首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The tumor Ag SSX-2 (HOM-MEL-40) was found by serological identification of Ags by recombinant expression cloning and was shown to be a cancer/testis Ag expressed in a wide variety of tumors. It may therefore represent a source of CD8(+) T cell epitopes useful for specific immunotherapy of cancer. To identify potential SSX-2-derived epitopes that can be recognized by CD8(+) T cells, we used an approach that combined: 1) the in vitro proteasomal digestion of precursor peptides overlapping the complete SSX-2 sequence; 2) the prediction of SSX-2-derived peptides with an appropriate HLA-A2 binding score; and 3) the analysis of a tumor-infiltrated lymph node cell population from an HLA-A2(+) melanoma patient with detectable anti-SSX-2 serum Abs. This strategy allowed us to identify peptide SSX-2(41-49) as an HLA-A2-restricted epitope. SSX2(41-49)-specific CD8(+) T cells were readily detectable in the tumor-infiltrated lymph node population by multimer staining, and CTL clones isolated by multimer-guided cell sorting were able to lyse HLA-A2(+) tumor cells expressing SSX-2.  相似文献   

2.
CD4+ T cell responses to SSX-4 in melanoma patients   总被引:2,自引:0,他引:2  
Genes of the synovial sarcoma X breakpoint (SSX) family are expressed in different human tumors, including melanomas, but not in adult somatic tissues. Because of their specific expression at the tumor site, SSX-encoded Ags are potential targets for anticancer immunotherapy. In this study, we have analyzed CD4+ T cell responses directed against the Ag encoded by SSX-4. Upon in vitro stimulation of PBMC from four melanoma patients bearing Ag-expressing tumors with a pool of long peptides spanning the protein sequence, we detected and isolated SSX-4-specific CD4+ T cells recognizing several distinct antigenic sequences, mostly restricted by frequently expressed HLA class II alleles. The majority of the identified sequences were located within the Krüppel-associated box domain in the N-terminal region of the protein, indicating a high potential immunogenicity of this region. Together our data document the existence of CD4+ T cells specific for multiple SSX-4 derived sequences in circulating lymphocytes from melanoma patients and encourage further studies to assess the impact of SSX-4-specific T cell responses on disease evolution in cancer patients.  相似文献   

3.
The serological analysis of recombinant cDNA expression libraries (SEREX) technique was used to immunoscreen a testes cDNA expression library with sera from newly diagnosed acute myeloid leukaemia (AML) patients. We used a testis cDNA library to aid our identification of cancer-testis (CT) antigens. We identified 44 antigens which we further immunoscreened with sera from AML, chronic myeloid leukaemia (CML), and normal donors. Eight antigens were solely recognised by patient sera including the recently described CT antigen, PASD1, and the cancer-related SSX2 interacting protein, SSX2IP. RT-PCR analysis indicated that we had identified three antigens which were expressed in patient bone marrow (BM) and peripheral blood (PB) but not in normal donor samples (PASD1, SSX2IP, and GRINL1A). Real-time PCR (RQ-PCR) confirmed the restricted expression of PASD1 in normal donor organs. Antigen presentation assays using monocyte-derived dendritic cells (mo-DCs) showed that PASD1 could stimulate autologous T-cell responses, suggesting that PASD1 could be a promising target for future immunotherapy clinical trials.  相似文献   

4.

Background

Multiple myeloma (MM) is the malignancy with the most frequent expression of the highly immunogenic cancer–testis antigens (CTA), and we have performed the first analysis of longitudinal expression, immunological properties, and fine specificity of CTA-specific antibody responses in MM.

Methods

Frequency and characteristics of antibody responses against cancer–testis antigens MAGE-A3, NY-ESO-1, PRAME, and SSX-2 were analyzed using peripheral blood (N = 1094) and bone marrow (N = 200) plasma samples from 194 MM patients.

Results

We found that antibody responses against CTA were surprisingly rare, only 2.6 and 3.1 % of patients evidenced NY-ESO-1- and SSX-2-specific antibodies, respectively. NY-ESO-1-specific responses were observed during disease progression, while anti-SSX-2 antibodies appeared after allogeneic stem cell transplantation and persisted during clinical remission. We found that NY-ESO-1- and SSX-2-specific antibodies were both capable of activating complement and increasing CTA uptake by antigen-presenting cells. SSX-2-specific antibodies were restricted to IgG3, NY-ESO-1 responses to IgG1 and IgG3. Remarkably, NY-ESO-1-positive sera recognized various non-contiguous regions, while SSX-2-specific responses were directed against a single 6mer epitope, SSX-285–90.

Conclusions

We conclude that primary autoantibodies against intracellular MM-specific tumor antigens SSX-2 and NY-ESO-1 are rare but functional. While their contribution to disease control still remains unclear, our data demonstrate their theoretic ability to affect cellular anti-tumor immunity by formation and uptake of mono- and polyvalent immune complexes.
  相似文献   

5.
Human SSX was first identified as the gene involved in the t(X;18) translocation in synovial sarcoma. SSX is a multigene family, with 9 complete genes on chromosome Xp11. Normally expressed almost exclusively in testis, SSX mRNA is expressed in various human tumors, defining SSX as a cancer/testis antigen. We have now cloned the mouse ortholog of SSX. Mouse SSX genes can be divided into Ssxa and Ssxb subfamilies based on sequence homology. Ssxa has only one member, whereas 12 Ssxb genes, Ssxb1 to Ssxb12, were identified by cDNA cloning from mouse testis and mouse tumors. Both Ssxa and Ssxb are located on chromosome X and show tissue-restricted mRNA expression to testis among normal tissues. All putative human and mouse SSX proteins share conserved KRAB and SSX-RD domains. Mouse tumors were found to express some, but not all, Ssxb genes, similar to the SSX activation in human tumors.  相似文献   

6.
Accumulating evidence supports the requirement for both tumor-specific CD8(+) and CD4(+) T cell responses for efficient tumor rejection to occur. Because of its expression in different tumor types, the cancer/testis Ag encoded by the synovial sarcoma X breakpoint 2 (SSX-2) gene is among the most relevant candidates for the development of generic cancer vaccines. The immunogenicity of SSX-2 has been previously corroborated by detection of specific humoral and CD8(+) T cell responses in cancer patients. In this study we report identification of the first CD4(+) T cell epitope encoded by SSX-2. The identified epitope mapped to the 19-34 region of the protein and was recognized by CD4(+) T cells from an Ag-expressing melanoma patient in association with HLA-DPB1*0101. The absence of detectable response in healthy donors and other patients suggests that SSX-2-specific CD4(+) T cells in the responder patient had been previously expanded in vivo in response to the autologous tumor. The epitope did not appear to be presented on the surface of tumor cells at levels sufficient to allow direct recognition. In contrast, it was efficiently presented by autologous dendritic cells, supporting the concept that processing by professional APC is the main pathway through which the CD4(+) T cell immunoresponse to tumor Ags occurs in vivo.  相似文献   

7.
8.
Immunotherapy is being proposed to treat patients with hepatocellular carcinoma (HCC). However, more detailed knowledge on tumor Ag expression and specific immune cells is required for the preparation of highly targeted vaccines. HCC express a variety of tumor-specific Ags, raising the question whether CTL specific for such Ags exist in HCC patients. Indeed, a recent study revealed CTLs specific for two cancer-testis (CT) Ags (MAGE-A1 and MAGE-A3) in tumor infiltrating lymphocytes of HCC patients. Here we assessed the presence of T cells specific for additional CT Ags: MAGE-A10, SSX-2, NY-ESO-1, and LAGE-1, which are naturally immunogenic as demonstrated in HLA-A2(+) melanoma patients. In two of six HLA-A2(+) HCC patients, we found that MAGE-A10- and/or SSX-2-specific CD8(+) T cells naturally responded to the disease, because they were enriched in tumor lesions but not in nontumoral liver. Isolated T cells specifically and strongly killed tumor cells in vitro, providing evidence that these CTL were selected in vivo for high avidity Ag recognition. Therefore, besides melanoma, HCC is the second solid human tumor with clear evidence for in vivo tumor recognition by T cells, providing the rational for specific immunotherapy, based on immunization with CT Ags such as MAGE-A10 and SSX-2.  相似文献   

9.
Tumor-specific gene products, such as cancer/testis (CT) antigens, constitute promising targets for the development of T cell vaccines. Whereas CT antigens are frequently expressed in melanoma, their expression in colorectal cancers (CRC) remains poorly characterized. Here, we have studied the expression of the CT antigens MAGE-A3, MAGE-A4, MAGE-A10, NY-ESO-1 and SSX2 in CRC because of the presence of well-described HLA-A2-restricted epitopes in their sequences. Our analyses of 41 primary CRC and 14 metastatic liver lesions confirmed the low frequency of expression of these CT antigens. No increased expression frequencies were observed in metastatic tumors compared to primary tumors. Histological analyses of CRC samples revealed heterogeneous expression of individual CT antigens. Finally, evidence of a naturally acquired CT antigen-specific CD8+ T cell response could be demonstrated. These results show that the expression of CT antigens in a subset of CRC patients induces readily detectable T cell responses.  相似文献   

10.
EBV-transformed lymphoblastoid cell lines (LCL) are potent antigen-presenting cells. To investigate their potential use as cancer testis antigen (CTA) vaccines, we studied the expression of 12 cancer testis (CT) genes in 20 LCL by RT-PCR. The most frequently expressed CT genes were SSX4 (50 %), followed by GAGE (45 %), SSX1 (40 %), MAGE-A3 and SSX2 (25 %), SCP1, HOM-TES-85, MAGE-C1, and MAGE-C2 (15 %). NY-ESO-1 and MAGE-A4 were found in 1/20 LCL and BORIS was not detected at all. Fifteen of 20 LCL expressed at least one antigen, 9 LCL expressed ≥2 CT genes, and 7 of the 20 LCL expressed ≥4 CT genes. The expression of CT genes did not correlate with the length of in vitro culture, telomerase activity, aneuploidy, or proliferation state. While spontaneous expression of CT genes determined by real-time PCR and Western blot was rather weak in most LCL, treatment with DNA methyltransferase 1 inhibitor alone or in combination with histone deacetylase inhibitors increased CTA expression considerably thus enabling LCL to induce CTA-specific T cell responses. The stability of the CT gene expression over prolonged culture periods makes LCL attractive candidates for CT vaccines both in hematological neoplasias and solid tumors.  相似文献   

11.
12.
Cancer-testis (CT) Ags are expressed in testis and malignant tumors but rarely in nongametogenic tissues. Due to this pattern, they represent attractive targets for cancer vaccination approaches. The aims of the present study are: 1) to assess the expression of CT genes on a pangenomic base in multiple myeloma (MM); 2) to assess the prognosis value of CT gene expression; and 3) to provide selection strategies for CT Ags in clinical vaccination trials. We report the expression pattern of CT genes in purified MM cells (MMC) of 64 patients with newly diagnosed MM and12 patients with monoclonal gammopathy of unknown significance, in normal plasma cell and B cell samples, and in 20 MMC lines. Of the 46 CT genes interrogated by the Affymetrix HG-U133 set arrays, 35 are expressed in the MMC of at least one patient. Of these, 25 are located on chromosome X. The expression of six CT genes is associated with a shorter event-free survival. The MMC of 98% of the patients express at least one CT gene, 86% at least two, and 70% at least three CT genes. By using a set of 10 CT genes including KM-HN-1, MAGE-C1, MAGE-A3/6/12, MAGE-A5, MORC, DDX43, SPACA3, SSX-4, GAGE-1-8, and MAGE-C2, a combination of at least three CT genes-desirable for circumventing tumor escape mechanisms-is obtained in the MMC of 67% of the patients. Provided that the immunogenicity of the products of these 10 CT genes is confirmed, gene expression profiling could be useful in identifying which CT Ags could be used to vaccinate a given patient.  相似文献   

13.
Proteins encoded by genes of the SSX family are specifically expressed in tumors and are therefore relevant targets for cancer immunotherapy. One of the first identified family members, SSX-1, is expressed in a large fraction of synovial sarcomas as a fusion protein together with the product of the SYT gene. In addition, the full-length SSX-1 antigen is frequently expressed in tumors of several other histological types such as sarcoma, melanoma, hepatocellular carcinoma, ovarian cancer and myeloma. To date, however, SSX-1 specific T cell responses have not been investigated and no SSX-1 derived T cell epitopes have been described. Here, we have assessed the presence of CD4(+) T cells directed against the SSX-1 antigen in circulating lymphocytes of cancer-free individuals. After a single in vitro stimulation with a pool of peptides spanning the entire SSX-1 protein we could detect and isolate SSX-1-specific CD4(+) T cells from 5/5 donors analyzed. SSX-1-specific polyclonal populations isolated from these cultures recognized peptides located in three distinct regions of the protein containing clusters of sequences with significant predicted binding to frequently expressed MHC class II alleles. Characterization of specific clonal CD4(+) T cell populations derived from one donor allowed the identification of several naturally processed epitopes recognized in association with HLA-DR. These data document the existence of a significant repertoire of CD4(+) T cells specific for SSX-1 derived sequences in circulating lymphocytes of any individual that can be exploited for the development of both passive and active immunotherapeutic approaches to control disease evolution in cancer patients.  相似文献   

14.
15.
Metastases in the bone marrow (BM) are grim prognostic factors in patients with neuroblastoma (NB). In spite of extensive analysis of primary tumor cells from high- and low-risk NB patients, a characterization of freshly isolated BM-infiltrating metastatic NB cells is still lacking. Our aim was to identify proteins specifically expressed by metastatic NB cells, that may be relevant for prognostic and therapeutic purposes. Sixty-six Italian children over 18 months of age, diagnosed with stage 4 NB, were included in the study. Metastatic NB cells were freshly isolated from patients' BM by positive immunomagnetic bead manipulation using anti-GD2 monoclonal antibody. Gene expression profiles were compared with those obtained from archived NB primary tumors from patients with 5 y-follow-up. After validation by RT-qPCR, expression/secretion of the proteins encoded by the up-regulated genes in the BM-infiltrating NB cells was evaluated by flow cytometry and ELISA. Compared to primary tumor cells, BM-infiltrating NB cells down-modulated the expression of CX3CL1, AGT, ATP1A2 mRNAs, whereas they up-regulated several genes commonly expressed by various lineages of BM resident cells. BM-infiltrating NB cells expressed indeed the proteins encoded by the top-ranked genes, S100A8 and A9 (calprotectin), CD177 and CD3, and secreted the CXCL7 chemokine. BM-infiltrating NB cells also expressed CD271 and HLA-G. We have identified proteins specifically expressed by BM-infiltrating NB cells. Among them, calprotectin, a potent inflammatory protein, and HLA-G, endowed with tolerogenic properties facilitating tumor escape from host immune response, may represent novel biomarkers and/or targets for therapeutic intervention in high-risk NB patients.  相似文献   

16.
C/T-antigens are endogenous proteins expressed in normal testis, ovary, and placenta, or in a variety of tumors. Such expression pattern makes the C/T antigens promising targets for cancer vaccines. The SSX family comprises several C/T antigens. Here we applied comparative genomics techniques to study the evolution of the SSX genes. The human genomic SSX locus includes 11 genes localized on the X chromosome in two separate regions 4 Mb apart. Recent pseudogenization of two SSX genes was demonstrated using the available expression data. A comparative analysis of the human, chimpanzee and mouse genomic loci allowed us to describe the phylogeny of the family and to reconstruct the evolutionary history of the locus in terms of elementary events.  相似文献   

17.

Introduction

Novel breast cancer risk-reducing strategies for individuals with germline mutations of the BRCA1 and/or BRCA2 genes are urgently needed. Identification of antigenic targets that are expressed in early cancers, but absent in normal breast epithelium of these high-risk individuals, could provide the basis for the development of effective immunoprophylactic strategies. Cancer testis (CT) antigens are potential candidates because their expression is restricted to tumors, and accumulating data suggest that they play important roles in cellular proliferation, stem cell function, and carcinogenesis. The objective of this study was to examine the expression of CT antigens and their frequency in BRCA-associated breast cancers.

Methods

Archived breast cancer tissues (n?=?26) as well as morphologically normal breast tissues (n?=?7) from women carrying deleterious BRCA 1 and/or 2 mutations were obtained for antigen expression analysis by immunohistochemistry. Expression of the following CT antigens was examined: MAGE-A1, MAGE-A3, MAGE-A4, MAGE-C1.CT7, NY-ESO-1, MAGE-C2/CT10, and GAGE.

Results

CT antigens were expressed in 16/26 (61.5%, 95% CI 43?C80%) of BRCA-associated cancers, including in situ tumors. Thirteen of twenty-six (50%) breast cancers expressed two or more CT antigens; three cancers expressed all seven CT antigens. MAGE-A was expressed in 13/26 (50%) of cancers, NY-ESO-1 was expressed in 10/26 (38%) of tumors. In contrast, none of the CT antigens were expressed in adjacent or contralateral normal breast epithelium (P?=?0.003).

Conclusions

We report a high CT antigen expression rate in BRCA-associated breast cancer as well as the lack of expression of these antigens in benign breast tissue of carriers, identifying CT antigens as potential vaccine targets for breast cancer prevention in these high-risk individuals.  相似文献   

18.
19.
20.
We compared transferrin receptor (TfR) expression on human peripheral blood lymphocytes (PBL) activated by phorbol myristate acetate (PMA) or L-phytohemagglutinin (LPHA) using two techniques: (1) 125I-iron-saturated transferrin (FeTf) binding, (2) reactivity with monoclonal anti-TfR antibodies--OKT9 and B3/25. These monoclonal antibodies do not block FeTf binding, and therefore bind to TfR domains separate from the ligand binding site. Unstimulated PBL bound fewer than 1,000 molecules of 125I-FeTf per cell, and less than 5% of cells expressed TfR antigens detected by OKT9 or B3/25. 125I-FeTf binding and antibody binding increased in parallel on LPHA-activated PBL. After exposure to LPHA for 72 hr, 125I-FeTf binding increased 100-fold to 10(5) molecules per cell and greater than 50% of cells expressed TfR antigens. By contrast, PMA activation of PBL markedly increased binding of OKT9 and B3/25 but not the binding of 125I-FeTf. Cell surface expression of TfR antigens seen by OKT9 and B3/25 did not differ between LPHA- and PMA-activated PBL. However, after 72 hr with PMA, 125I-FeTf binding increased only 6-fold and consistently remained at less than 10(4) molecules per cell. Therefore, PMA induced a disparity between expression of TfR ligand binding domains and immunological domains at the cell surface. Cell proliferation assessed by fluorescent DNA analysis was similar in cultures stimulated by LPHA or PMA. These data indicate that lymphoid cells may possess a mechanism for modulating TfR expression in which down-regulation of FeTf binding occurs without receptor internalization. Alternatively, it is possible that this observation may reflect a membrane perturbation effect of PMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号