首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Clones of virogenic simian virus 40 (SV40)-transformed hamster kidney cells were exposed to medium deficient in the essential amino acids leucine, arginine, or methionine. Infectious virus was induced after deprivation periods of from 24 to 32 hr. The highest yields of infectious SV40 were obtained from cultures deprived for 3 to 4 days. Infectious virus was also induced in cells that were treated with the metabolic inhibitor cycloheximide. Pulse labeling experiments revealed that both protein synthesis and deoxyribonucleic acid (DNA) synthesis were inhibited by concentrations of cycloheximide which were effective for virus induction. It is suggested that inhibition of protein synthesis by either amino acid deprivation or by cycloheximide was responsible for the induction of infectious virus from virogenic cells. We postulate that the inhibition of protein synthesis caused a temporary inhibition of DNA synthesis which resulted in the induction of infectious virus.  相似文献   

2.
3.
Resting lymphocytes are in the G0 phase of the cell cycle. Upon activation by PHA, they progress into G1 with accompanying increased protein and RNA synthesis, initiate DNA synthesis and divide. We have studied the kinetics of inhibition of macromolecular synthesis during activation in the absence of single amino acids. Three types of kinetics are observed. In the absence of tryptophan or isoleucine, stimulated lymphocytes show a normal increase in protein and RNA synthesis during the first 30 hours of stimulation, initiate DNA synthesis but are subsequently inhibited. In phenylalanine-deficient medium, no DNA synthesis occurs in spite of a slight increase in protein synthesis. No increase in macromolecular synthesis is observed in medium lacking any one of the other essential amino acids (eg: lysine). Our results indicate that the kinetics of macromolecular synthesis in tryptophan-deficient medium is the result of a limited reserve of protein-bound tryptophan which becomes exhausted after 30 hours. On the other hand, delayed inhibition of synthesis in isoleucine-deficient medium probably reflects an initially low requirement for this amino acid followed by inhibition of the synthesis of isoleucine-rich proteins involved in some late event of stimulation. Partial deprivation of lysine results in kinetics of protein synthesis similar to that in tryptophan- or isoleucine-deficient media. The results indicate that the kinetics of macromolecular synthesis during activation of lymphocytes in the absence of an essential amino acid is a function of the quantitative requirement for that amino acid, at a given time during stimulation. Upon replacement of lysine, lymphocytes inhibited by lysine deficiency begin RNA and protein synthesis immediately and at a rate faster than that of unstimulated cultures to which PHA is added. They also initiate DNA synthesis earlier and therefore, are closer to the S phase than resting lymphocytes. It is concluded that lymphocytes stimulated in the absence of lysine are activated even though no overall increase in macromolecular synthesis is observed. Furthermore, the kinetics of DNA synthesis following reversal of inhibition by phenylalanine suggests that lymphocytes stimulated during phenylalanine deprivation become arrested at most six hours before S. These results indicate that amino acid deficiencies lead to arrest of activated lymphocytes at various stages of stimulation, depending on how stringent these deficiencies are.  相似文献   

4.
The enzyme asparaginase, which hydrolyses asparagine to aspartic acid, inhibited cell-free protein synthesis by reticulocyte lysates. The inhibition was rapid and complete when sufficient enzyme was added but could be prevented or reversed by the addition of asparagine. The initial effect of asparaginase appears to be a block in polypeptide chain elongation due to asparagine deprivation, but there are some indications that prolonged incubation under these conditions may give rise to a secondary decrease in initiation of protein synthesis.  相似文献   

5.
Amino acid deprivation of chick embryo cells enhances the synthesis of four proteins whose molecular weights are approx. 89000, 73000, 35000 and 27000. This enhancement, which is seen in medium completely free of amino acids, can be prevented by the addition of any single amino acid. Furthermore, in the absence of amino acids in the medium, DNA and RNA synthesis is markedly inhibited, an effect which is similarly prevented by the addition of single amino acids. These new proteins synthesized in the amino acid-free medium co-migrate on one-dimensional gels with the ‘stress proteins’ induced by a variety of agents such as heavy metals, sulfhydryl reagents, heat shock, and amino acid analogues.  相似文献   

6.
The sensing of the nutritional level of the body fluid is pivotal for maintaining homeostasis in animals. However, it is not yet understood how the cells detect nutritional levels. In the present study, we examined the function of umami taste receptor, which has a dimeric protein structure composed of Tas1r1 and Tas1r3, as amino acid sensor in the cells. We found that deprivation of amino acids induced neurite outgrowth in N1E-115 cells. The neurite outgrowth was inhibited by almost all of the amino acids tested. To investigate the involvement of the umami taste receptor, siRNA against each of Tas1r1 or Tas1r3 was administered, resulting in suppression of the inhibitory effects of amino acids on neurite outgrowth. In addition, inosine 5'-monophosphate, which potentiates the response to amino acids in the taste cells, enhanced the inhibitory effect of glutamine on neurite outgrowth. These results suggest that Tas1r1 + 3 functions as an amino acid sensor in N1E-115 cells. Because glutamine increased intracellular cAMP concentration, we investigated the involvement of the Gαs subunit of the heterotrimeric G protein in signal transduction. The treatments to inhibit the Gαs subunit significantly suppressed the increase of intracellular cAMP concentration induced by glutamine and the inhibitory effect of amino acids on neurite outgrowth. In addition, the reagents for increasing intracellular cAMP concentration inhibited neurite outgrowth induced by deprivation of amino acids. We concluded that Tas1r1 + 3 functions as an amino acid sensor and activates the intracellular signaling pathway through the Gαs subunit in N1E-115 cells.  相似文献   

7.
Of the cells ofLactobacillus acidophilus R-26 incorporated3H-thymine (specific radioactivity 1.57 Ci/mmol or 3.15 Ci/mmol), their transfer to a medium without essential amino acids resulted in their death. This death may be interpreted in such a way that cell damage caused by disintegration of tritium cannot be effectively repaired under conditions of amino acid deprivation. The experimental conditions make it possible to explain this death either as a result of inhibition of protein or RNA synthesis or as a result of the absence of amino acids. These possibilities were tested in experiments, in which the synthesis of proteins and RNA was inhibited by specific inhibitors in the presence of amino acids. Under these conditions no death of cells was detected, thus indicating that free amino acids play a role in the repair of radiation damage.  相似文献   

8.
Nutritional control of protein degradation in isolated rat hepatocytes can take place in the absence of protein synthesis. Suppression of degradation by amino acids (step-up) is unaffected and the enhanced degradation seen upon amino acid deprivation (step-down) is only partially inhibited by cycloheximide at a concentration (10?3 M) which inhibits protein synthesis virtually completely. Protein degradation per se is, however, inhibited by cycloheximide as well as by puromycin, apparently at least in part by mechanisms additional or unrelated to their effect on protein synthesis. Several puromycin analogues (methylaminopurines) are stronger inhibitors of protein degradation than of protein synthesis, most notably puromycin aminonucleoside and 6-dimethylaminopurine riboside (N6, N6-dimethyladenosine). The latter compounds appear to specifically inhibit cellular autophagy, since neither the degradation of endocytosed protein (asialofetuin) nor the extralysosoma (amino acid-, propylamine- and leupeptin-resistant) degradation are affected.  相似文献   

9.
Asparagine utilization in Escherichia coli   总被引:5,自引:4,他引:1       下载免费PDF全文
Asparagine-requiring auxotrophs of Escherichia coli K-12 that have an active cytoplasmic asparaginase do not conserve asparagine supplements for use in protein synthesis. Asparagine molecules entering the cell in excess of the pool required for use of this amino acid in protein synthesis are rapidly degraded rather than accumulated. Supplements are conserved when asparagine degradation is inhibited by the asparagine analogue 5-diazo-4-oxo-l-norvaline (DONV) or mutation to cytoplasmic asparaginase deficiency. A strain deficient in cytoplasmic asparaginase required approximately 260 mumol of asparagine for the synthesis of 1 g of cellular protein. The cytoplasmic asparaginase (asparaginase I) is required for growth of cells when asparagine is the nitrogen source. This enzyme has an apparent K(m) for l-asparagine of 3.5 mM, and asparaginase activity is competitively inhibited by DONV with an apparent K(i) of 2 mM. The analogue provides a time-dependent, irreversible inhibition of cytoplasmic asparaginase activity in the absence of asparagine.  相似文献   

10.
We explored the crosstalk between protein degradation and synthesis in cancer cells. The tumorigenic cell line, MCF7, showed enhanced proteasome activity compared to the nontumorigenic line, MCF10A. Although there was no difference in the sensitivity of MCF7 and MCF10A cells to proteasome inhibition in complete growth medium, combining proteasome inhibition with amino acid deprivation led to reduced protein synthesis and survival of MCF7 cells, with a lesser effect on MCF10A cells. Additional cancer cell lines (including CAG and A431) could be strongly sensitized to proteasome inhibition by concomitant amino acid deprivation, whereas others were completely resistant to proteasome inhibition. We hypothesize that protein catabolism contributes to the pool of free amino acids available for protein synthesis, leading to a crucial role of the proteasome in cell survival during amino acid depletion, in some tumor cell lines.  相似文献   

11.
In the absence of serum and amino acids, cultured Chinese Hamster Ovary cells released to the medium two thirds of the leucine produced by protein degradation. Because protein synthesis requires all the amino acids, the loss of leucine implies incomplete reincorporation of the other amino acids as well. Leupeptin (0.45 mg/ml) and chloroquine (up to 40 microM) inhibited protein breakdown by 21 and up to 41%, respectively, and resulted in proportional decreases in protein synthesis. Chloroquine abolished the stimulation of protein breakdown by amino acid deprivation. From the values of protein synthesis and leucine output with and without chloroquine, it is estimated that the stimulation of protein degradation not only permitted continuing protein synthesis but also increased amino acid output. In the presence of serum or amino acids protein breakdown was slower than in their absence and less sensitive to inhibition by chloroquine, but proportional effects on synthesis and degradation were still observed. It is suggested that protein degradation may be necessary for the maintenance of optimum intracellular concentrations of amino acids even in the presence of extracellular amino acids.  相似文献   

12.
13.
To elucidate the role of protein synthesis in DNA formation, E. coli R2 infected with phage T2 was studied as a model, employing chloramphenicol to inhibit protein synthesis. The following results were obtained. 1. Chloramphenicol inhibited protein synthesis but not synthesis of nucleic acids in uninfected bacteria. 2. Studies of the effect of chloramphenicol on phage maturation indicated a delay of 2 minutes between time of addition and cessation of phage growth. 3. The increase of DNA in phage-infected bacteria was completely suppressed by the addition of chloramphenicol within 2 minutes following infection. Addition at later times showed progressively less inhibitory action depending upon the time interval, and addition after the 10th or 12th minute showed no appreciable effect on DNA synthesis despite the cessation of intracellular phage formation and protein synthesis. 4. When chloramphenicol was added to infected cells the increase of resistance to UV stopped within 2 minutes, whether or not DNA synthesis continued. Thus evolution of resistance paralleled the rate of DNA synthesis achieved, but not the amount of DNA accumulated. 5. We conclude that in infected bacteria, protein synthesis is necessary to initiate DNA synthesis but is not essential for its continuation. The resistance to UV that characterizes infected cells near the midpoint of the latent period is not due to accumulation of DNA, but depends on some chloramphenicol-sensitive process (probably protein synthesis) completed at about the time the rate of DNA synthesis becomes maximal.  相似文献   

14.
Amino acid deprivation induces adaptive changes in amino acid transport and the intracellular amino acid pool in cultured cells. In this study intracellular amino acid levels were determined in cultured bovine aortic endothelial cells (EC) deprived of L-arginine or total amino acids for 1, 3, 6 and 24 h. Amino acid concentrations were analyzed by reverse phase HPLC after precolumn derivatisation. Under normal culture conditions levels of L-arginine L-citrulline, total essential and non-essential amino acids were 840 +/- 90 microM, 150 +/- 40 microM, 11.4 +/- 0.9 mM and 53.3 +/- 3.4 mM (n = 9), respectively. In EC deprived of L-arginine or all amino acids for 24 h L-arginine and L-citrulline levels were 200 microM and 50 microM, and 670 microM and 100 microM Deprivation of L-arginine or total amino acids induced rapid (1 h) decreases (30 - 50%) in the levels of other cationic (lysine, ornithine) and essential branched-chain (valine, isoleucine, leucine) and aromatic (phenylalanine, tryptophan) amino acids. L-glutamine was reduced markedly in EC deprived of total amino acids for 1 h - 6 h but actually increased 3-fold in EC deprived of L-arginine for 6 h or 24 h. Arginine deprivation resulted in a rapid decrease in the total intracellular amino acid pool, however concentrations were restored after 24 h. Increased amino acid transport and/or reduced protein synthesis may account for the restoration of amino acid levels in EC deprived of L-arginine. The sustained reduction in the free amino acid pool of EC deprived of all amino acids may reflect utilization of intracellular amino acids for protein synthesis.  相似文献   

15.
Water flow through frog gastric mucosa   总被引:2,自引:0,他引:2       下载免费PDF全文
To elucidate the role of protein synthesis in DNA formation, E. coli R2 infected with phage T2 was studed as a model, employing chloramphenicol to inhibit protein synthesis. The following results were obtained. 1. Chloramphenicol inhibited protein synthesis but not synthesis of nucleic acids in uninfected bacteria. 2. Studies of the effect of chloramphenicol on phage maturation indicated a delay of 2 minutes between time of addition and cessation of phage growth. 3. The increase of DNA in phage-infected bacteria was completely suppressed by the addition of chloramphenicol within 2 minutes following infection. Addition at later times showed progressively less inhibitory action depending upon the time interval, and addition after the 10th or 12th minute showed no appreciable effect on DNA synthesis despite the cessation of intracellular phage formation and protein synthesis. 4. When chloramphenicol was added to infected cells the increase of resistance to UV stopped within 2 minutes, whether or not DNA synthesis continued. Thus evolution of resistance paralleled the rate of DNA synthesis achieved, but not the amount of DNA accumulated. 5. We conclude that in infected bacteria, protein synthesis is necessary to initiate DNA synthesis but is not essential for its continuation. The resistance to UV that characterizes infected cells near the midpoint of the latent period is not due to accumulation of DNA, but depends on some chloramphenicol-sensitive process (probably protein synthesis) completed at about the time the rate of DNA synthesis becomes maximal.  相似文献   

16.
The site of inhibition of peptidoglycan synthesis during the stringent response in Escherichia coli was determined in strains which were auxotrophic for both lysine and diaminopimelic acid (DAP). Cells were labeled with [(3)H]DAP for 30 to 60 min in the presence and absence of required amino acids, and the cellular distribution of [(3)H]DAP was determined. In both stringent (rel(+)) and relaxed (relA) strains, amino acid deprivation did not inhibit the incorporation of [(3)H]DAP into the nucleotide precursor and lipid intermediate fractions. The amount of [(3)H]DAP incorporated into the peptidoglycan fraction by the amino acid-deprived relA strain was over 70% of the amount incorporated in the presence of required amino acids. In contrast, the amounts of labeled peptidoglycan in amino acid-deprived rel(+) strains were only 20 to 44% of the amounts synthesized in the presence of amino acids. These results indicate that a late step in peptidoglycan synthesis is inhibited during the stringent response. The components of the lipid intermediate fraction synthesized by rel(+) strains in the presence and absence of required amino acids were quantitated. Amino acid deprivation did not inhibit the synthesis of either the monosaccharide-pentapeptide or the disaccharide-pentapeptide derivatives of the lipid intermediate. Thus, the reaction which is most likely inhibited during the stringent response is the terminal one involving the incorporation of the disaccharide-pentapeptide into peptidoglycan.  相似文献   

17.
Billen, Daniel (The University of Texas, Houston), and Roger Hewitt. Physiological aspects of modification and restoration of chromosomal synthesis in bacteria after X irradiation. J. Bacteriol. 90:1218-1225. 1965.-A study was made of the effect of amino acid deprivation or chloramphenicol on the character of postirradiation deoxyribonucleic acid (DNA) replication in bacteria with the use of radioisotopes and 5-bromouracil as a density label. CsCl density-gradient studies of DNA showed that postirradiation incubation of amino acid-requiring Escherichia coli in an amino acid-free medium interfered with continued linear chromosomal replication. In the presence of the required amino acids, linear chromosomal replication was shown to resume. Addition of chloramphenicol was found to prevent this resumption. Deletion of the required amino acids or the presence of chloramphenicol in a fully supplemented medium allowed the detection of altered DNA synthesis in bacteria at X-ray doses as low as 500 r. The character of the limited DNA made in the presence of the density label after irradiation is described. The results are interpreted as showing that the synthesis of a protein(s) is required for restoration of linear chromosomal replication in the irradiated cells.  相似文献   

18.
Protein synthesis in isolated cell nuclei   总被引:45,自引:0,他引:45       下载免费PDF全文
1. Nuclei prepared from calf thymus tissue in a sucrose medium actively incorporate labelled amino acids into their proteins. This is an aerobic process which is dependent on nuclear oxidative phosphorylation. 2. Evidence is presented to show that the uptake of amino acids represents nuclear protein synthesis. 3. The deoxyribonucleic acid of the nucleus plays a role in amino acid incorporation. Protein synthesis virtually ceases when the DNA is removed from the nucleus, and uptake resumes when the DNA is restored. 4. In the essential mechanism of amino acid incorporation, the role of the DNA can be filled by denatured or partially degraded DNA, by DNAs from other tissues, and even by RNA. Purine and pyrimidine bases, monoribonucleotides, and certain dinucleotides are unable to substitute for DNA in this system. 5. When the proteins of the nucleus are fractionated and classified according to their specific activities, one finds the histones to be relatively inert. The protein fraction most closely associated with the DNA has a very high activity. A readily extractable ribonucleoprotein complex is also extremely active, and it is tempting to speculate that this may be an intermediary in nucleocytoplasmic interaction. 6. The isolated nucleus can incorporate glycine into nucleic acid purines, and orotic acid into the pyrimidines of its RNA. Orotic acid uptake into nuclear RNA requires the presence of the DNA. 7. The synthesis of ribonucleic acid can be inhibited at any time by a benzimidazole riboside (DRB) (which also retards influenza virus multiplication (11)). 8. The incorporation of amino acids into nuclear proteins seems to require a preliminary activation of the nucleus. This can be inhibited by the same benzimidazole derivative (DRB) which interferes with RNA synthesis, provided that the inhibitor is present at the outset of the incubation. DRB added 30 minutes later has no effect on nuclear protein synthesis. These results suggest that the activation of the nucleus so that it actively incorporates amino acids into its proteins requires a preliminary synthesis of ribonucleic acid. 9. Together with earlier observations (27, 28) on the incorporation of amino acids by cytoplasmic particulates, these results show that protein synthesis can occur in both nucleus and cytoplasm.  相似文献   

19.
Erythroblastic leukemic (EBL) cells incubated in media containing essential amino acids, glutamine and serine incorporate more [3H]-leucine into protein than those incubated without serine. Cells incubated with serine contain higher intracellular serine concentrations and display increased rates of peptide chain initiation on polyribosomal profile analysis. Deficiency of serine inhibited protein synthesis more than deficiencies of most other single essential amino acids, but no further inhibition was seen when single essential amino acids were removed from serine deficient media. Serine also enhanced the uptake of [3H]-uridine and its transfer to RNA while several essential amino acids had no effect. We conclude that in EBL cells, serine is an essential amino acid and that exogenous repletion of intracellular concentrations induces a positive pleiotypic response. We have previously shown that after incubation with serine for 15 min. EBL cells have greater numbers of plasmalemma insulin receptors. Regulation of cell surface receptors may therefore comprise another limb of the pleiotypic response.  相似文献   

20.
Amino acid deprivation triggers dramatic physiological responses in all organisms, altering both the synthesis and destruction of RNA and protein. Here we describe, using the ciliate Tetrahymena thermophila, a previously unidentified response to amino acid deprivation in which mature transfer RNA (tRNA) is cleaved in the anticodon loop. We observed that anticodon loop cleavage affects a small fraction of most or all tRNA sequences. Accumulation of cleaved tRNA is temporally coordinated with the morphological and metabolic changes of adaptation to starvation. The starvation-induced endonucleolytic cleavage activity targets tRNAs that have undergone maturation by 5' and 3' end processing and base modification. Curiously, the majority of cleaved tRNAs lack the 3' terminal CCA nucleotides required for aminoacylation. Starvation-induced tRNA cleavage is inhibited in the presence of essential amino acids, independent of the persistence of other starvation-induced responses. Our findings suggest that anticodon loop cleavage may reduce the accumulation of uncharged tRNAs as part of a specific response induced by amino acid starvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号