首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Abstract. The flight behaviour of Stomoxys calcitrans (L.) in odour plumes containing carbon dioxide, acetone or l-octen-3-ol was assessed from video recordings. A downwind bias was evident in clean air, whereas all three test chemicals elicited upwind anemotaxis. Response thresholds were ∼0.006% for CO2, between 0.001 and 0.01 μg/l for acetone, and ∼0.0002 u.g/1 for l-octen-3-ol. Sinuosity (° cm-1) and angular velocity (° s-1) increased with C02 concentration, but velocity (cm s"1) decreased. Similar, but less clear effects were observed for acetone and l-octen-3-ol.  相似文献   

2.
Abstract. To test the hypothesis that tsetse flies use visual input from the apparent movement of the ground to assess wind direction while in flight, Glossina morsitans morsitans Westwood females were video- recorded in a wind-tunnel as they entered, in cross-wind flight, a broad plume of simulated host odour (C02 at c. 0.05%). The tunnel (2.3 times 1.2 m wide) generated winds up to 0.25 m s-1 and had a strongly patterned floor that could be moved upwind or downwind to increase or decrease the visual input due to wind drift. Flight tracks were analysed for speed, direction relative to the wind, and angle of turn. Mean groundspeeds were c. 1.8 m s-1. In control measurements in still air (with or without odour) flies turned 50:50 'upwind': 'downwind'. With a 0.25 m s-1 odour-perme- ated wind, 79% turned upwind, and c. 70% left view flying upwind. When the floor was moved at 0.25 m s-1 upwind (to mimic the visual input from the ground due to a 0.5 m s_-1 wind), the strength of this response increased. If instead the floor was moved downwind, faster than the wind speed (to mimic the visual input due to a wind from the opposite direction), 59% turned downwind and c. 70% left view flying downwind, and thus away from the source (though progressing 'upwind' in terms of the visual input from apparent ground pattern movement). Upwind turns were on average significantly larger than downwind turns. It is concluded that tsetse navigate up host odour plumes in flight by responding to the visual flow fields due to their movement over the ground (optomotor anemotaxis), even in weak winds blowing at a fraction of their groundspeed.  相似文献   

3.
ABSTRACT. Free-flying, wild Glossina pallidipes Aust. and G. morsitans Westw. were video-recorded in the field in Zimbabwe as they flew out of air permeated with host odour (camera 2.5 m up, looking down at the ground). Analysis of the flight tracks supports the proposal of Bursell (1984) that tsetse flies attracted to an invisible source of host odour respond weakly if at all to wind direction while in flight: on losing contact with the odour the flies made a sharp turn that was uncorrelated with wind direction. The size of the turn varied considerably, with a marked discontinuity in the log-survivorship curve at 120° (a fly which had turned through at least 120° was 5 times as likely to stop the turn as a fly which had turned <120°). Over half the flies made turns of >90° (and <2 m diameter) within the 2×2.5 m field of view of the camera. It is suggested that these turns initially served to arrest the upwind progress of the fly, with the size of the turn determining the degree to which the fly backtracked towards where it last detected odour or continues cross-wind. Mean flight speed was c. 5 ms-1 (min. 2.5, max. probably 7ms-1).  相似文献   

4.
ABSTRACT. Free-flying, wild male and female Glossina pallidipes Aust. and G. m. morsitans Westw. were video-recorded in the field in Zimbabwe as they entered or left the side of a host-odour plume in cross-wind flight, or as they overshot a source of host odour in upwind flight (camera 2.5 m up looking down at a 3 times 2.5 m field of view at ground level). 80% of cross-wind odour leavers turned sharply ( turns 95o), but without regard to wind direction (overshooters behaved essentially the same except that nearly 100% turned). Many fewer flies entering a plume cross wind turned ( c . 60%), and when they did they made much smaller turns ( 58o); these turns were, however, significantly biassed upwind ( c . 70%). All three classes of fly had similar groundspeeds ( 5.5–6.5 m s_1) and angular velocities ( 350–400o s-1). Clear evidence was obtained of in-flight sensitivity to wind direction: significantly more flies entering odour turned upwind than downwind, and odour losers turning upwind made significantly larger turns than average. The main basis for the different sizes of turn was the different durations of the turning flight, rather than changes in angular velocity or speed. No evidence was found of flies landing after losing contact with odour.  相似文献   

5.
Effects of environmental conditions influencing photosynthesis and photorespiration on senescence and net protein degradation were investigated in segments from the first leaf of young wheat ( Triticum aestivum L. cv. Arina) plants. The segments were floated on H2O at 25, 30 or 35°C in continuous light (PAR: 50 or 150 µmol m−2 s−1) in ambient air and in CO2‐depleted air. Stromal enzymes, including phosphoglycolate phosphatase, glutamine synthetase, ferredoxin‐dependent glutamate synthase, phosphoribulokinase, and the peroxisomal enzyme, glycolate oxidase, were detected by SDS‐PAGE followed by immunoblotting with specific antibodies. In general, the net degradation of proteins and chlorophylls was delayed in CO2‐depleted air. However, little effect of CO2 on protein degradation was observed at 25°C under the lower level of irradiance. The senescence retardation by the removal of CO2 was most pronounced at 30°C and at the higher irradiance. The stromal enzymes declined in a coordinated manner. Immunoreactive fragments from the degraded polypeptides were in most cases not detectable. However, an insolubilized fragment of glycolate oxidase accumulated in vivo, especially at 25°C in the presence of CO2. Detection of this fragment was minimal after incubation at 30°C and completely absent on blots from segments kept at 35°C. In CO2‐depleted air, the fragment was only weakly detectable after incubation at 25°C. The results from these investigations indicate that environmental conditions that influence photosynthesis may interfere with senescence and protein catabolism in wheat leaves.  相似文献   

6.
Abstract. Females of the specialist parasitoid, Microplitis croceipes (Cresson) (Hymenoptera: Braconidae), were released in a wind tunnel into host-odour plumes dispersed by winds of three velocities and winds whose speed was changed while the wasps were engaged in upwind flight. In steady winds of 61, 122 and 183 cms--1, wasps maintained similar 'preferred' ground speeds by adjusting their airspeed, while turning to a lesser degree as wind velocity increased. In winds of changing velocity (either increasing or decreasing within a 60–100 cm s-1 range), wasps lowered their rate of upwind progress, leading to more tortuous tracks. During changing wind speeds longitudinal image flow decreased. Wasps flying in host-odour plumes 10 cm and 20 cm above the flight tunnel floor in a 122 cm s-1 wind had similar ground speeds; thus their rate of ventral visual image flow varied two-fold. M.croceipes may 'aim' upwind by comparing how changes in the course angle vary with the direction of visual image flow. During changing wind velocities the relationship between changes in visual and flight muscle generated torque is ambiguous. Under these conditions most wasps cast, a manoeuvre characterized by wide lateral excursions across the wind without upwind progress. Once wind speed stabilizes, flight straightens out and upwind flight resumes.  相似文献   

7.
1. A method for quantifying interstitial water velocity based on the dissolution rate of plaster of Paris standards was developed as part of a study of vertical, longitudinal (1–4 order sites) and seasonal variation in the biotic and physical characteristics of the shallow hyporheic zone (0–30 cm) of a headwater stream system in West Virginia, U.S.A.
2. A calibration model was developed using a water velocity simulation tank to relate mass loss of plaster standards to water velocity and temperature. The model was then used to calculate water velocity through artificial substrata embedded in the shallow hyporheic zone of four stream reaches based on in situ mass loss of plaster standards.
3. Water velocity in the hyporheic zone increased with stream order, was highest in early spring and winter during high stream base flows, and decreased with depth into the substratum. There was a strong interaction between depth and season: during periods of high stream discharge, water velocity through the upper level of the shallow hyporheic zone (0–10 cm into the substrate) increased disproportionately more than velocity at greater depths. Mean interstitial velocity in March ranged from 0 cm s–1 in the lowest level (20–30 cm) to 3.5 cm s–1 at the upper level (0–10 cm) at the first‐order site, and from 2.5 cm s–1 (20–30 cm) to 9.5 cm s–1 (0–10 cm s–1) at the fourth‐order site. Gradients in stream discharge and sediment permeability accounted for treatment effects.
4. Use of calibrated data improved the ability to resolve among‐season differences in interstitial water movement over the use of uncalibrated mass loss data. For some applications of the plaster standard method, empirical calibration may not be necessary.  相似文献   

8.
Abstract. Female Glossina morsitans morsitans Westwood were video-recorded in a wind-tunnel as they entered, in cross-wind flight, a broad plume of CO2 (a component of host odour). At a wind speed that corresponds with peak catches in the field (c. 0.6 ms-1) odour produced both significant upwind turning responses (in-flight anemotaxis) and kinetic responses (reduced flight speed and increased sinuosity (m-1). At a wind speed of c. 0.2 ms-1 flies displayed anemotactic, but not kinetic, responses to odour. At very low wind speeds (0.1ms-1) neither upwind turning responses nor kinetic responses to odour were detected. The results are discussed with regard to current theory of host-location by tsetse.  相似文献   

9.
To test for the effects of far‐red light on preventing budset in Picea abies , seedlings of six populations originating from latitudes between 67°N and 47°N were grown for 4–8 weeks in continuous incandescent (metal halogen) light at 300 µmol m−2 s−1 and 20°C and then transferred, at the same temperature, to a daily regime of 8 h incandescent light (300 µmol m−2 s−1) followed by 16 h cool white fluorescent light (40 µmol m−2 s−1). (Cool white lamps are deficient in far‐red light, with a R/FR ratio of 7.5 compared with 2.0 for the incandescent lamps.) All the seedlings from 67° and 80% of those from 64° stopped extension growth and set terminal buds within 28 days of the change of regime. The seedlings from 61° and further south continued growing, as did control seedlings from 67° grown as above but with incandescent light at 20 µmol m−2 s−1 replacing cool white illumination. To distinguish between a clinal and ecotypic pattern of variation, the interval between 64° and 59° was investigated by growing populations originating from that area in the same regimes as before. After 28 days in the cool white day‐extension regime, the percentage budset was 86 for the population from 64°, 0 for the population from 59° and 25–50 for the intermediate populations; i.e. the populations showed a clinal variation in requirement for far‐red light according to latitude. Thus northern populations of Picea abies appear to behave as 'light‐dominant' plants for the photoperiodic control of extension growth and budset, whereas the more southern populations behave as 'dark‐dominant' plants.  相似文献   

10.
Abstract. Female Glossina morsitans morsitans Westwood were video-recorded in a wind-tunnel as they entered, in crosswind flight, a broad plume of either octenol or acetone (two components of ox odour). Both odours produced upwind turning responses (in-flight anemotaxis) to a range of concentrations, with thresholds at around 10-8mg1-l for octenol and 10-6mg1-1 for acetone. Kinetic responses were unaffected by octenol at low concentrations, but flight speed was significantly reduced and sinuosity (om-1) and angular velocity (os-1) significantly increased by concentrations at or above those in ox breath; for acetone, these effects were apparent but inconsistently related to concentration. It is concluded that octenol and acetone vapour are used by tsetse flies to locate hosts by upwind anemotaxis, probably combined with kinetic responses. The behavioural basis for the 'repellency' of high octenol concentrations in the field is discussed in the context of the virtual loss of upwind anemotaxis to octenol at the highest concentration tested in the tunnel (30 × ox breath).  相似文献   

11.
Abstract Airborne pheromone plumes in wind comprise filaments of odour interspersed with gaps of clean air. When flying moths intercept a filament, they have a tendency to surge upwind momentarily, and then fly crosswind until another filament is intercepted. Thus, the moment-to-moment contact with pheromone mediates the shape of a flight track along the plume. Within some range of favourable interception rates, flight tracks become straighter and are headed more due upwind. However, as the rate of interception increases, there comes a point at which the moth should not be able to discern discreet filaments but, rather, should perceive a 'fused signal'. At the extreme, homogeneous clouds of pheromone inhibit upwind progress by representative tortricids. In a wind tunnel, Cadra cautella (Walker) (Lepidoptera: Pyralidae) were presented with 10 ms pulses of pheromone at a repetition rate of 5, 10, 17 and 25/s and a continuous, internally turbulent plume. Pulse size and concentrations were verified with a miniature photoionization detector sampling surrogate odour, propylene, at 100 Hz. Male moths maintain upwind progress even at plumes of 25 filaments/s. Furthermore, moths exhibited greater velocities and headings more due upwind at 17 and 25 Hz than at the lower frequencies or with the continuous plume. It is hypothesized that either C. cautella possesses a versatile sensory system that allows the resolution of these rapidly pulsed pheromone plumes, or that this species does not require a 'flickering' signal to fly upwind.  相似文献   

12.
The osmolality and ionic composition of the blood of juvenile Atlantic cod Gadus morhua and their response to conditions of reduced temperature and salinity in summer‐ and winter‐acclimated individuals was investigated. Haematocrit percentage was relatively stable throughout the experimental procedures. Summer‐acclimated juvenile Atlantic cod had higher plasma osmolality than winter‐acclimated fish in ambient conditions. Plasma Na+ levels were, however, higher in winter conditions, while Cl did not vary between seasons. Temperature reduction (12, 9 and 6° C in summer and to 6 and 4° C in winter) induced a significant response in plasma osmolality and Na+ levels in summer, but only in Na+ levels in winter‐acclimated fish. A pronounced effect was seen in the summer 6° C treatment. Salinity treatments (24, 16 and 8) had a significant effect on almost all the variables in both summer and winter and resulted generally in dilution of ionic and osmotic concentrations of the plasma. This effect was pronounced in the lowest temperature treatments, with the greatest reduction observed in the summer 6° C treatment. This could suggest that winter‐acclimated fish are physiologically adapted to cope with lower seawater temperatures as opposed to summer‐acclimated fish.  相似文献   

13.
Endurance swimming of European eel   总被引:2,自引:0,他引:2  
A long‐term swim trial was performed with five female silver eels Anguilla anguilla of 0·8–1·0 kg ( c . 80 cm total length, L T) swimming at 0·5 body lengths (BL) s−1, corresponding to the mean swimming speed during spawning migration. The design of the Blazka‐type swim tunnel was significantly improved, and for the first time the flow pattern of a swim tunnel for fish was evaluated with the Laser‐Doppler method. The velocity profile over three different cross‐sections was determined. It was observed that 80% of the water velocity drop‐off occurred over a boundary layer of 20 mm. Therefore, swim velocity errors were negligible as the eels always swam outside this layer. The fish were able to swim continuously day and night during a period of 3 months in the swim tunnel through which fresh water at 19° C was passed. The oxygen consumption rates remained stable at 36·9 ± 2·9 mg O2 kg−1 h−1 over the 3 months swimming period for all tested eels. The mean cost of transportation was 28·2 mg O2 kg−1 km−1. From the total energy consumption the calculated decline in fat content was 30%. When extrapolating to 6000 km this would have been 60%, leaving only 40% of the total energy reserves for reproduction after arriving at the spawning site. Therefore low cost of transport combined with high fat content are crucial for the capacity of the eel to cross the Atlantic Ocean and reproduce.  相似文献   

14.
Cannulated, seawater‐acclimated coho salmon Oncorhynchus kisutch were swum to exhaustion in a seawater tunnel (10° C, mean U crit 50 cm s−1), resulting in metabolic acidosis and increased plasma electrolyte and cortisol concentrations, which were corrected during a 4 h recovery. Because the swimming and physiological performance data were similar to those of other salmonids, it was concluded that life‐history limitations, besides their exercise capabilities in upwelling zones, probably explain declining coho salmon populations.  相似文献   

15.
This study investigated the interaction between carbon dioxide (CO(2) ) and human foot odour on activation, upwind orientation and landing of host-seeking female Culex quinquefasciatus (Say) (Diptera: Culicidae) in a wind tunnel. More mosquitoes landed on warmed glass beads coated with foot odour than on clean beads; adding a plume of 4% CO(2) did not influence the proportion of mosquitoes landing. A second experiment used 3-dimensional video tracking to assess flight performance. Activation was more rapid with CO(2) and with CO(2) + foot odour than with clean air or with foot odour alone. Upwind flights were fastest with CO(2) and with clean air, and slowest with foot odour; the CO(2) + foot odour treatment overlapped the previous three treatments in significance. Flight headings tended more towards due upwind with CO(2) and with clean air than with CO(2) + foot odour or with foot odour alone. In both experiments, many mosquitoes flew upwind in clean air. There was little evidence of females changing course upon entering or exiting the CO(2) plume or reacting to foot odour during flight.  相似文献   

16.
Abstract. Responses of Rhagoletis pomonella (Wash) (Diptera: Tephritidae) to synthetic host fruit violates were studied in the field. Individually marked females were released in the centre of a 25 m2 patch containing twenty-five host trees ( Crataegus mollis var, toba ) and followed as they moved within and between trees. Fly response to three experimental conditions was studied: (1) 'clean' air; (2) synthetic host fruit violates (apple) permeating the patch; and (3) a single point source of odour placed c 1m away from the edge of the patch. Files in a patch permeated with host odour moved faster, exhibited more straightened-out moves, and reached the edges of the patch more quickly than those exposed to clean air. Flies exposed to a point source of odour exhibited clear orientation responses, arriving consistently at the tree harbouring the source of odour. Odour exposure was intermittent and usually brief ( c . 20s-1 exposure) with intervals between exposure periods averaging 103s. Wind speed and direction were highly variable. Flies moved during wind ranging in speed form 0.5 to 4.4 m s-1, with their activity being greatest at winds below 2m s-1. Strong winds (>3.5 ms-1) either arrested movement or enhanced downwind displacement. Our observations tend to support the 'series-of-steps' hypothesis reviewed by Gibson & Brandy (1985) as a mechanism of close-range host location (1-5m from odour source). Our findings are discussed with respect to theoretical and practical implications of insect orientation mechanisms to odours, dispersal, and control strategies.  相似文献   

17.
ABSTRACT. The response of the predatory mite, Phytoseiulus persimilis Athias-Henriot, to steep gradients of a volatile kairomone emitted by its prey, Tetranychus urticue Koch, was studied in a vertical air flow chamber. The orientation to wind direction was eliminated by using an olfactometer that had an air stream approaching the predator from below a gauze screen upon which the predator walked. The steep gradient of odour was obtained by putting a cylinder filled with prey-infested leaves vertically below the screen. Starved predators were arrested in the odour patch by walking more slowly and tortuously than well-fed predators. The latter mites did not show a significant ortho- or klinokinetic response to the presence of odour. Both well-fed and starved predators showed a chemotactic response to steep gradients at the border of the circular odour patch. Predators that happened to walk out of the patch, frequently turned back to it. This response is presumably based on idiothetic information about the predator's immediately previous walking directions, because it occurred in the odour-free zone after passing the steep gradient of prey odour. Right-about turns can help the predator to stay in static odour plumes with steep gradients at the borders. This type of plume is present only close to the odour source. Further away from the source the odour plume tends to move to and fro due to variation in wind direction. For the predator to keep track of these snaking plumes the right-about turns are unlikely to be of any value because the response is of short duration and because the response to a moving plume appeared to be inadequate; by moving the cylinder below the screen (and consequently the odour patch) it was found that the predator turned back even if the odour gradient was made to pass the predator in the same direction as that of the predator's movement.  相似文献   

18.
Changes in the temperature dependence of the photosynthetic rate depending on growth temperature were investigated for a temperate evergreen tree, Quercus myrsinaefolia . Plants were grown at 250 μ mol quanta m–2 s–1 under two temperature conditions, 15 and 30 °C. The optimal temperature that maximizes the light-saturated rate of photosynthesis at 350 μ L L–1 CO2 was found to be 20–25 and 30–35 °C for leaves grown at 15 and 30 °C, respectively. We focused on two processes, carboxylation and regeneration of ribulose-1,5-bisphosphate (RuBP), which potentially limit photosynthetic rates. Because the former process is known to limit photosynthesis at lower CO2 concentrations while the latter limits it at higher CO2 concentrations, we determined the temperature dependence of the photosynthetic rate at 200 and 1000 μ L L–1 CO2 under saturated light. It was revealed that the temperature dependence of both processes varied depending on the growth temperature. Using a biochemical model, we estimated the capacity of the two processes at various temperatures under ambient CO2 concentration. It was suggested that, in leaves grown at low temperature (15 °C), the photosynthetic rate was limited solely by RuBP carboxylation under any temperature. On the other hand, it was suggested that, in leaves grown at high temperature (30 °C), the photosynthetic rate was limited by RuBP regeneration below 22 °C, but limited by RuBP carboxylation above 22 °C. We concluded that: (1) the changes in the temperature dependence of carboxylation and regeneration of RuBP and (2) the changes in the balance of these two processes altered the temperature dependence of the photosynthetic rate.  相似文献   

19.
20.
Hatchery cutthroat trout Oncorhynchus clarki clarki were used to examine the effects of 48 h and 3 week temperature acclimation periods on critical swimming speed ( U crit). The U crit was determined for fish at acclimation temperatures of 7, 14 and 18° C using two consecutive ramp‐ U crit tests in mobile Brett‐type swim tunnels. An additional group was tested at the stock's ambient rearing temperature of 10° C. The length of the temperature acclimation period had no significant effect on either the first or the second U crit( U crit‐1 and U crit‐2, respectively) or on the recovery ratio (the quotient of U crit‐2  U crit‐1−1). As anticipated, there was a significant positive relationship between U crit‐1 and temperature ( P  < 0·01) for both acclimation periods, and an increasing, though non‐significant, trend between U crit‐2 and temperature ( P  = 0·10). Acclimation temperature had no significant effect ( P  = 0·71) on the recovery ratio. These results indicate that a 48 h acclimation to experimental temperatures within the range of −3 to +8° C of the acclimation temperature may be sufficient in studies of swimming performance with this species. This ability to acclimate rapidly is probably adaptive for cutthroat trout and other species that occupy thermally variable environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号