首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The vibrational spectra and structure of poly(rA-rU)-poly(rA-rU)   总被引:2,自引:0,他引:2  
Infrared and Raman spectra of aqueous poly(rA-rU)·poly(rA-rU), the double-helical complex containing strands of alternating riboadenylate and ribouridylate residues, display significant differences from one another and from corresponding spectra of poly(rA)·poly(rU), the double-helical complex of riboadenylate and ribouridylate homopolymers. Parallel studies on the copolymer and homopolymer complexes by cesium sulfate density gradient centrifugation, ultraviolet absorption spectroscopy, hydrogenion titration, 1-N oxidation of adenine residues by monoperphthalic acid and X-ray diffraction reveal, however, that the geometry of base pairing between adenine and uracil is closely similar in each complex and apparently of the Watson-Crick type. Therefore the differences observed between vibrational spectra of poly (rA-rU)·poly (rA-rU) and poly(rA)·poly(rU) are not due to different base-pairing schemes but may be attributed to differences in vibrational coupling between vertically stacked bases. Vibrational coupling may also account for the differences between infrared and Raman spectra of the same complex. Thus, the present results indicate that infrared and Raman frequencies of RNA in the region 1750–1550 cm?1 should be dependent on the base sequence.  相似文献   

2.
The kinetics of hydrogen-tritium exchange reaction have been followed by a Sephadex technique of a double-helical poly(ribo-2-methylthio-adenylic acid)·poly(ribouridylic acid) complex with the Hoogsteen-type basepair. Only one hydrogen in every 2-methylthio-adenine·uracil basepair has been found to exchange at a measurably slow rate, 0.023 s?1 (at 0°C), which is, however, much greater than that for a double-helix with the Watson-Crick type A·U pair. The kinetics of hydrogen-tritium exchange were also examined by triple-helical poly(rU)·poly(rA)·poly(rU) which involves both the Watson-Crick and Hoogsteen basepairings. Here, three hydrogens in every U·A·U base triplet have been found to exchange at a relatively slow rate, 0.0116 s?1 (at 0°C). The kinetics of hydrogen-deuterium exchange reactions of these polynucleotide helices have also been followed by a stopped-flow ultraviolet absorption spectrophotometry at various temperatures. On the basis of these experimental results, the mechanism of the hydrogen exchange reactions in these helical polynucleotides was discussed. In the triple helix, the rate-determining process of the slow exchange of the three (one uracil-imide and two adenine-amino) hydrogens is considered to be the opening of the Watson-Crick part of the U·A·U triplet. This opening is considered to take place only after the opening of the Hoogsteen part of the triplet.  相似文献   

3.
Raman spectroscopy was used to study the low-frequency (?200?cm?1) vibrations in crystalline samples of six naturally occurring nucleosides: deoxythymidine (dT), deoxycytidine (dC), deoxyadenosine (dA), uridine (rU), cytidine (rC), and adenosine (rA). Such low-frequency vibrations are important for biological processes in which the conformation of a nucleic acid molecule changes. These experiments also provide a test for the low-frequency vibrational modes of dT, dC, and dA predicted by Shishkin et al.  相似文献   

4.
Temperature-dependent conformational transitions of spin-labeled poly rA, spin-labeled poly rU and the two-stranded helical complexes consisting either of spin-labeled rA·poly rU or spin-labeled poly rU·poly rA have been measured by electron spin resonance spectrocopy. The polynucleotides were spin labeled with 4-(2-iodoacetamido)2,2,6,6-tetramethylpiperidinooxyl and the spin label to nucleotide base ratio was approximately 1:600. The relationship between the log of tumbling time τ and the reciprocal absolute temperature for the spin-labeled single and double-stranded polynucleotides is presented. An agreement between TmOD (optical density melting) and Tmsp (spin melting) is found for the complexes, which strongly supports the conclusion that the same temperature-dependent structural changes are monitored with both techniques.  相似文献   

5.
The vibrational cd (VCD) of a double-stranded RNA, poly(rA) - poly(rU), at pH 7 and moderate added salt concentration (0.1M) has been measured in both the base-stretching and phosphate-stretching regions of the ir as a function of temperature. The data in both cases show two distinct phase transitions. The first is from double- to a triple-stranded form, and the second is from triple- to single-stranded forms, which still retain substantial local order even up to 80°C. The nature of these transitions has been identified by comparison of the VCD and ir absorption spectra of the initially double-stranded samples with those of single-stranded poly(rA) and poly(rU) and with triple-stranded poly-(rA) -poly-(rU) poly (rU). The large differences in the VCD band shapes allows positive identification of the intermediate and final states. Thus under VCD-concentration conditions, a simple helix-to-coil transition can be eliminated for poly (rA ) - poly (rU) while such a two-step transition can be seen at low salt conditions. All of these observations are consistent with previous studies of the phase transitions of poly (rA) - poly (rU) under various salt conditions. Additionally, the VCD is indicative of premelting for all the triple-, double-, and single-strand complexes studied. The triple-strand complex did not show disproportionation to double strand on heating under these added salt conditions. The unusual VCD pattern for low temperature poly (rA) - poly (rU), as compared to high G? C content RNAs and DNAs, is qualitatively, but not quantitatively, explained using exciton coupling of localized dipolar transitions in each type of base within the strand. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
Ultraviolet (UV) and infrared (IR) absorption and vibrational circular dichroism (VCD) spectroscopy were used to study conformational transitions in the double-stranded poly(rA). poly(rU) and its components-single-stranded poly(rA) and poly(rU) in buffer solution (pH 6.5) with 0.1M Na+ and different Mg2+ and Cd2+ (10(-6) to 10(-2) M) concentrations. Transitions were induced by elevated temperature that changed from 10 up to 96 degrees C. IR absorption and VCD spectra in the base-stretching region were obtained for duplex, triplex, and single-stranded forms of poly(rA) . poly(rU) at [Mg2+],[Cd2+]/[P] = 0.3. For single-stranded polynucleotides, the kind of conformational transition (ordering --> disordering --> compaction, aggregation) is conditioned by the dominating type of Me2+-polymer complex that in turn depends on the ion concentration range. The phase diagram obtained for poly(rA) . poly(rU) has a triple point ([Cd2+] approximately 10(-4)M) at which the helix-coil (2 --> 1) transition is replaced with a disproportion transition 2AU --> A2U + poly(rA) (2 --> 3) and the subsequent destruction of the triple helix (3 --> 1). The 2 --> 1 transitions occur in the narrow temperature interval of 2 degrees -5 degrees . Unlike 2 --> 1 and 3 --> 1 melting, the disproportion 2 --> 3 transition is a slightly cooperative one and observed over a wide temperature range. At [Me2+] approximately 10(-3) M, the temperature interval of A2U stability is not less than 20 degrees C. In the case of Cd2+, it increases with the rise of ion concentration due to the decrease of T(m) (2-->3). The T(m) (3-->1) value is practically unchanged up to [Cd2+] approximately 10(-3)M. Differences between diagrams for Mg(2+) and Cd2+ result from the various kinds of ion binding to poly(rA).poly-(rU) and poly(rA).  相似文献   

7.
Fourier Transform Infrared Spectra of triple stranded polynucleotides containing homopurine dA or rA and homopyrimidine dT or rU strands have been obtained in H2O and D2O solutions as well as in hydrated films at various relative humidities. The spectra are interpreted by comparison with those of double stranded helixes with identical base and sugar composition. The study of the spectral domain corresponding to in-plane double bond stretching vibrations of the bases shows that whatever the initial duplex characterized by a different IR spectrum (A family form poly rA.poly rU, heternomous form poly rA.poly dT, B family form poly dA.poly dT), the triplexes present a similar IR spectrum reflecting similar base interactions. A particular attention is devoted to the 950-800 cm-1 region which contains marker bands of the sugar conformation in the nucleic acids. In solution the existence of only N (C3'endo-A family form) type of sugar pucker is detected in poly rU.poly rA.poly rU and poly dt.poly rA.poly rU. On the contrary absorption bands characteristic of both N (C3'endo-A family form) and S (C2'endo-B family form) type sugars are detected for poly rU.poly rA.poly dT, poly rU.poly dA.poly dT and poly dT.poly rA.poly dT. Finally mainly S (C2'endo-B family form) type sugars are observed in poly dT.poly dA.poly dT.  相似文献   

8.
We have used a combination of densimetric, calorimetric, and uv absorption techniques to obtain a complete thermodynamic characterization for the formation of nucleic acid homoduplexes of known sequence and conformation. The volume change ΔV accompanying the formation of four duplexes was interpreted to reflect changes in hydration based on the electrostriction phenomenon. In 10 mM sodium phosphate buffer at pH 7, the magnitude of the measured ΔV's ranged from ?2.0 to +7.2 ml/mol base pair and followed the order of poly(rA) · poly(dT) ~ poly(dA) · poly(dT) < poly(rA) · poly(dU) ~ poly(rA) · poly(rU). Inclusion of 100 mM NaCl in the same buffer gave the range of ?17.4 to ?2.3 mL/mol base pair and the following order: poly(dA) · poly(dT) < poly(rA) · poly(dT) < poly(rA) · poly(rU) ~ poly(rA) ~ polyr(dU). Standard thermodynamic profiles of forming these duplexes from their corresponding complementary single strands indicated similar free energies that resulted from the compensation of favorable enthalpies with unfavorable entropies along with a similar counterion uptake at both ionic strengths. The differences in these compensating effects of entropy and enthalpy correlated very well with the volume change measurements in a manner suggesting that the homoduplexes in the B conformation are more hydrated than are those in the A conformation. Moreover, the increased thermal stability of these homoduplexes resulted from an increase in the salt concentration corresponding to larger hydration levels as reflected by the ΔV results. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
Phase transitions were studied of the sodium salt of poly(rA).poly(rU) induced by elevated temperature without Ni(2+) and with Ni(2+) in 0.07 M concentration in D(2)O (approximately 0.4 [Ni]/[P]). The temperature was varied from 20 degrees C to 90 degrees C. The double-stranded conformation of poly(rA).poly(rU) was observed at room temperature (20 degrees C-23 degrees C) with and without Ni(2+) ions. In the absence of Ni(2+) ions, partial double- to triple-strand transition of poly(rA).poly(rU) occurred at 58 degrees C, whereas only single- stranded molecules existed at 70 degrees C. While poly(rU) did not display significant helical structure, poly(rA) still maintained some helicity at this temperature. Ni(2+) ions significantly stabilized the triple-helical structure. The temperature range of the stable triple-helix was between 45 degrees C and 70 degrees C with maximum stability around 53 degrees C. Triple- to single-stranded transition of poly(rA).poly(rU) occurred around 72 degrees C with loss of base stacking in single-stranded molecules. Stacked or aggregated structures of poly(rA) formed around 86 degrees C. Hysteresis took place in the presence of Ni(2+) during the reverse transition from the triple-stranded to the double-stranded form upon cooling. Reverse Hoogsteen type of hydrogen-bonding of the third strand in the triplex was suggested to be the most probable model for the triple-helical structure. VCD spectroscopy demonstrated significant advantages over infrared absorption or the related electronic CD spectroscopy.  相似文献   

10.
Raman studies of nucleic acids. VII. Poly A-poly U and poly G-poly C   总被引:6,自引:0,他引:6  
L Lafleur  J Rice  G J Thomas 《Biopolymers》1972,11(12):2423-2437
Laser-excited Raman spectra of the double-helical complexes poly A·poly U and poly G·poly C are reported for 2H2O and H2O solutions. The spectra are discussed in relation to their use as quantitative reference spectra for determining the dependence of the Raman scattering of RNA on secondary structure. The Raman line at 815 cm?1, due to the phosphodiester group, exhibits the same intrinsic intensity in spectra of poly A·poly U and poly G·poly C and is thus dependent only upon the amount of ordering of the helix and not on the kinds of nucleotides involved. The hypochromic Raman lines in spectra of poly A·poly U are identified and their intensity changes are determined quantitatively over the temperature range 32–85°C. Comparison of the spectra in the 1500–1750 cm?1 region reveals that the Raman lines from carbonyl group vibrations of uracil are about sevenfold more intense than those of guanine and cytosine for both paired and unpaired states and will thus dominate the spectra of RNA. The Raman frequencies in this region are also compared with previously reported infrared frequencies and give evidence of being strongly perturbed by base-stacking interactions in the helices.  相似文献   

11.
The DeVoe polarizability theory is used to calculate vibrational circular dichroism (VCD) and infrared (IR) absorption spectra of four polyribonucleotides: poly(rA) x poly(rU), poly(rU) x poly(rA) x poly(rU), poly(rG) x poly(rC), and poly(rC+) x poly(rI) x poly(rC). This is the first report on the use of the DeVoe theory to calculate VCD, oriented VCD, IR absorption, and IR linear dichroism (LD) spectra of double- and triple-stranded polyribonucleotides. Results are reported for DeVoe theory calculations--within the base-stretching 1750-1550 cm(-1) spectral region--on several proposed multistranded polyribonucleotide geometries. The calculated spectra obtained from these proposed geometries are compared with previously reported measured and calculated VCD and IR spectral results. Base-base hydrogen-bonding effects on the frequencies and magnitudes of the base carbonyl stretching modes are explicitly considered. The good agreements found between calculated and measured spectra are proposed to be further evidence of the usefulness of the DeVoe theory in drawing three-dimensional structural conclusions from measured polyribonucleotide VCD and IR spectra.  相似文献   

12.
The hydrogen-deuterium exchange of AMP, uridine, poly(rA), and poly(rA) · poly(rU) was investigated by a spectral difference method using stopped-flow spectrophotometry. Proton exchange rates were measured as a function of pH, added catalysts, temperature and salt concentration. The results confirm and extend previous conclusions on the H-exchange chemistry of the bases, on the large equilibrium opening of the double helix, and on its slow opening and closing rates, but an alternative conformation for the major open state is considered. Two H-exchange rate classes are found in poly(rA) · poly(rU). The slower class represents the two exocyclic amino protons of A which exchange through a pre-equilibrium opening mechanism, therefore revealing the fraction of time the helix is open. Base-pairs are open 5% of the time at 25 °C. The faster class is assigned to the U-N-3 H proton, the rate of which is limited by helix opening. Both opening and reclosing of the duplex are slow, 2 s?1 and 40 s?1, respectively, at 25 °C. Thermodynamic parameters for the equilibrium helix opening and for the rate of opening were determined. These properties may be consistent with a simple opening involving swinging out of the U base while retaining A more or less stacked within the duplex. The results demonstrate that no faster or more populated helix-open state occurs (when structure is stable). It appears that, unlike opening—closing reactions at a helix end or a helix-coil boundary, internal base opening and closing are innately slow. One implication of this is that any chemical or biological process requiring access to sequences in the interior of a closed stable DNA duplex may be constrained to proceed only on a time scale of seconds, and not in milliseconds or microseconds.  相似文献   

13.
The Raman spectra of the double helical complexes of poly C–poly G and poly I–poly C at neutral pH are presented and compared with the spectra of the constituent homopolymers. When a completely double-helical structure is formed in solution a strong sharp band at 810–814 cm?1 appears which has previously been shown to be due to the A-type conformation of the sugar–phosphate backbone chain. By taking the ratio of the intensity of the 810–814 cm?1 band to the intensity of the 1090–1100 cm?1 phosphate vibration, one can obtain an estimate of the fraction of the backbone chain in the A-type conformation for both double-stranded helices and self-stacked single chains. This type of information can apparently only be obtained by Raman spectroscopy. In addition, other significant changes in Raman intensities and frequencies have been observed and tabulated: (1) the Raman intensity of certain of the ring vibrations of guanine and hypoxanthine bases decrease as these bases become increasingly stacked (Raman hypochromism), (2) the Raman band at 1464 cm?1 in poly I is asigned to the amide II band of the cis-amide group of the hypoxanthine base. It shifts in frequency upon base pairing to 1484 cm?1, thus permitting the determination of the fraction of I–C pairs formed.  相似文献   

14.
We have compared the properties of the poly(rA).oligo(dT) complex with those of the poly(rU).oligo(dA)n complex. Three main differences were found. First, poly(rA) and oligo(dT)n do not form a complex in concentrations of CsCl exceeding 2 M because the poly(rA) is insoluble in high salt. If the complex is made in low salt, it is destabilized if the CsCl concentration is raised. Complexes between poly(rU) and oligo(dA)n, on the other hand, can be formed in CsCl concentrations up to 6.6 M. Second, complexes between poly(rA) and oligo(dT)n are more rapidly destabilized with decreasing chain length than complexes between poly(rU) and oligo(dA)n. Third, the density of the complex between poly(rA) and poly(dT) in CsCl is slightly lower than that of poly(dT), whereas the density of the complex between poly(rU) and poly(dA) in CsCl is at least 300 g/cm3 higher than that of poly(dA). These results explain why denatured natural DNAs that bind poly(rU) in a CsCl gradient usually do not bind poly(rA).  相似文献   

15.
Magnesium ions strongly influence the structure and biochemical activity of RNA. The interaction of Mg2+ with an equimolar mixture of poly(rA) and poly(rU) has been investigated by UV spectroscopy, isothermal titration calorimetry, ultrasound velocimetry and densimetry. Measurements in dilute aqueous solutions at 20°C revealed two differ ent processes: (i) Mg2+ binding to unfolded poly(rA)·poly(rU) up to [Mg2+]/[phosphate] = 0.25; and (ii) poly(rA)·2poly(rU) triplex formation at [Mg2+]/[phosphate] between 0.25 and 0.5. The enthalpies of these two different processes are favorable and similar to each other, ~–1.6 kcal mol–1 of base pairs. Volume and compressibility effects of the first process are positive, 8 cm3 mol–1 and 24 × 10–4 cm3 mol–1 bar–1, respectively, and correspond to the release of water molecules from the hydration shells of Mg2+ and the polynucleotides. The triplex formation is also accompanied by a positive change in compressibility, 14 × 10–4 cm3 mol–1 bar–1, but only a small change in volume, 1 cm3 mol–1. A phase diagram has been constructed from the melting experiments of poly(rA)·poly(rU) at a constant K+ concentration, 140 mM, and various amounts of Mg2+. Three discrete regions were observed, corresponding to single-, double- and triple-stranded complexes. The phase boundary corresponding to the transition between double and triple helical conformations lies near physiological salt concentrations and temperature.  相似文献   

16.
C Otto  F F de Mul  J Greve 《Biopolymers》1987,26(10):1667-1689
Raman spectra of the bacteriophage T4 denaturing protein gp32, its complex with the polynucleotides poly(rA), poly(dA), poly(dT), poly(rU), and poly(rC), and with the oligonucleotides (dA)8 and (dA)2, were recorded and interpreted. According to an analysis of the gp32 spectra with the reference intensity profiles of Alix and co-workers [M. Berjot, L. Marx, and A. J. P. Alix (1985) J. Ramanspectrosc., submitted; A. J. P. Alix, M. Berjot, and J. Marx (1985) in Spectroscopy of Biological Molecules, A. J. P. Alix, L. Bernard, and M. Manfait, Eds., pp. 149–154], 1 gp32 contains ≈ 45% helix, ≈ 40% β-sheet, and 15% undefined structure. Aggregation of gp32 at concentrations higher than 40 mg/mL leads to a coordination of the phenolic OH groups of 4–6 tyrosines and of all the sulfhydryl (SH) groups present in the protein with the COO? groups of protein. The latter coordination persists even at concentrations as low as 1 mg/mL. In polynucleotide–protein complexes the nucleotide shields the 4–6 tyrosine residues from coordination by the COO? groups even at high protein concentration. The presence of the nucleotide causes no shielding of the SH groups. With Raman difference spectroscopy it is shown that binding of the protein to a single-stranded nucleotide involves both tyrosine and trytophan residues. A change in the secondary structure of the protein upon binding is observed. In the complex, gp32 contains more β-sheet structure than when uncomplexed. A comparison of the spectra of complexed poly(rA) and poly(dA) with the spectra of their solution conformations at 15°C reveals that in both polynucleotides the phosphodiester vibration changes upon complex formation in the same way as upon a transition from a regular to a more disordered conformation. Distortion of the phosphate–sugar–base conformation occurs upon complex formation, so that the spectra of poly(rA) and poly(dA) are more alike in the complex than they are in the free polynucleotides. The decrease in intensity of the Raman bands at 1304 cm?1 in poly(rA), at 1230 cm?1 in poly(rU), and at 1240 and 1378 cm?1 of poly(dT) may be indicative of increased stacking interactions in the complex. No influence of the nucleotide chain length upon the Raman spectrum of gp322 in the complex was detected. Both the nucleotide lines and the protein lines in the spectrum of a complex are identical in poly(dA) and (dA)8.  相似文献   

17.
Here we attempt to relate equilibrium temperature-dependent spectral changes in two synthetic RNA homopolymer duplexes—poly(rA) · poly(rU) and poly(rI) · poly(rC)—to the conformational opening detected in stopped-flow hydrogen–deuterium exchange experiments on these molecules. We are concerned with changes in several spectral properties that occur well below onset of the thermally induced helix-coil “melting” transition in these systems. These are known as “premelting” transitions, and can be detected in uv CD spectra as well as in vibrational bands of the bases in the ir. Both CD and ir spectra exhibit isoelliptic or isosbestic points consistent with a well-defined two-state premelting process. Application of a least-squares analysis to two-state models for premelting using data from different bands in the CD and ir shows that the enthalpies are substantially greater than that of the hydrogen-exchange opening. Thus the hydrogen-exchange open state represents only one premelting reaction among several that lead to equilibrium changes in helix geometry or base vibrational modes. The latter include processes that occur on a rapid time scale, including potential base-pair openings not productive for the exchange reaction. It appears that the former, and not the hydrogen-exchange opening, dominates the premelting alterations monitored by ir and CD spectroscopy.  相似文献   

18.
Abstract

The calculated phonon spectrum of Z-form poly(dG-dC)·poly(dG-dC) between 400 and 1600 cm?1 is reported. Comparison with the available data shows the very good agreement between theory and experiment. The eigenvector displacement is used to assign the characteristics of some of the important modes.  相似文献   

19.
Abstract

The Green function technique is used to study the open hydrogen bond probability of poly(dT-dA)·poly(dT-dA) when an effective enzyme is attached to the helix. The DNA interstrand hydrogen bond mean motion and probability of fluctuating to an open state depends on the internal vibrational frequency of the enzyme. An enzyme with internal frequency of 80 cm ?1 reduces hydrogen bond motion and the resulting probability of hydrogen bond fluctuational opening. An enzyme with internal frequency of 72 cm ?1 increases hydrogen bond motion and the probability of hydrogen bond breaking.  相似文献   

20.
C. P. Beetz  G. Ascarelli 《Biopolymers》1982,21(8):1569-1586
We have measured the ir absorption of 5′CMP, 5′IMP, and poly(I)·poly(C) from ~25 to ~500 cm?1. From a comparison of the data with the previously measured absorption of the corresponding nucleosides and bases we can identify several “lines” associated with the deformation of the ribose ring. Out-of-plane deformation of the bases contributes strongly to vibrations near 200 cm?1. The same ribose vibrations observed in the nucleotides are found in poly(I)·poly(C). They sharpen with increasing water absorption. A study of the spectra of poly(I)·poly(C) as a function of the adsorbed water indicates that water does not contribute in a purely additive fashion to the polynucleotide spectrum but depends on the conformation of the helix. However, the only spectral feature that shifts drastically with conformation is near 45 cm?1. Measurements at cryogenic temperatures indicate some sharpening of the spectrum of poly(I)·poly(C). Instead, no sharpening is observed in the spectrum of the nucleotides. Shear degradation of poly(I)·poly(C) produces significant spectral changes in the 200-cm?1 region and sharpening of the features assigned to the low-frequency ribose-ring vibrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号