首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The hypocretins (also called the orexins) are two neuropeptides derived from the same precursor whose expression is restricted to a few thousand neurons of the lateral hypothalamus. Two G-protein coupled receptors for the hypocretins have been identified, and these show different distributions within the central nervous system and differential affinities for the two hypocretins. Hypocretin fibers project throughout the brain, including several areas implicated in regulation of the sleep/wakefulness cycle. Central administration of synthetic hypocretin-1 affects blood pressure, hormone secretion and locomotor activity, and increases wakefulness while suppressing rapid eye movement sleep. Most human patients with narcolepsy have greatly reduced levels of hypocretin peptides in their cerebral spinal fluid and no or barely detectable hypocretin-containing neurons in their hypothalamus. Multiple lines of evidence suggest that the hypocretinergic system integrates homeostatic, metabolic and limbic information and provides a coherent output that results in stability of the states of vigilance.  相似文献   

2.
Summary The presence of neurofilament (NF)-like and glial fibrillary acidic protein (GFAP)-like immunoreactivities was studied in sympathetic ganglia of adult rats and guinea pigs during normal conditions and after perturbation. In the superior cervical ganglion (SCG) of normal rats, many ganglion cells and nerve fibers show NF immunoreactivity. Some of these nerve fibers disappear after preganglionic decentralization of SCG; this indicates the presence of a mixture of preand postganglionic NF-positive nerves in the ganglion. Cuts in both preand postganglionic nerves result in a marked increase in GFAP immunoreactivity in SCG, whereas NF immunoreactivity increases in nerve cell bodies after preganglionic cuts. Only a few ganglion cells show NF immunoreactivity in the normal SCG of guinea pig. All intraganglionic NF-positive nerves are of preganglionic origin; decentralization abolishes NF immunoreactivity in these nerve fibers. The inferior mesenteric ganglion, the hypogastric nerves and colonic nerves in guinea pigs contain large numbers of strongly NF-immunoreactive nerve fibers.When the SCG of adult rat is grafted to the anterior eye chamber of adult rat recipients, both ganglionic cell bodies and nerve fibers, forming on the host iris from the grafted ganglion, are NF-positive. As only the perikarya of these neurons normally exhibit NF immunoreactivity, and the terminal iris arborizations are NF-negative, it appears that the grafting procedure causes NF immunoreactivity to become more widespread in growing SCG neurons.  相似文献   

3.
The hypocretins (also know as orexins) are two neuropeptides now commonly described as critical components for maintaining and regulating the stability of arousal. Several lines of evidence have raised the hypothesis that hypocretin-producing neurons are part of the circuitries that mediate the hypothalamic response to acute stress. New data indicate that the corticotrophin-releasing factor (CRF) peptidergic system directly innervates hypocretin-expressing neurons. CRF depolarizes hypocretin neurons, and this effect is blocked by a CRF-R1 antagonist. Furthermore, activation of hypocretinergic neurons by stress is impaired in CRF-R1 knockout mice. These data suggest that CRF-R1 receptor mediates the stress-induced activation of the hypocretinergic system. A significant amount of evidence also indicates that hypocretin cells connect reciprocally to the CRF system. We propose that upon stressor stimuli, CRF activates the hypocretin system, which relays these signals to brain stem nuclei involved in the modulation of arousal as well as to the extended amygdala, a structure involved in the negative motivational state that drives addiction.  相似文献   

4.
Summary The distribution of nerve fibers displaying neuropeptide Y immunoreactivity in relationship to the catecholaminergic innervation of rat, guinea pig, and rabbit liver was investigated by single- and double-label immunofluorescence methods. In all three species, neuropeptide Y-immunoreactive fibers are prominent in association with the vasculature, biliary pathway, and stromal compartment. The neuropeptide Y innervation of the parenchyma, on the other hand, differs among the three species in term of density. It is quite sparse in the rat and rabbit, particularly in the former species. In the guinea pig liver, numerous single, varicose neuropeptide Y-containing nerve fibers innervate the hepatic parenchyma; often, thin processes surround single hepatocytes and lie close to sinusoids. The immunoreactive pattern of tyrosine hydroxylase, a marker for catecholaminergic neurons and fibers, is comparable to that of neuropeptide Y. Most neuropeptide Y-containing nerve fibers also contain tyrosine hydroxylase immunoreactivity, in all three species, with the exception of the rabbit parenchyma, where a substantial proportion of catecholaminergic fibers lack immunoreactivity for neuropeptide Y. Finally, systemic administration of the sympathetic neurotoxin, 6-hydroxydopamine, in rats and guinea pigs resulted in virtually complete elimination of both neuropeptide Y- and tyrosine hydroxylase-immunoreactive fibers. These findings are consistent with the hypothesis that neuropeptide Y-containing nerve fibers form a subpopulation of the sympathetic innervation of the mammalian liver, which is likely to originate from prevertebral sympathetic ganglia.  相似文献   

5.
Hypocretins are recently discovered neuropeptides produced by a small group of posterior hypothalamic neurons which project widely over the neuroaxis. In this study, we note that hypocretin neuron perikarya in the human brain are localized to the perifornical region of the posterior hypothalamus, extending into the lateral hypothalamus. These neurons lightly innervate all areas of cerebral cortex studied in a variable pattern with denser innervation of association cortex than primary motor or sensory cortex. There is a dense innervation of hypothalamus, locus coeruleus, raphe nuclei, midline thalamus and nucleus of the diagonal band-nucleus basalis complex of the forebrain. This pattern of projections from the hypocretin neurons is compatible with an important role in arousal and the maintenance of the waking state.  相似文献   

6.
Efferent projections of the lateral septal nucleus (LS) to the preoptic area and the hypothalamus were identified in 20 female guinea pigs after iontophoretic injection of the anterograde axonal tracer Fluoro-Ruby. Tubero-infundibular (TI) neurons of the preoptic area and the hypothalamus were retrogradely labeled after intracardiac injection of Granular Blue or Fluoro-Gold. Magnocellular neurons of the supraoptic and paraventricular nuclei were also labeled. The double labeling procedure allowed an estimation of the extent of the direct relationship between LS efferents and TI neurons. Contacts between lateral septal fibers and TI cell bodies were mainly observed at the light-microscopical level in the preoptic area. A group of labeled fibers coursing along the third ventricle established sparse connections with hypothalamic periventricular TI neurons. A few appositions was observed in the infundibular (arcuate) nucleus, suggestive of a monosynaptic regulation of TI neurons by a septo-arcuate tract. Close association with labeled magnocellular neurons was also noted at the edge of the supraoptic and paraventricular nuclei. The sparse but direct connections between LS and TI neurons may be involved in the neuroendocrine functions of the LS.  相似文献   

7.
Zhang JH  Sampogna S  Morales FR  Chase MH 《Peptides》2002,23(8):1479-1483
Hypocretin-1 (hcrt-1) and hypocretin-2 (hcrt-2) are two recently discovered hypothalamic neuropeptides. In the present study, using double immunofluorescent techniques, the co-localization of hcrt-1 and hcrt-2 was examined in neuronal soma and fibers/terminals located, respectively, in the cat hypothalamus and brainstem. In the hypothalamus, all hcrt-1 positive neuronal soma also displayed hcrt-2 immunoreactivity. In the brainstem, both hcrt-1 and hcrt-2 antibodies labeled the same fibers/terminals, indicating that hcrt-1 and hcrt-2 co-localize not only in the neuronal soma (hypothalamus) but also in their fibers/terminals (brainstem). If both peptides are released following neuronal activity, then the distinct effects of these peptides in the brain are likely to depend on the types of postsynaptic receptors that are activated.  相似文献   

8.
Although recent studies have reported hypocretin 1 (hcrt-1)-like-immunoreactivity (ir) within the region of the nucleus ambiguus (Amb) in the caudal brain stem, the function of hcrt-1 in the Amb on cardiovascular function is not known. Three series of experiments were done in male Wistar rats to investigate the effects of microinjections of hcrt-1 into Amb on heart rate (HR), mean arterial pressure (MAP), and the arterial baroreceptor reflex. In the first series, a detailed mapping of the distribution of hcrt-1- and hcrt-1 receptor (hcrtR-1)-like-ir was obtained of the Amb region. Although hcrt-1-like- and hcrtR-1-like-ir were found throughout the rostrocaudal extent of the Amb and adjacent ventrolateral medullary reticular formation, most of the hcrtR-1-like-ir was observed in the area just ventral to the compact formation of Amb, in the region of the external formation of the nucleus (Ambe). In the second series, the Amb region that contained hcrt-1 and hcrtR-1-ir was explored for sites that elicited changes in HR and MAP in urethane and alpha-chloralose-anesthetized rats. Microinjections of hcrt-1 (0.5-2.5 pmol) into the Ambe elicited a dose-related decrease in HR, with little or no direct change in MAP. The small decreases in MAP were found to be secondary to the HR changes. The largest bradycardia responses were elicited from sites in the Ambe. Administration (iv) of the muscarinic receptor antagonist atropine methyl bromide or ipsilateral vagotomy abolished the HR response, indicating that the HR response was due to activation of vagal cardiomotor neurons. In the final series, microinjections of hcrt-1 into the Ambe significantly potentiated the reflex bradycardia elicited by activation of the baroreflex as a result of the increased MAP after the intravenous injection of phenylephrine. These data suggest that hcrt-1 in the Ambe activates neuronal systems that alter the excitability of central circuits that reflexly control the circulation through the activation of vagal preganglionic cardioinhibitory neurons.  相似文献   

9.
用酶组织化学和免疫组织化学双标技术,观察了正常SD大鼠基底前脑内侧隔核(MS)、斜角带垂直支(VDB)和水平支(HDB)中NOS阳性神经元的形态和分布及NOS与胆碱能神经元标志物ChAT、NGF受体(NGF-R)和AChE之间的共存关系。结果发现,MS、VDB和HDB的头端NOS阳性神经元较多、胞体较大、突起多,尾端NOS阳性神经元数目较少、胞体较小、突起少而短。NOS+ChAT双标神经元占NOS阳性神经元总数的90%,占ChAT阳性神经元总数的39%;NOS+NGF-R双标神经元占NOS阳性神经元总数的83%,占NGF-R阳性神经元总数的40%;NOS+AChE双标神经元占NOS阳性神经元总数的96%,占AChE阳性神经元总数的39%。这些结果为研究Alzheimer'sdisease病理过程中基底前脑隔区胆碱能神经元退变与NO的关系提供了形态学依据。  相似文献   

10.
Summary The distribution of vasoactive intestinal polypeptide-immunoreactive (VIP-IR) neurons in the lower medulla oblongata and the spinal cord has been analyzed in guinea pigs. This study includes results obtained by colchicine treatment and transection experiments. In the spinal cord, numerous VIP-IR varicosities were observed in the substantia gelatinosa of the columna dorsalis; some were also found in the substantia intermedia and the columna anterior. The spinal VIP-IR nerve fibers were mainly of intraspinal origin and oriented segmentally. VIP-IR nuclei in the spinal cord extended dorsally into corresponding regions of the caudal medulla oblongata, namely from the substantia intermedia medialis and lateralis into the vagus-solitarius complex and from the nucleus spinalis lateralis into the area of the nucleus reticularis lateralis. Additional VIP-IR perikarya were observed in the pars caudalis of the nucleus spinalis nervi trigemini. The VIP-IR nuclei within the caudal medulla oblongata probably form a continuous system with those localized within the spinal cord. They may be involved functionally in the modulation of cardiovascular and respiratory regulation in the guinea pig.Supported by the DFG, Carvas SFB 90  相似文献   

11.
Suprachiasmatic nucleus in the rats during early postnatal development is transitorily innervated by tyrosine hydroxylase-immunoreactive fibers that are neither catecholamine- nor serotoninergic. The goal of this immunocytochemical investigation was to find out if tyrosine hydroxylase-immunoreactive neurons of anterior hypothalamus could be the source of this innervation. According to the obtained immunocytochemical data, multiple multipolar tyrosine hydroxylase-immunoreactive neurons are localized around the suprachiasmatic nucleus in the rats at days 2 and 10 of postnatal development. Most of them were observed ventrally and laterally to the nucleus. The axons of the neurons are oriented towards the suprachiasmatic nucleus. Further investigation demonstrated considerably decreased number of tyrosine hydroxylase-immunoreactive neurons surrounding the suprachiasmatic nucleus in the adult animals as compared to early postnatal period, which correlates to the number of tyrosine hydroxylase-immunoreactive fibers in this nucleus. Hence, tyrosine hydroxylase-immunoreactive neurons in the ventral region of anterior hypothalamus can be considered as a potential source of transitory innervation of suprachiasmatic nucleus by tyrosine hydroxylase-immunoreactive fibers during early postnatal development.  相似文献   

12.
Suprachiasmatic nucleus in the rats during early postnatal development is transitorily innervated by tyrosine hydroxylase-immunoreactive fibers that are neither catecholamine- nor serotoninergic. The goal of this immunocytochemical investigation was to find out if tyrosine hydroxylase-immunoreactive neurons of anterior hypothalamus could be the source of this innervation. According to the obtained immunocytochemical data, multiple multipolar tyrosine hydroxylase-immunoreactive neurons are localized around the suprachiasmatic nucleus in the rats at days 2 and 10 of postnatal development. Most of them were observed ventrally and laterally to the nucleus. The axons of the neurons are oriented towards the suprachiasmatic nucleus. Further investigation demonstrated considerably decreased number of tyrosine hydroxylase-immunoreactive neurons surrounding the suprachiasmatic nucleus in the adult animals as compared to early postnatal period, which correlates to the number of tyrosine hydroxylase-immunoreactive fibers in this nucleus. Hence, tyrosine hydroxylase-immunoreactive neurons in the ventral region of anterior hypothalamus can be considered as a potential source of transitory innervation of suprachiasmatic nucleus by tyrosine hydroxylase-immunoreactive fibers during early postnatal development.  相似文献   

13.
The hypocretin/orexin neuropeptides (hcrt) are key players in the control of sleep and wakefulness evidenced by the fact that lack of hcrt leads to the sleep disorder Narcolepsy Type 1. Sleep disturbances are common in mood disorders, and hcrt has been suggested to be poorly regulated in depressed subjects. To study seasonal variation in hcrt levels, we obtained data on hcrt-1 levels in the cerebrospinal fluid (CSF) from 227 human individuals evaluated for central hypersomnias at a Danish sleep center. The samples were taken over a 4 year timespan, and obtained in the morning hours, thus avoiding impact of the diurnal hcrt variation. Hcrt-1 concentration was determined in a standardized radioimmunoassay. Using biometric data and sleep parameters, a multivariate regression analysis was performed. We found that the average monthly CSF hcrt-1 levels varied significantly across the seasons following a sine wave with its peak in the summer (June—July). The amplitude was 19.9 pg hcrt/mL [12.8–26.9] corresponding to a 10.6% increase in midsummer compared to winter. Factors found to significantly predict the hcrt-1 values were day length, presence of snow, and proximity to the Christmas holiday season. The hcrt-1 values from January were much higher than predicted from the model, suggestive of additional factors influencing the CSF hcrt-1 levels such as social interaction. This study provides evidence that human CSF hcrt-1 levels vary with season, correlating with day length. This finding could have implications for the understanding of winter tiredness, fatigue, and seasonal affective disorder. This is the first time a seasonal variation of hcrt-1 levels has been shown, demonstrating that the hcrt system is, like other neurotransmitter systems, subjected to long term modulation.  相似文献   

14.
Ontogeny of the FMRFamide (molluscan cardioexcitatory neuropeptide)-containing structures in the forebrain and diencephalon of the rat was investigated by employing immunohistochemical methods. FMRFamide-like immunoreacted (FMRF-IR) fibers first appeared in the borders of the periventricular zone and the preoptic area at embryonic day 18 (E18). Toward birth, the FMRF-IR fibers gradually increased both in immunoreactivity and in number in these areas. A pronounced increase in FMRF-IR was also found in the septum, the arcuate nucleus, the median eminence, the paraventricular nucleus and the amygdaloid complex. A few FMRF-IR fibers appeared at the prenatal stage in the caudate nucleus, the bed nucleus of the stria terminalis, the dorsomedial nucleus and the cortex. The first FMRFamide-immunoreactive neurons were seen in the caudate-putamen and the amygdaloid complex at E21. These FMRF-IR cells increased in immunoreactivity and a significant number of cells was noted in these nuclei in the adult rat. The highest density of FMRF-IR neurons, especially in the amygdala and tuberal hypothalamic area, was detected at postnatal two weeks (P15). FMRFamide-like immunoreactivity in the forebrain and diencephalon appeared in the cell fibers prior to that observed in the cell bodies. This may suggest that some of the immunoreacted fibers may have originated from the lower areas of the rat brain. High densities of FMRF-IR cells present in the embryonic and early postnatal stages may indicate that FMRFamide is an important factor involved in developmental organization of the central nervous system. These results also indicate a differential genesis of FMRF-IR neuronal groups in different regions.  相似文献   

15.
The finding of orexin/hypocretin deficiency in narcolepsy patients suggests that this hypothalamic neuropeptide plays a crucial role in regulating sleep/wakefulness states. However, very little is known about the synaptic input of orexin/hypocretin-producing neurons (orexin neurons). We applied a transgenic method to map upstream neuronal populations that have synaptic connections to orexin neurons and revealed that orexin neurons receive input from several brain areas. These include the amygdala, basal forebrain cholinergic neurons, GABAergic neurons in the preoptic area, and serotonergic neurons in the median/paramedian raphe nuclei. Monoamine-containing groups that are innervated by orexin neurons do not receive reciprocal connections, while cholinergic neurons in the basal forebrain have reciprocal connections, which might be important for consolidating wakefulness. Electrophysiological study showed that carbachol excites almost one-third of orexin neurons and inhibits a small population of orexin neurons. These neuroanatomical findings provide important insights into the neural pathways that regulate sleep/wakefulness states.  相似文献   

16.
Summary In the suprachiasmatic nucleus (NSC) of hibernating and non-hibernating ground squirrels, the distribution of serotonin-immunoreactive (5HT-IR) fibers was studied by the use of the peroxidase-antiperoxidase technique. The cytology of perikarya giving rise to these suprachiasmatic 5HT-IR fibers was investigated in the anterior raphe nuclei. Differences in the immunoreactivity of suprachiasmatic fibers between hibernating and non-hibernating ground squirrels were determined by digital image analysis. The cellular activity was determined densitometrically after RNA-staining in anterior raphe neurons and suprachiasmatic perikarya. Abundant 5HT-IR fibers were observed in the medial and ventromedial portions of the NSC. Frequently, the fibers were found in close contact with perikarya of suprachiasmatic neurons. The central portion of the nucleus and the surrounding hypothalamic areas contained only a few scattered 5HT-IR fibers. Inside the raphe nuclei, 5HT-IR fibers and perikarya formed a dense network. In hibernating ground squirrels, the immunoreactivity to serotonin was approximately 45% higher than in non-hibernating controls. This difference is in accordance with signs of higher neuronal activity (40% higher RNA-content, 20% larger cell nuclei) in 5HT-IR perikarya of the raphe nucleus and the persisting activity of the NSC during hibernation; the activity of other brain regions dropped conspicuously in torpid animals.Supported by the Deutsche Forschungsgemeinschaft (Nu 36/2-1)  相似文献   

17.
Orexin-expressing neurons in the lateral hypothalamus with their wide projections throughout the brain are important for the regulation of sleep and wakefulness, ingestive behavior, and the coordination of these behaviors in the environmental context. To further identify downstream effector targets of the orexin system, we examined in detail orexin-A innervation of the caudal raphé nuclei in the medulla, known to harbor sympathetic preganglionic motor neurons involved in thermal, cardiovascular, and gastrointestinal regulation. All three components of the caudal raphé nuclei, raphé pallidus, raphé obscurus, and parapyramidal nucleus, are innervated by orexin-A-immunoreactive fibers. Using confocal microscopy, we demonstrate close anatomical appositions between varicose orexin-A immunoreactive axon profiles and sympathetic premotor neurons identified with either a transneuronal retrograde pseudorabies virus tracer injected into the interscapular brown fat pads, or with in situ hybridization of pro-TRH mRNA. Furthermore, orexin-A injected into the fourth ventricle induced c-Fos expression in the raphé pallidus and parapyramidal nucleus. These findings suggest that orexin neurons in the hypothalamus can modulate brown fat thermogenesis, cardiovascular, and gastrointestinal functions by acting directly on neurons in the caudal raphé nuclei, and support the idea that orexins simultaneous stimulation of food intake and sympathetic activity might have evolved as a mechanism to stay alert while foraging.  相似文献   

18.
By means of indirect immunoperoxidase procedures using the biotin- avidin method in combination with monoclonal antibodies to the human estrogen receptor it has been possible to map out distinct populations of nerve cells possessing nuclear estrogen immunoreactivity in rat brain. High densities of strongly estrogen immunoreactive nerve cells were especially observed in the medial preoptic area and the bed nucleus of the stria terminalis but also in the magnocellular part of the arcuate nucleus, the ventral premammillary nuclei and in the area between the medial and lateral hypothalamus including the lateral component of the ventromedial hypothalamic nucleus. Similar results were obtained in the male and female adult brain. Following castration of the male and female adult rat, the nuclear estrogen immunoreactivity did not change its location but the degree of immunoreactivity was increased. Administration of 50 μg/kg of estrogen benzoate in the castrated animals induced a marked disappearence of the estrogen immunoreactivity in the nerve cells in all regions analyzed. The results give further evidence for the existence of a selective population of estrogen receptor containing neurons in the female and male brain of adult animals and that the estrogen free receptor is associated with the nucleus. Upon activation the nuclear estrogen receptors appear to loose this immunoreactivity probably due to a change in the conformation of the receptor protein.  相似文献   

19.
本文采用辣根过氧化物酶(HRP)逆行追踪技术结合硫辛酰胺脱氨酸(NADPH-d)组织化学方法,研究正常豚鼠耳蜗核一氧化氮合酶(NOS)阳性神经元的上行投射特点。探讨耳蜗核NOS阳性神经元在听觉信号传递中的可能作用。结果表明,一侧上橄榄复合体加压注射HRP后,两侧耳蜗核均出现HRP标记细胞,同侧耳蜗核NOS-HRP双标细胞较多占82.63%,并可见HRP阳性纤维和终末包绕NOS阳性胞体,对侧耳蜗核NOS-HRP双标细胞相对较少,仅占14.87%。一侧下丘加压注入HRP后两侧耳蜗核均无HRP-NOS双标细胞。结果提示,耳蜗核NOS阳性神经元向上橄榄复合体投射,可能具有调节听觉声信号传递的作用  相似文献   

20.
The central neural pathways underlying the physiological coordination between thermoregulation and the controls of the wake-sleep behavior and cardiovascular function remain insufficiently understood. Growing evidence supports the involvement of hypocretin (orexin) peptides in behavioral, cardiovascular, and thermoregulatory functions. We investigated whether the effects of ambient temperature on wake-sleep behavior and cardiovascular control depend on the hypothalamic neurons that release hypocretin peptides. Orexin-ataxin3 transgenic mice with genetic ablation of hypocretin neurons (n = 11) and wild-type controls (n = 12) were instrumented with electrodes for sleep scoring and a telemetric blood pressure transducer. Simultaneous sleep and blood pressure recordings were performed on freely-behaving mice at ambient temperatures ranging between mild cold (20°C) and the thermoneutral zone (30°C). In both mouse groups, the time spent awake and blood pressure were higher at 20°C than at 30°C. The cold-related increase in blood pressure was significantly smaller in rapid-eye-movement sleep (REMS) than either in non-rapid-eye-movement sleep (NREMS) or wakefulness. Blood pressure was higher in wakefulness than either in NREMS or REMS at both ambient temperatures. This effect was significantly blunted in orexin-ataxin3 mice irrespective of ambient temperature and particularly during REMS. These data demonstrate that hypocretin neurons are not a necessary part of the central pathways that coordinate thermoregulation with wake-sleep behavior and cardiovascular control. Data also support the hypothesis that hypocretin neurons modulate changes in blood pressure between wakefulness and the sleep states. These concepts may have clinical implications in patients with narcolepsy with cataplexy, who lack hypocretin neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号