首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Reductions in snow cover undera warmer climate may cause soil freezing eventsto become more common in northern temperateecosystems. In this experiment, snow cover wasmanipulated to simulate the late development ofsnowpack and to induce soil freezing. Thismanipulation was used to examine the effects ofsoil freezing disturbance on soil solutionnitrogen (N), phosphorus (P), and carbon (C)chemistry in four experimental stands (twosugar maple and two yellow birch) at theHubbard Brook Experimental Forest (HBEF) in theWhite Mountains of New Hampshire. Soilfreezing enhanced soil solution Nconcentrations and transport from the forestfloor. Nitrate (NO3 ) was thedominant N species mobilized in the forestfloor of sugar maple stands after soilfreezing, while ammonium (NH4 +) anddissolved organic nitrogen (DON) were thedominant forms of N leaching from the forestfloor of treated yellow birch stands. Rates ofN leaching at stands subjected to soil freezingranged from 490 to 4,600 mol ha–1yr–1, significant in comparison to wet Ndeposition (530 mol ha–1 yr–1) andstream NO3 export (25 mol ha–1yr–1) in this northern forest ecosystem. Soil solution fluxes of Pi from the forestfloor of sugar maple stands after soil freezingranged from 15 to 32 mol ha–1 yr–1;this elevated mobilization of Pi coincidedwith heightened NO3 leaching. Elevated leaching of Pi from the forestfloor was coupled with enhanced retention ofPi in the mineral soil Bs horizon. Thequantities of Pi mobilized from the forestfloor were significant relative to theavailable P pool (22 mol ha–1) as well asnet P mineralization rates in the forest floor(180 mol ha–1 yr–1). Increased fineroot mortality was likely an important sourceof mobile N and Pi from the forest floor,but other factors (decreased N and P uptake byroots and increased physical disruption of soilaggregates) may also have contributed to theenhanced leaching of nutrients. Microbialmortality did not contribute to the acceleratedN and P leaching after soil freezing. Resultssuggest that soil freezing events may increaserates of N and P loss, with potential effectson soil N and P availability, ecosystemproductivity, as well as surface wateracidification and eutrophication.  相似文献   

2.
Soil water chemistry and element budgets were studied at three northwestern European Calluna vulgaris heathland sites in Denmark (DK), The Netherlands (NL), and Wales (UK). Responses to experimental nighttime warming and early summer drought were followed during a two-year period. Soil solution chemistry measured below the organic soil layer and below the rooting zone and water fluxes estimated with hydrological models were combined to calculate element budgets. Remarkably high N leaching was observed at the NL heath with 18 and 6.4 kg N ha–1 year–1 of NO3–N and NH4–N leached from the control plots, respectively, indicating that this site is nitrogen saturated. Increased soil temperature of +0.5°C in the heated plots almost doubled the concentrations and losses of NO3–N and DON at this site. Temperature also increased mobilization of N in the O horizon at the UK and DK heaths in the first year, but, because of high retention of N in the vegetation or mineral soil, there were no significant effects of warming on seepage water NO3–N and NH4–N. Retention of P was high at all three sites. In several cases, drought increased concentrations of elements momentarily, but element fluxes decreased because of a lower flux of water. Seepage water DOC and DON was highly significantly correlated at the UK site where losses of N were low, whereas losses of C and N were uncoupled at the NL site where atmospheric N input was greatest. Based on N budgets, calculations of the net change in the C sink or source strength in response to warming suggest no change or an increase in the C sink strength during these early years.  相似文献   

3.
Butterbach-Bahl  K.  Gasche  R.  Willibald  G.  Papen  H. 《Plant and Soil》2002,240(1):117-123
During 4 years continuous measurements of N-trace gas exchange were carried out at the forest floor-atmosphere interface at the Höglwald Forest that is highly affected by atmospheric N-deposition. The measurements included spruce control, spruce limed and beech sites. Based on these field measurements and on intensive laboratory measurements of N2-emissions from the soils of the beech and spruce control sites, a total balance of N-gas emissions was calculated. NO2-deposition was in a range of –1.6 –2.9 kg N ha–1 yr–1 and no huge differences between the different sites could be demonstrated. In contrast to NO2-deposition, NO- and N2O-emissions showed a huge variability among the different sites. NO emissions were highest at the spruce control site (6.4–9.1 kg N ha–1 yr–1), lowest at the beech site (2.3–3.5 kg N ha–1 yr–1) and intermediate at the limed spruce site (3.4–5.4 kg N ha–1 yr–1). With regard to N2O-emissions, the following ranking between the sites was found: beech (1.6–6.6 kg N ha–1 yr–1) >> spruce limed (0.7–4.0 kg N ha–1 yr–1) > spruce control (0.4–3.1 kg N ha–1 yr–1). Average N-trace gas emissions (NO, NO2, N2O) for the years 1994–1997 were 6.8 kg N ha–1 yr–1 at the spruce control site, 3.6 kg N ha–1 yr–1 at the limed spruce site and 4.5 kg N ha–1 yr–1 at the beech site. Considering N2-losses, which were significantly higher at the beech (12.4 kg N ha–1 yr–1) than at the spruce control site (7.2 kg N ha–1 yr–1), the magnitude of total gaseous N losses, i.e. N2-N + NO-N + NO2-N + N2O-N, could be calculated for the first time for a forest ecosystem. Total gaseous N-losses were 14.0 kg N ha–1 yr–1 at the spruce control site and 15.5 kg N ha–1 yr–1 at the beech site, respectively. In view of the huge interannual variability of N-trace gas fluxes and the pronounced site differences in N-gas emissions it is concluded that more research is needed in order to fully understand patterns of microbial N-cycling and N-gas production/emission in forest ecosystems and mechanisms of reactions of forest ecosystems to the ecological stress factor of atmospheric N-input.  相似文献   

4.
Within a long-term research project studying the biogeochemical budget of an oak-beech forest ecosystem in the eastern part of the Netherlands, the nitrogen transformations and solute fluxes were determined in order to trace the fate of atmospherically deposited NH4 + and to determine the contribution of nitrogen transformations to soil acidification.The oak-beech forest studied received an annual input of nitrogen via throughfall and stemflow of 45 kg N ha–1 yr–1, mainly as NH4 +, whereas 8 kg N ha–1 yr–1 was taken up by the canopy. Due to the specific hydrological regime resulting in periodically occurring high groundwater levels, denitrification was found to be the dominant output flux (35 kg N ha–1 yr–1). N20 emmission rate measurements indicated that 57% of this gaseous nitrogen loss (20 kg N ha–1 yr–1) was as N2O. The forest lost an annual amount of 11 kg N ha–1 yr–1 via streamwater output, mainly as N03 .Despite the acid conditions, high nitrification rates were measured. Nitrification occurred mainly in the litter layer and in the organic rich part of the mineral soil and was found to be closely correlated with soil temperature. The large amount of NH4 + deposited on the forest floor via atmospheric deposition and produced by mineralization was to a large extent nitrified in the litter layer. Almost no NH4 + reached the subsurface soil horizons. The N03 was retained, taken up or transformed mainly in the mineral soil. A small amount of N03 (9 kg N ha–1 yr–1) was removed from the system in streamwater output. A relatively small amount of nitrogen was measured in the soil water as Dissolved Organic Nitrogen.On the basis of these data the proton budget of the system was calculated using two different approaches. In both cases net proton production rates were high in the vegetation and in the litter layer of the forest ecosystem. Nitrogen transformations induced a net proton production rate of 2.4 kmol ha–1 yr–1 in the soil compartment.  相似文献   

5.
N deposition, N transformation and N leaching in acid forest soils   总被引:9,自引:3,他引:6  
Nitrogen deposition, mineralisation, uptake and leaching were measured on a monthly basis in the field during 2 years in six forested stands on acidic soils under mountainous climate. Studies were conducted in three Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] plantations (D20: 20 year; D40: 40 yr; D60: 60 yr) on abandoned croplands in the Beaujolais Mounts; and two spruce (Picea abies Karst.) plantations (S45: 45 yr; S90: 90 yr) and an old beech (Fagus sylvatica L.) stand (B150: 150 yr) on ancient forest soils in a small catchment in the Vosges Mountains. N deposition in throughfall varied between 7–8 kg ha–1 year–1 (D20, B150, S45) and 15–21 kg ha–1 yr–1 (S90, D40, D60). N in annual litterfall varied between 20–29 kg ha–1 (D40, D60, S90), and 36–43 kg ha–1 (D20, S45, B150). N leaching below root depth varied among stands within a much larger range, between 1–9 kg ha–1 yr–1 (B150, S45, D60) and 28–66 kg ha–1 yr–1 (D40, S90, D20), with no simple relationship with N deposition, or N deposition minus N storage in stand biomass. N mineralisation was between 57–121 kg ha–1 yr–1 (S45, D40, S90) and between 176–209 kg ha–1 yr–1 in (B150, D60 and D20). The amounts of nitrogen annually mineralised and nitrified were positively related. Neither general soil parameters, such as pH, soil type, base saturation and C:N ratio, nor deposition in throughfall or litterfall were simply related to the intensity of mineralisation and/or nitrification. When root uptake was not allowed, nitrate leaching increased by 11 kg ha–1 yr–1 at S45, 36 kg ha–1 yr–1 at S90 and between 69 and 91 kg ha–1 yr–1 at D20, D40, B150 and D60, in relation to the nitrification rates of each plot. From this data set and recent data from the literature, we suggest that: high nitrification and nitrate leaching in Douglas-fir soils was likely related to the former agricultural land use. High nitrification rate but very low nitrate leaching in the old beech soil was related to intense recycling of mineralised N by beech roots. Medium nitrification and nitrate leaching in the old spruce stand was related to the average level of N deposition and to the deposition and declining health of the stand. Very low nitrification and N leaching in the young spruce stand were considered representative of fast growing spruce plantations receiving low N deposition on acidic soils of ancient coniferous forests. Consequently, we suggest that past land use and fine root cycling (which is dependent on to tree species and health) should be taken into account to explain the variability in the relation between N deposition and leaching in forests.  相似文献   

6.
Summary The accession and cycling of elements in a 14-year-old coastal stand ofPinus radiata D. Don was measured for one year. The element contents (mg m–2 year–1) of bulk precipitation and throughfall respectively were: NO3–N 41, 12; NH4–N 133, 154; organic-N 157, 396; Na 4420, 9700; K 387, 2900; Ca 351, 701; Mg 486, 1320. Of the increase in element content of rainwater beneath the forest canopy 20% (NH4–N), 70% (organic-N), 3% (Na), 90% (K), 20% (Ca) and 30% (Mg) was attributed to leaching; the remainder to washing of aerosols filtered from the atmosphere by the vegetation. The canopy absorbed approximately 40 mg m–2 year–1 of NO3–N. Litterfall was the major pathway for the above-ground biogeochemical cycle of N (93%), Ca (96%) and Mg (74%), and leaching was the major (73%) pathway for K.  相似文献   

7.
The effects of grass growth and N deposition on the leaching of nutrients from forest soil were studied in a lysimeter experiment performed in the Moravian-Silesian Beskydy Mts. (the Czech Republic). It was assumed that the grass sward formed on sites deforested due to forest decline would improve the soil environment. Lysimeters with growing acidophilous grasses (Calamagrostis arundinacea and C. villosa), common on clear-cut areas, and with unplanted bare forest soil were installed in the deforested area affected by air pollution. Wet bulk deposition of sulphur in SO42– corresponded to 21.6–40.1 kg ha–1 and nitrogen in NH4+ and NO3 to 8.9–17.4 kg N ha–1, with a rain water pH of 4.39–4.59 and conductivity of 18.6–36.4 S cm–1 during the growing seasons 1997–1999. In addition, the lysimeters were treated with 50 kg N ha–1 yr–1 as ammonium nitrate during the 3 years of the experiment. Rapid growth of planted grasses resulted in a very fast formation of both above- and below-ground biomass and a large accumulation of nitrogen in the tissue of growing grasses. The greatest differences in N accumulation in aboveground biomass were observed at the end of the third growing season; in C. villosa and C. arundinacea, respectively, 2.66 and 3.44 g N m–2 after addition of nitrogen and 1.34 and 2.39 g N m–2 in control. Greater amounts of nitrogen were assessed in below-ground plant parts (9.93–12.97 g N m–2 in C. villosa and 4.29–4.39 g N m–2 in C. arundinacea). During the second and third year of experiment, the following effects were the most pronounced: the presence of growing grasses resulted in a decrease of both the acidity and conductivity of lysimetric water and in a lower amount of leached nitrogen, especially of nitrates. Leaching of base cations (Ca2+ and Mg2+) was two to three times lower than from bare soil without grasses. An excess of labile Al3+ was substantially eliminated in treatments with grasses. Enhanced N input increased significantly the acidity and losses of nutrients only in unplanted lysimeters. The leaching of N from treatments with grasses (3.9–5.6 kg N ha–1) was 31–46% of the amount of N in wet deposition. However, the amount of leached N (4.2–6.0 kg N ha–1) after N application was only 7.1–8.9% of total N input. After a short three year period, the features of soil with planted grasses indicated a slight improvement: higher pH values and Ca2+ and Mg2+ contents. The ability of these grass stands to reduce the excess nitrogen in soil is the principal mechanism modifying the negative impact on sites deforested by acid depositions. Thus it is suggested that grass sward formation partly eliminates negative processes associated with soil acidification and has a positive effect on the reduction of nutrient losses from the soil.  相似文献   

8.
Regular bi-weekly additions of NH4NO3, equivalent to a rate of 3 g N m–2 yr–1, were applied to cores of Sphagnum capillifolium, inhabiting hummocks and S. recurvum a pool and hollow colonizer, in a raisedbog in north east Scotland. Microbial biomass C and N,both measured by chloroform extraction, showed similarseasonal patterns and, for most depths, the effects ofadded N on microbial biomass C and N changed withtime. The addition of inorganic N had greatest effectduring October when the water table had risen to thesurface and microbial C and N in the untreated coreshad decreased. Microbial C and N were maintained at75 g C m–2 and 8.3 g N m–2 above the values in the untreated cores and far exceeded the amounts of N that had been added up to that date (1 g N m–2) as NH4NO3. This increased microbial biomass was interpreted as leaching of carbonaceous material from the NH4NO3 treated moss resulting in greater resistance of the microbialbiomass to changes induced by the rising water table.Treatment with N also caused significant reductions inextractable dissolved organic N (DON) at 10–15 cmdepth, beneath the surface of the moss, but at lowerdepths to 25 cm no changes were observed. Extracteddissolved organic carbon (DOC) was not affected by Ntreatment and showed less seasonal variation than DON,such that the C:N ratio of dissolved organic matter(DOM) in all depths increased from approximately 4 inJuly to around 30 in December.  相似文献   

9.
Heathlands are characteristic semi-natural ecosystems of western Europe. Nowadays they are threatened because of their lack of agricultural value. Management of the remaining heathland areas necessitates precise knowledge about different management tools that can be used, including grazing. The effects of sheep grazing on dry and mesophilous heathlands of Brittany were studied in relation to grazing season and duration. Management aims were to control shrubs and to maintain the dominance of heathers. The grazing pressures applied here were quite high, about 10–15 sheep ha−1 yr−1. Erica ciliaris appeared to be very sensitive to grazing at the end of summer. This implicates special care in the management of mesophilous heathland. In dry heathland, Erica cinerea did not show this sensitivity. Control of shrubs was achieved by most grazing regimes which led to a decrease of 11–22 cm in gorse height, except summer grazing which seemed to stimulate their growth.This study underlined the relevance of the use of sheep grazing as a heathland management tool but also the necessity of prior experiments to adapt these operations mainly in terms of grazing period to the type of heathland and the objectives put forward.  相似文献   

10.
Casals  P.  Romanyà  J.  Cortina  J.  Fons  J.  Bode  M.  Vallejo  V. R. 《Plant and Soil》1995,168(1):67-73
We studied Nitrogen (N) transformations in Pinus sylvestris forest stands in the foothills of the SE Pre-Pyrenees (NE Spain). Plots were selected in two contrasting aspects (two plots per aspect) and N supply rate was measured by the resin-core incubation technique once every three months. N leaching through litter layers (L and F horizons) was evaluated by 5 zero-tension lysimeters in each plot. NH4 +-N, NO3 --N and soluble organic-N were determined in all solutions. N supply rate showed a clear seasonal pattern. Ammonification and nitrification were segregated in space and in time. While ammonification showed a peak in spring, nitrification was higher in summer. There was evidence suggesting that nitrification occurs mostly in A1 horizon. Nitrification rates differed significantly among plots. N supply rate was 12.7–23.5 kg N·ha-1·yr-1 but it did not differ between aspects or plots. Inorganic-N leached through litter layers was 14–17 kg N·ha-1·yr-1, and represented a high proportion of N supply rate. Organic-N leached through litter layers (27.8–37.0 kg N·ha-1·yr-1) was higher than leached inorganic-N. However, in most cases organic-N did not represent a high proportion of changes in soluble organic-N pools in H and A1 horizons (about 240 kg N·ha-1·yr-1). This large decrease in soluble organic-N was much greater than the increase in inorganic-N. The possible fate of these large amounts of organic-N is discussed.  相似文献   

11.
Nitrogen transformations were studied in the forest floor and mineral soil (0–5 cm) of a Douglas fir forest (Pseudotsuga menziesii (Mirb.) Franco.) and a Scots pine forest (Pinus sylvestris L.) in the Netherlands. Curren nitrogen depositions (40 and 56 kg N ha-1 yr-1, respectively) were reduced to natural background levels (1–2 kg N ha-1 yr-1) by a roof construction. The study concentrated on rates and dynamic properties of nitrogen transformations and their link with the leaching pattern and nitrogen uptake of the vegetation under high and reduced nitrogen deposition levels. Results of an in situ field incubation experiment and laboratory incubations were compared. No effect of the reduced N deposition on nitrogen transformations was found in the Douglas fir forest. In the Scots pine forest, however, during some periods of the year nitrogen transformations were significantly decreased under the low nitrogen deposition level. At low nitrogen inputs a net immobilization occurred during most of the year leading to a very small net mineralization for the whole year. In laboratory and in individual field plots nitrogen transformations were negatively correlated with initial inorganic nitrogen concentrations. Nitrogen budget estimates showed that nitrogen transformations were probably underestimated by the in situ incubation technique. Nevertheless less nitrogen was available for plant uptake and leaching at the low deposition plots.  相似文献   

12.
Annual and seasonal rates of net nitrogen mineralization were determined for 19 sites in the spruce-fir forests of the Southern Appalachian Mountains. These sites included high and low elevation stands of red spruce (Picea rubens Sarg.) and Fraser fir (Abies fraseri (Pursh.) Poir.) on east and west exposures on Whitetop Mountain, Virginia; Mt. Mitchell, North Carolina; and Clingman's Dome in the Great Smoky Mountains National Park. Mineralization rates were determined using in situ soil incubations in PVC tubes with ion exchange resin bags placed in the bottom of the tubes to collect leachate. Throughfall was collected in resin bags placed in the top of the tubes. Average initial NH4-N + NO3-N ranged from 0.6 to 4.8 kg N/ha across all plots, and average mineralization rates ranged from 26 to 180 kg-N ha−1 yr−1. Throughfall ranged from 18 to 32 kg-N ha−1 yr−1 with NH4-N accounting for about two-thirds of the throughfall N across all sites. Throughfall and mineralization rates were not related to elevation or exposure. The high rates of N mineralization and relatively high nitrate concentrations indicate that leaching losses of nitrogen and associated cations could be substantial. Requests for offprints  相似文献   

13.
At the Harvard Forest, Massachusetts, a long-term effort is under way to study responses in ecosystem biogeochemistry to chronic inputs of N in atmospheric deposition in the region. Since 1988, experimental additions of NH4NO3 (0, 5 and 15 g N m–2 yr–1) have been made in two forest stands:Pinus resinosa (red pine) and mixed hardwood. In the seventh year of the study, we measured solute concentrations and estimated solute fluxes in throughfall and at two soil depths, beneath the forest floors (Oa) and beneath the B horizons.Beneath the Oa, concentrations and fluxes of dissolved organic C and N (DOC and DON) were higher in the coniferous stand than in the hardwood stand. The mineral soil exerted a strong homogenizing effect on concentrations beneath the B horizons. In reference plots (no N additions), DON composed 56% (pine) and 67% (hardwood) of the total dissolved nitrogen (TDN) transported downward from the forest floor to the mineral soil, and 98% of the TDN exported from the solums. Under N amendments, fluxes of DON from the forest floor correlated positively with rates of N addition, but fluxes of inorganic N from the Oa exceeded those of DON. Export of DON from the solums appeared unaffected by 7 years of N amendments, but as in the Oa, DON composed smaller fractions of TDN exports under N amendments. DOC fluxes were not strongly related to N amendment rates, but ratios of DOC:DON often decreased.The hardwood forest floor exhibited a much stronger sink for inorganic N than did the pine forest floor, making the inputs of dissolved N to mineral soil much greater in the pine stand. Under the high-N treatment, exports of inorganic N from the solum of the pine stand were increased >500-fold over reference (5.2 vs. 0.01 g N m–2 yr–1), consistent with other manifestations of nitrogen saturation. Exports of N from the solum in the pine forest decreased in the order NO3-N> NH4-N> DON, with exports of inorganic N 14-fold higher than exports of DON. In the hardwood forest, in contrast, increased sinks for inorganic N under N amendments resulted in exports of inorganic N that remained lower than DON exports in N-amended plots as well as the reference plot.  相似文献   

14.
Nitrification in Dutch heathland soils   总被引:10,自引:0,他引:10  
A survey was conducted over a range of 17 Dutch heathland locations, subdivided into 41 sites dominated by either dwarf-shrubs (Calluna vulgaris or Erica tetralix) or grass species (Deschampsia flexuosa or Molinia caerulea). Among the habitats of the dominant plant species relatively little differences in general soil properties were observed. The P status of Deschampsia sites was relatively high as well as the NO3 -N concentrations in the 0–10 cm layer (FH included) at the grass-dominated sites. At sites with a dead or degenerating dwarf-shrub vegetation, NH4 +-N concentrations reached very high levels.Net production of nitrate was observed during incubation of intact 0–10 cm soil cores (FH-layer included) in the laboratory for all sites, even though in some instances, particularly at Calluna and Erica sites, no nitrate was initially measured. Generally, a higher nitrification rate was found for the grass-dominated sites, and for Deschampsia in particular. The net production of nitrate was highly significantly correlated with net N mineralization, being a reasonable predictor of nitrification in a simple regression model (R2=0.47; P<0.001). Net nitrification was also significantly correlated with the NO3 -N initially present at the start of the growing season (R=0.65; P<0.001) and with the labile organic P content of the soil (R=0.65; P<0.001). By including initial NO3 -N and labile organic P, together with net N mineralization and pH, in a multiple regression model, net nitrate production could be predicted with a much higher precision (R2=0.75; P<0.001). Although apparent nitrification was not significantly correlated with pH, the latter contributed significantly to the multiple regression equation for the prediction of the former.The influence of the labile organic P pool may act via its positive correlation with microbial biomass, thus more or less reflecting the potential mineralization/nitrifying capacity of a particular site.  相似文献   

15.
Enhanced nitrogen (N) availability is one of the main drivers of biodiversity loss and degradation of ecosystem functions. However, in very nutrient-poor ecosystems, enhanced N input can, in the short-term, promote diversity. Mediterranean Basin ecosystems are nutrient-limited biodiversity hotspots, but no information is available on their medium- or long-term responses to enhanced N input. Since 2007, we have been manipulating the form and dose of available N in a Mediterranean Basin maquis in south-western Europe that has low ambient N deposition (<4 kg N ha−1 yr−1) and low soil N content (0.1%). N availability was modified by the addition of 40 kg N ha−1 yr−1 as a 1∶1 NH4Cl to (NH4)2SO4 mixture, and 40 and 80 kg N ha−1 yr−1 as NH4NO3. Over the following 5 years, the impacts on plant composition and diversity (richness and evenness) and some ecosystem characteristics (soil extractable N and organic matter, aboveground biomass and % of bare soil) were assessed. Plant species richness increased with enhanced N input and was more related to ammonium than to nitrate. Exposure to 40 kg NH4 +-N ha−1 yr−1 (alone and with nitrate) enhanced plant richness, but did not increase aboveground biomass; soil extractable N even increased under 80 kg NH4NO3-N ha−1 yr−1 and the % of bare soil increased under 40 kg NH4 +-N ha−1 yr−1. The treatment containing less ammonium, 40 kg NH4NO3-N ha−1 yr−1, did not enhance plant diversity but promoted aboveground biomass and reduced the % of bare soil. Data suggest that enhanced NHy availability affects the structure of the maquis, which may promote soil erosion and N leakage, whereas enhanced NOx availability leads to biomass accumulation which may increase the fire risk. These observations are relevant for land use management in biodiverse and fragmented ecosystems such as the maquis, especially in conservation areas.  相似文献   

16.
Globally, land-use change is occurring rapidly, and impacts on biogeochemical cycling may be influenced by previous land uses. We examined differences in soil C and N cycling during long-term laboratory incubations for the following land-use sequence: indigenous forest (soil age = 1800 yr); 70-year-old pasture planted after forest clearance; 22-year-old pine (Pinus radiata) planted into pasture. No N fertilizer had been applied but the pasture contained N-fixing legumes. The sites were adjacent and received 3–6 kg ha–1 yr–1volcanic N in rain; NO3 -N leaching losses to streamwater were 5–21 kg ha–1 yr–1, and followed the order forest < pasture = pine. Soil C concentration in 0–10 cm mineral soil followed the order: pasture > pine = forest, and total N: pasture > pine > forest. Nitrogen mineralization followed the order: pasture > pine > forest for mineral soil, and was weakly related to C mineralization. Based on radiocarbon data, the indigenous forest 0–10 cm soil contained more pre-bomb C than the other soils, partly as a result of microbial processing of recent C in the surface litter layer. Heterotrophic activity appeared to be somewhat N limited in the indigenous forest soil, and gross nitrification was delayed. In contrast, the pasture soil was rich in labile N arising from N fixation by clover, and net nitrification occurred readily. Gross N cycling rates in the pine mineral soil (per unit N) were similar to those under pasture, reflecting the legacy of N inputs by the previous pasture. Change in land use from indigenous forest to pasture and pine resulted in increased gross nitrification, net nitrification and thence leaching of NO3 -N.  相似文献   

17.
A three year fertilization experiment was conducted in which nitrogen (N series: 20 g N m–2 yr–1), phosphorus (P series: 4 g P m–2 yr–1) and potassium (K series: 20 g K m–2 yr–1) were added to a mixed vegetation of Erica tetralix and Molinia caerulea. At the end of each growing season the percentage cover of each species was determined. At the end of the experiment percentage cover of each species was found to be positively correlated with the harvested biomass. In the unfertilized control series the cover of Erica and Molinia did not change significantly during the experiment. In all fertilized series however, especially in the P series, cover of Erica decreased significantly. The cover of Molinia increased significantly in the P series only.In the fertilized series the biomass of Erica and total biomass per plot did not change significantly compared with the control series. In the P series the biomass of Molinia increased significantly.It is suggested that with increasing phosphorus or nitrogen availability Molinia outcompetes Erica because the former invests more biomass in leaves which in turn permits more carbon to be allocated to the root system, which thereupon leads to a higher nutrient uptake.  相似文献   

18.
Ledgard  S.F.  Sprosen  M.S.  Penno  J.W.  Rajendram  G.S. 《Plant and Soil》2001,229(2):177-187
Effects of rate of nitrogen (N) fertilizer and stocking rate on production and N2 fixation by white clover (Trifolium repens L.) grown with perennial ryegrass (Lolium perenne L.) were determined over 5 years in farmlets near Hamilton, New Zealand. Three farmlets carried 3.3 dairy cows ha–1 and received urea at 0, 200 or 400 kg N ha–1 yr–1 in 8–10 split applications. A fourth farmlet received 400 kg N ha–1 yr–1 and had 4.4 cows ha–1.There was large variation in annual clover production and total N2 fixation, which in the 0 N treatment ranged from 9 to 20% clover content in pasture and from 79 to 212 kg N fixed ha–1 yr–1. Despite this variation, total pasture production in the 0 N treatment remained at 75–85% of that in the 400 N treatments in all years, due in part to the moderating effect of carry-over of fixed N between years.Fertilizer N application decreased the average proportion of clover N derived from N2 fixation (PN; estimated by 15N dilution) from 77% in the 0 N treatment to 43–48% in the 400 N treatments. The corresponding average total N2 fixation decreased from 154 kg N ha–1 yr–1 to 39–53 kg N ha–1 yr–1. This includes N2 fixation in clover tissue below grazing height estimated at 70% of N2 fixation in above grazing height tissue, based on associated measurements, and confirmed by field N balance calculations. Effects of N fertilizer on clover growth and N2 fixation were greatest in spring and summer. In autumn, the 200 N treatment grew more clover than the 0 N treatment and N2 fixation was the same. This was attributed to more severe grazing during summer in the 0 N treatment, resulting in higher surface soil temperatures and a deleterious effect on clover stolons.In the 400 N treatments, a 33% increase in cow stocking rate tended to decrease PN from 48 to 43% due to more N cycling in excreta, but resulted in up to 2-fold more clover dry matter and N2 fixation because lower pasture mass reduced grass competition, particularly during spring.  相似文献   

19.
Moawad  H.  Badr El-Din  S. M. S.  Khalafallah  M. A. 《Plant and Soil》1988,112(1):137-141
The nitrogen contribution from the shoot and root system of symbiotically grown leucaena was evaluated in a field experiment on an Alfisol at IITA in Southern Nigeria. Maize in plots that received prunings from inoculated leucaena contained more N and grain yield was increased by 1.9 t.ha.–1. Large quantities of nitrogen were harvested with leucaena prunings (300 kg N ha–1 in six months) but the efficiency of utilization of this nitrogen by maize was low compared to inorganic N fertilizer (ammonium sulphate) at 80 kg N ha–1. Maize yield data indicated that nitrogen in leucaena prunigs was 34 and 45% as efficient as 80 kg N ha–1 of (NH4)2SO4 for uninoculated and inoculated plants with Rhizobium IRc 1045, respectively. In plots where the prunings were removed, the leaf litter and decaying roots and nodules contributed N equivalent of 32 kg ha–1. Twenty-five kg ha–1 was the inorganic N equivalent from nitrogen fixed symbiotically by leucaena when inoculated with Rhizobium strain IRc 1045. Application of prunings from inoculated leucaena resulted in higher soil ogranic C, total N, pH and available NO3.  相似文献   

20.
Borken  W.  Xu  Y.J.  Beese  F. 《Plant and Soil》2004,258(1):121-134
Fertilization of nutrient-depleted and degraded forest soils may be required to sustain utilization of forests. In some European countries, the application of composts may now be an alternative to the application of inorganic fertilizers because commercial compost production has increased and compost quality has been improved. There is, however, concern that compost amendments may cause increased leaching of nitrogen, trace metals and toxic organic compounds to groundwater. The objective of this study was to assess the risk of ammonium (NH4 +), nitrate (NO3 ) and dissolved organic nitrogen (DON) leaching following a single compost application to silty and sandy soils in mature beech (Fagus sylvatica L.), pine (Pinus silvestris L.) and spruce (Picea abies Karst.) forests at Solling and Unterlüß in Lower Saxony, Germany. Mature compost from separately collected organic household waste was applied to the soil surface at a rate of 6.3 kg m–2 in the summer of 1997 and changes in NH4 +, NO3 and DON concentrations in throughfall and soil water at 10 and 100 cm soil depths were determined for 32 months. The spruce forests had the highest N inputs by throughfall water and the highest N outputs in both the control and compost plots compared with the pine and beech forests. Overall, the differences in total N outputs at 100 cm soil depth between the control and compost plots ranged between 0.3 and 11.2 g N m–2 for the entire 32-month period. The major leaching of these amounts occurred during the first 17 months after compost amendments, but there was no significant difference in total N outputs (–0.2 to 1.8 g N m–2) between the control and compost plots during the remaining 15 months. Most of the mineral soils acted as a significant sink for NO3 and DON as shown by a reduction of their outputs from 10 to 100 cm depth. Based on these results, we conclude that application of mature compost with high inorganic N contents could diminish the groundwater quality in the first months after the amendments. A partial, moderate application of mature compost with low inorganic N content to nutrient depleted forest soils can minimize the risk of NO3 leaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号