the presence of an ancillary caspase-dependent, mitochondria-independent pathway.  相似文献   

15.
β-lapachone (β-lap), an NAD(P)H:quinone oxidoreductase 1 (NQO1) targeting antitumor drug candidate in phase II clinical trials, is metabolically eliminated via NQO1 mediated quinone reduction and subsequent UDP-glucuronosyltransferases (UGTs) catalyzed glucuronidation. This study intends to explore the inner link between the cellular glucuronidation and pharmacokinetics of β-lap and its apoptotic effect in human colon cancer cells. HT29 cells S9 fractions exhibited high glucuronidation activity towards β-lap, which can be inhibited by UGT1A9 competitive inhibitor propofol. UGT1A siRNA treated HT29 cells S9 fractions displayed an apparent low glucuronidation activity. Intracellular accumulation of β-lap in HCT116 cells was much higher than that in HT29 cells, correlated with the absence of UGT1A in HCT116 cells. The cytotoxic and apoptotic effect of β-lap in HT29 cells were much lower than that in HCT116 cells; moreover, β-lap triggered activation of SIRT1-FOXO1 apoptotic pathway was observed in HCT116 cells but not in HT29 cells. Pretreatment of HT29 cells with UGT1A siRNA or propofol significantly decreased β-lap’s cytotoxic and apoptotic effects, due to the repression of glucuronidation and the resultant intracellular accumulation. In conclusion, UGT1A is an important determinant, via switching NQO1-triggered redox cycle to metabolic elimination, in the intracellular accumulation of β-lap and thereafter its cytotoxicity in human colon cancer cells. Together with our previous works, we propose that UGTs determined cellular pharmacokinetics is an important determinant in the apoptotic effects of NQO1 targeting substrates serving as chemotherapeutic drugs.  相似文献   

16.
17.
Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c.   总被引:41,自引:0,他引:41  
Caspases are cysteine proteases that mediate apoptosis by proteolysis of specific substrates. Although many caspase substrates have been identified, for most substrates the physiologic caspase(s) required for cleavage is unknown. The Bcl-2 protein, which inhibits apoptosis, is cleaved at Asp-34 by caspases during apoptosis and by recombinant caspase-3 in vitro. In the present study, we show that endogenous caspase-3 is a physiologic caspase for Bcl-2. Apoptotic extracts from 293 cells cleave Bcl-2 but not Bax, even though Bax is cleaved to an 18-kDa fragment in SK-NSH cells treated with ionizing radiation. In contrast to Bcl-2, cleavage of Bax was only partially blocked by caspase inhibitors. Inhibitor profiles indicate that Bax may be cleaved by more than one type of noncaspase protease. Immunodepletion of caspase-3 from 293 extracts abolished cleavage of Bcl-2 and caspase-7, whereas immunodepletion of caspase-7 had no effect on Bcl-2 cleavage. Furthermore, MCF-7 cells, which lack caspase-3 expression, do not cleave Bcl-2 following staurosporine-induced cell death. However, transient transfection of caspase-3 into MCF-7 cells restores Bcl-2 cleavage after staurosporine treatment. These results demonstrate that in these models of apoptosis, specific cleavage of Bcl-2 requires activation of caspase-3. When the pro-apoptotic caspase cleavage fragment of Bcl-2 is transfected into baby hamster kidney cells, it localizes to mitochondria and causes the release of cytochrome c into the cytosol. Therefore, caspase-3-dependent cleavage of Bcl-2 appears to promote further caspase activation as part of a positive feedback loop for executing the cell.  相似文献   

18.
Abnormal activation of the Wnt/β-catenin signaling pathway and subsequent upregulation of β-catenin driven downstream targets—c-Myc and cyclin D1 is associated with development of breast cancer. The objective of our study was to determine if curcumin could modulate the key elements of Wnt pathway in breast cancer cells; an effect that might underscore its usefulness for chemoprevention/treatment of this malignancy. Curcumin showed a cytotoxic effect on MCF-7 cells with 50% inhibitory concentration (IC50) of 35 μM; while IC50 for MDA-MB-231 cells was 30 μM. Treatment with low cytostatic dose of 20 μM curcumin showed G2/M arrest in both breast cancer cells. The effect of curcumin (20 μM) treatment on expression of Wnt/β-catenin pathway components in breast cancer cells (MCF-7 and MDA-MB-231) was analyzed by immunofluorescence and Western blotting. Curcumin was found to effectively inhibit the expression of several Wnt/β-catenin pathway components—disheveled, β-catenin, cyclin D1 and slug in both MCF-7 and MDA-MB-231. Immunofluorescence analysis showed that curcumin markedly reduced the nuclear expression of disheveled and β-catenin proteins. Further, the protein levels of the positively regulated β-catenin targets—cyclin D1 and slug, were downregulated by curcumin treatment. The expression levels of two integral proteins of Wnt signaling, GSK3β and E-cadherin were also altered by curcumin treatment. In conclusion, our data demonstrated that the efficacy of curcumin in inhibition of cell proliferation and induction of apoptosis might occur through modulation of β-catenin pathway in human breast cancer cells.  相似文献   

19.
L Dubrez  I Savoy  A Hamman    E Solary 《The EMBO journal》1996,15(20):5504-5512
We investigated the role of proteases in the pathway that leads from specific DNA damage induced by etoposide (VP-16), a topoisomerase II inhibitor, to apoptotic DNA fragmentation in the U937 human leukemic cell line. In a reconstituted cell-free system, Triton-soluble extracts from VP-16-treated cells induced internucleosomal DNA fragmentation in nuclei from untreated cells. This effect was inhibited by the tetrapeptide Ac-DEVD-CHO, a competitive inhibitor of the interleukin-1 beta-converting enzyme (ICE)-related protease CPP32, but was not influenced by Ac-YVAD-CHO and Ac-YVAD-CMK, two specific inhibitors of ICE. The three tetrapeptides inhibited Fas-mediated apoptotic DNA fragmentation in the cell-free system. Internucleosomal DNA fragmentation, triggered by either VP-16 or an anti-Fas antibody, was associated with proteolytic cleavage of the poly(ADP-ribose)polymerase (PARP), a decrease in the level of 32 kDa CPP32 proenzyme and the appearance of the CPP32 p17 active subunit. Conversely, the expression of Ich-1L, another ICE-like protease, remained stable in apoptotic U937 cells. Several cysteine and serine protease inhibitors prevented apoptotic DNA fragmentation by acting either upstream or downstream of the DEVD-sensitive protease(s) activation and PARP cleavage. We conclude that a DEVD-sensitive step, which could involve CPP32, plays a central role in the proteolytic pathway that mediates apoptotic DNA fragmentation in VP-16-treated leukemic cells at the crossing with Fas-mediated pathway.  相似文献   

20.
Protein cleavage is a central event in many regulated biological processes. We describe a system for detecting intracellular proteolysis based on non-conventional secretion of Gaussia luciferase (GLUC). GLUC exits the cell without benefit of a secretory leader peptide, but can be anchored in the cell by fusion to β-actin. By including protease cleavage sites between GLUC and β-actin, proteolytic cleavage can be detected. Using this assay, we have identified regulators of autophagy, apoptosis and β-actin cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号