首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The structurally related tetrapyrrolic pigments are a group of natural products that participate in many of the fundamental biosynthetic and catabolic processes of living organisms. Porphobilinogen synthase catalyzes a rate-limiting step for the biosyntheses of tetrapyrrolic natural products. In the present study, a variety of new substrate analogs and reaction intermediate analogs were synthesized, which were used as probes for studying the active site of rat porphobilinogen synthase. The compounds 1, 3, 6, 9, 14, 16, and 28 were found to be competitive inhibitors of rat porphobilinogen synthase with inhibition constants ranging from 0.96 to 73.04 mM. Compounds 7, 10, 12, 13, 15, 17, 18, and 26 were found to be irreversible enzyme inhibitors. For irreversible inhibitors, loose-binding inhibitors were found to give stronger inactivation. The amino group and carboxyl group of the analogs were found to be important for their binding to the enzyme. This study increased our understanding of the active site of porphobilinogen synthase.  相似文献   

2.
Novel pyrazole and isoxazole derivatives (6-9) were synthesized as a aromatase inhibitors. Pyrazole was synthesized from hydrazine hydrate and isoxazoles from hydroxylamine hydrochloride under different conditions. Molecular docking studies were carried out for the synthesized compounds. The best score was obtained for the compound (9) followed by compound (6) while compound (8) afforded poorest of the score. Aromatase inhibitory activity for compound (6) having pyrazole ring at 2,3 position showed highest activity followed by nitrile derivative (9). Isomeric forms of isoxazole (7 and 8) showed very poor activity compared to fadrozole and aminoglutethimide. Preliminary kinetic studies have shown that both of the active compounds (6 and 9) are reversible inhibitors of the enzyme.  相似文献   

3.
A series of new HIV-1 protease inhibitors with the hydroxyethylamine core and different hydroxyprolinamide P2 ligands were designed and synthesized. Variation of substitutions at the P2 significantly affected the enzyme inhibitory potency of the inhibitors. Compounds 2a and 2d showed excellent enzyme inhibitory activity with IC50 values in the nanomolar range. An active site binding model for inhibitors 2a and 2d was suggested based upon the computational-docking results of the ligand with HIV-1 protease. This model offers molecular insights regarding ligand-binding site interactions of the hydroxyprolinamide-derived novel P2-ligand.  相似文献   

4.
Two novel phosphino-phosphaferrocenes [η5-C5H4(CH2)nPPh2]Fe(η5-PC4H2-2,5-Cy2) (PP1: n=1; PP2: n=2) have been designed and prepared in order to clarify weak chelate effect in the previously reported (η5-C5H4CH2PPh2)Fe[η5-PC4H2-2,5-((-)-menthyl)2] (1). 31P NMR studies of reactions of PP1 with PdCl2(cod) (6) revealed that PP1 showed stronger tendency to coordinate to the PdII center in bidentate fashion compared to 1. On the other hand, chelate effect in PP2 was negligibly weak and a reaction of PP2 with 6 in a PP2/6 = 2/1 molar ratio gave a complex PdCl2(PP2)2 (10) cleanly in which PP2 coordinated to the palladium center at the PPh2 moiety as a monodentate ligand. X-ray crystal structure studies of chelate complexes PdCl2(PP1) (7) and PdCl2(PP2) (9) showed that 9 had deviations from an idealized geometry in the square planar complex which could be attributed to a larger chelate ring of PP2, while PP1 in 7 constructed nearly ideal geometry for the square planar complex.From comparison of the coordination behavior between 1, PP1, and PP2, it is concluded that steric bulk of (-)-menthyl groups in 1 is the main factor of the weak chelate coordination of 1.  相似文献   

5.
Fluorinated derivatives of 1,4-naphthoquinones are highly potent inhibitors of Cdc25A and Cdc25B phosphatases and growth of tumor cells. Eight new derivatives of polyfluoro-1,4-naphthoquinone were synthesized and their cytotoxicity in human myeloma, human mammary adenocarcinoma, mouse fibroblasts and primary mouse fibroblast cells as well as their mutagenic and antioxidant properties in a Salmonella tester strain were studied. The efficiency of suppressing the growth of two lines of tumor cells decreased in the order: 2-(2-hydroxy-ethylamino)-3,5,6,7,8-pentafluoro-1,4-naphthoquinone (1), 2,3-dimethoxy-5,6,7,8-tetrafluoro-1,4-naphthoquinone (2), 2-[2-hydroxyethyl(methyl)amino]-3,5,6,7,8-pentafluoro-1,4-naphthoquinone (3), 2-morpholino-3,5,6,7,8-pentafluoro-1,4-naphthoquinone (4), 2-[bis-(2-hydroxyethyl)amino]-3,5,6,7,8-pentafluoro-1,4-naphthoquinone (5), 2-[(2-hydroxy)ethylsulfanyl)]-5,6,7,8-tetrafluoro-1,4-naphthoquinone (6), 2-methoxy-3,5,6,7,8-pentafluoro-1,4-naphthoquinone (7), and 1,4-dioxo-3-(1-pyridinio)-1,4-dihydro-5,6,7,8-tetrafluoronaphthalene-2-olate (8). Taking into account these data together with the better cytotoxic effect against cancer cells as compared with normal mammalian cells, protecting of bacterial cells from spontaneous and H2O2-dependent mutagenesis, and lower general toxicity of the compounds towards different cells, one can propose that compounds 3-5 may be considered as useful potential inhibitors of growth of tumor cells.  相似文献   

6.
7.
In the course of a β-site APP-cleaving enzyme 1 (BACE1) inhibitor discovery project an in situ synthesis/screening protocol was employed to prepare 120 triazole-linked reduced amide isostere inhibitors. Among these compounds, four showed modest (single digit micromolar) BACE1 inhibition. Our ligand design was based on a potent reduced amide isostere 1, wherein the P2 amide moiety was replaced with an anti-1,2,3-triazole unit. Unfortunately, this replacement resulted in a 1000-fold decrease in potency. Docking studies of triazole-linked reduced amide isostere A3Z10 and potent oxadiazole-linked tertiary carbinamine 2a with BACE1 suggests that the docking poses of A3Z10 and 2a in the active sites are quite similar, with one exception. In the docked structures the placement of the protonated amine that engages D228 differs considerably between 2a and A3Z10. This difference could account for the lower BACE1 inhibition potency of A3Z10 and related compounds relative to 2a.  相似文献   

8.
A series of bromo-retrochalcones was designed, synthesized and evaluated as PTP1B inhibitors based on licochalcone A and E. Compounds 6, 12, 13, 14, 25, 36, 37, 39, and 41 showed potent inhibitory effects against PTP1B, and compound 37, the most potent among the series, had an IC50 value of 1.9 μM, about two-fold better than that of the positive control, ursolic acid.  相似文献   

9.
Previous efforts have led to the identification of a potent, selective, and nonphlorizin based SGLT2 inhibitor 1. This Letter describes efforts to further optimize the potency, microsomal stability, solubility and pharmacokinetic properties of this series of SGLT2 inhibitors. From these efforts, compounds 28 and 32 have improved solubility and pharmacokinetic properties compared to compound 1  相似文献   

10.
In an attempt to identify potential HCV NS3 protease inhibitors lead compounds, a series of novel indoles (10a-g) was designed. Molecular modeling study, including fitting to a 3D-pharmacophore model of the designed molecules (10a-g), with HCV NS3 protease hypothesis using catalyst program was fulfilled. Also, the molecular docking into the NS3 active site was examined using Discovery Studio 2.5 software. Several compounds showed significant high simulation docking score and fit values. The designed compounds with high docking score and fit values were synthesized and biologically evaluated in vitro using an NS3 protease binding assay. It appears that most of the tested compounds reveal promising inhibitory activity against NS3 protease. Of these, compounds 10a and 10b demonstrated potent HCV NS3 protease inhibitors with IC50 values of 9 and 12 ??g/mL, respectively. The experimental serine protease inhibitor activities of compounds 10a-g were consistent with their molecular modeling results. Inhibitors from this class have promising characteristics for further development as anti-HCV agents.  相似文献   

11.
Three new palladium complexes with general formula [PdCl2L2], where L = heterofunctional organoarsenic ligand: (2-isopropoxyphenyl)diphenylarsine (1), (2-methoxyphenyl)-diphenylarsine (2) and (2-hydroxyphenyl)diphenylarsine (3) have been synthesized and fully characterized, including X-ray crystallographic data. Their potential antitumor effect and genotoxicity have been studied as well. The viability test performed on human tumor (MLS) and normal (Hfl-1) cell lines indicates significant cytotoxicity of complexes, which is higher in tumor cells than in normal cells. The lethal doses are comparable with those of standard metal-based chemotherapeutical drugs (carboplatin and oxaliplatin). These palladium complexes exhibit a higher cytotoxicity against tumor cells as against normal cells in vitro. A new static cytometric method was developed and simultaneously the classic AnnexinV test was performed. Complex 2 has an important capacity to induce apoptosis in tumor cells. The apoptotic process is triggered due to the interaction of these complexes with secondary structure of DNA in treated cells. The alkaline single-cell gel assay shows that the level of DNA damages induced by compounds 2 and 3 are significantly higher in tumor cells as in normal cells. These studies shown that complexes 1, 2 and 3 have biologic activity, the effect of complex 2 being superior to its platinum analogues, attributable to its structure.  相似文献   

12.
A series of novel hydroxamic acid based histone deacetylases (HDAC) inhibitors with aryl ether and aryl sulfone residues at the terminus of a substituted, unsaturated 5-carbon spacer moiety have been synthesized for the first time and evaluated. Compounds with meta- and para-substitution on the aryl ring of ether hydroxamic acids 19c, 20c, 19e, 19f and 19g are potent HDAC inhibitors with activities at low nanomolar levels.  相似文献   

13.
A new easily synthetic route with a 96% yield of ligand 2-(3,5-diphenyl-1H-pyrazol-1-yl)ethanol (L) is obtained. The reactivity of L against Pd(II), Zn(II) and Cu(II) leads to [PdCl2(L)2] (1), [ZnCl2(L)] (2) and [CuCl(L′)]2 (3) (L′ is the ligand L without alcoholic proton), respectively. According to the different geometries imposed by the metallic centre and the capability of L to present various coordination links, it has been obtained complexes with square planar (1 and 3) or tetrahedral (2) geometry and different nuclearity: monomeric (1 and 2) or dimeric (3). Complete characterisation by analytical and spectroscopic methods, resolution of L and 1-3 by single-crystal X-ray diffraction and magnetic studies for complex 3 are presented.  相似文献   

14.
Four analogs with 3′-O-alkyl groups (9a: CH3, 9b: C2H5, 9c: C13H27 or 9d: CH2Ph) instead of the 3′-O-sulfate anion in salacinol (1), a naturally occurring potent α-glucosidase inhibitor, were synthesized by the coupling reaction of 1,4-dideoxy-1,4-epithio-d-arabinitols (18a and 18b) with appropriate epoxides (10a-10d). These analogs showed equal or considerably higher inhibitory activity against rat small intestinal α-glucosidases than the original sulfate (1), and one of them (9d) was found more potent than currently used α-glucosidase inhibitors as antidiabetics. Thus, introduction of a hydrophobic moiety at the C3′ position of this new class of inhibitor was found beneficial for onset of stronger inhibition against these enzymes.  相似文献   

15.
Seven copper complexes [Cu(L1)I2] (1), [Cu2(L1)2I2]2[Cu2(μ-I)2I2] (2), [Cu(L2)I2] (3), [Cu2(L2)(μ-I)I(PPh3)] (4), [Cu4(L2)2(μ-I)2I2] (5), {[Cu(L2)I]2[Cu2(μ-I)2I2]}n (6) and [Cu2(L2)(μ-I)2]n (7) have been prepared by reactions of ligands: 4′-(2-pyridyl)-2,2′:6′,2″-terpyridine (L1) and 4′-(3-pyridyl)-2,2′:6′,2″-terpyridine (L2) with CuI in hydrothermal conditions, respectively. By alternating the oxidations states of the metal centers, increasing stoichiometric metal/ligand ratio and introducing a second ligand, the compounds, were successfully developed from mononuclear (1 and 3) to multinuclear (2, 4 and 5) and polymers (6 and 7). The synthesis of these compounds may provide an approach for the construction of coordination compounds of 4′-pyridyl terpyridine with different nuclearity.  相似文献   

16.
Two series of five membered heterocyclic bis(1,3,4-oxadiazole) derivatives 2(a-h) and 3,5-bis(substituted)pyrazoles, isoxazoles 3(a,b,d-i), 4(a-c) were synthesized via oxidative cyclization of some diaroylhydrazones using chloramine-T and cyclocondensation reaction with hydrazine hydrate and hydroxylamine hydrochloride, respectively. The newly synthesized compounds were screened for antioxidant and anti-microbial activities. Compounds 2(b), 3(b), and 4(a) showed higher antioxidant activity at 10 μg/ml while compounds 2(a), 3(a), 3(f), and 4(a) exhibited better anti-microbial activity at 100 μg/ml compared with standard vitamin C and ciprofloxacin, respectively. Structures of newly synthesized compounds were confirmed by elemental analysis and spectral IR, 1H NMR, and 13C NMR data.  相似文献   

17.
In our efforts to investigate the factors that affect the formation of coordination architectures, such as secondary coordination donors and pendant skeletons of the carboxylic acid ligands, as well as H-bonding and other weak interactions, two kinds of ligands: (a) 3-(2-pyridyl)pyrazole (L1) with a non-coordinated N atom as a H-bonding donor, a 2,2′-bipyridyl-like chelating ligand, and (b) four carboxylic ligands with different secondary coordination donors and/or pendant skeletons, 1,4-benzenedicarboxylic acid (H2L2), 4-sulfobenzoic acid (H2L3), quinoline-4-carboxylic acid (HL4) and fumaric acid (H2L5), have been selected to react with Mn(II) salts, and five new complexes, [Mn(L1)2(SO4)]2 (1), [Mn(L1)2(L2)] (2), [Mn(L1)(HL3)2] (3), Mn(L1)2(L4)2 (4), and [Mn(L1)2(L5)] (5), have been obtained and structurally characterized. The structural differences of 1-5 can be attributed to the introduction of the different carboxylic acid ligands (H2L2, H2L3, HL4, and H2L5) with different secondary coordination donors and pendant skeletons, respectively. This result also reveals that the typical H-bonding (i.e. N-H?O and O-H?O) and some other intra- or inter-molecular weak interactions, such as C-H?O weak H-bonding and π?π interactions, often play important roles in the formation of supramolecular aggregates, especially in the aspect of linking the multi-nuclear discrete subunits or low-dimensional entities into high-dimensional supramolecular networks.  相似文献   

18.
In this study, we synthesized hydroxy and/or alkoxy substituted phenyl-benzo[d]thiazole derivatives using substituted benzaldehydes and 2-aminothiophenol in MeOH. The structures of these compounds were established by 1H and 13C NMR and mass spectral analyzes. All synthesized compounds were evaluated for their mushroom tyrosinase inhibition activity. Out the 12 generated compounds, 2a and 2d exhibited much higher tyrosinase inhibition activity (45.36-73.07% and 49.94-94.17% at 0.01-20 μM, respectively) than kojic acid (9.29-50.80% at 1.25-20 μM), a positive control.The cytotoxicity of 2a and 2d was evaluated using B16 cells and the compounds were found to be nontoxic. Compounds 2a and 2d were also demonstrated to be potent mushroom tyrosinase inhibitors, displaying IC50 values of 1.14 ± 0.48 and 0.01 ± 0.0002 μM, respectively, compared with kojic acid, which has an IC50 value of 18.45 ± 0.17 μM. We also predicted the tertiary structure of tyrosinase, simulated the docking with compounds 2a and 2d and confirmed that the compounds strongly interact with mushroom tyrosinase residues. Kinetic plots showed that 2a and 2d are competitive tyrosinase inhibitors. Substitutions with a hydroxy group at R3 or both R3 and R1 of the phenyl ring indicated that these groups play a major role in the high binding affinity to tyrosinase. We further found that compounds 2a and 2d inhibit melanin production and tyrosinase activity in B16 cells. These results may assist in the development of new potent tyrosinase inhibitors against hyperpigmentation.  相似文献   

19.
Using a phosphorus based Mannich condensation reaction the new pyridylphosphines {5-Ph2PCH2N(H)}C5H3(2-Cl)N (1-Cl) and {2-Ph2PCH2N(H)}C5H3(5-Br)N (1-Br) have been synthesised in good yields (60% and 88%, respectively) from Ph2PCH2OH and the appropriate aminopyridine. The ligands 1-Cl and 1-Br display variable coordination modes depending on the choice of late transition-metal complex used. Hence P-monodentate coordination has been observed for the mononuclear complexes AuCl(1-Cl) (2), AuCl(1-Br) (3), RuCl2(p-cymene)(1-Cl) (4), RuCl2(p-cymene)(1-Br) (5), RhCl2(Cp)(1-Cl) (6), RhCl2(Cp)(1-Br) (7), IrCl2(Cp)(1-Cl) (8), IrCl2(Cp)(1′-Cl) (8′), IrCl2(Cp)(1-Br) (9), cis-/trans-PdCl2(1-Cl)2 (10), cis-/trans-PdCl2(1-Br)2 (11), cis-PtCl2(1-Cl)2 (12) and cis-PtCl2(1-Br)2 (13). Reaction of Pd(Me)Cl(cod) (cod = cycloocta-1,5-diene) with either 1 equiv. of 1-Br or the known pyridylphosphines 1′-Cl, 1-OH or 1-H gave the P/N-chelate complexes Pd(Me)Cl(1-Br-1-H) (14)-(17). All new compounds have been fully characterised by spectroscopic and analytical methods. Furthermore the structures of 4, 5, 10 and 16 · (CH3)2SO have been elucidated by single crystal X-ray crystallography. A crystal structure of the dinuclear metallocycle trans,trans-[PdCl2{μ-P/N-{Ph2PCH2N(H)}C5H4N}]2 · CHCl3, 18 · CHCl3, has also been determined. Here 1-H bridges, using both P and pyridyl N donors, two dichloropalladium centres affording a 12-membered ring with the PdCl2 units adopting a head-to-tail arrangement.  相似文献   

20.
The phytochemical investigation of the ethyl acetate extract of Hypericum thasium has led to the characterization of four benzophenone derivatives 1-4, a known benzophenone 5 and four known flavonoids, quercetin (6), quercitrin (7), isoquercetin (8), and 3, 8′′-biapigenin (9). Lucigenin- and luminal-based chemiluminescence assays were employed to monitor the inhibitory activity of these compounds towards the production of reactive oxygen species (ROS) by human polymorphoneutrophils (PMNs). The assay results showed that benzophenones 1 and 3 are extracellular inhibitors of ROS production, while flavonoids 6, 8, and 9 can modulate intracellular ROS production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号